房坤楊芳顧寧
攜帶磁性納米顆粒載藥微囊的制備及腫瘤治療的應(yīng)用研究進(jìn)展*
房坤楊芳顧寧
顧寧 教育部“長(zhǎng)江學(xué)者”特聘教授,國(guó)家杰出青年基金獲得者,國(guó)家重大科學(xué)研究計(jì)劃項(xiàng)目首席科學(xué)家。東南大學(xué)生物科學(xué)與醫(yī)學(xué)工程學(xué)院院長(zhǎng)、東南大學(xué)納米科學(xué)與技術(shù)研究中心主任、江蘇省生物材料與器件重點(diǎn)實(shí)驗(yàn)室主任等。從事分子功能材料薄膜、納米加工以及納米材料制備、表征、及其在生物醫(yī)(藥)學(xué)領(lǐng)域中的應(yīng)用研究。完成并正在承擔(dān)十多項(xiàng)國(guó)家級(jí)及省部級(jí)科研項(xiàng)目,其中在磁性納米材料、貴金屬納米材料及其生物醫(yī)學(xué)應(yīng)用基礎(chǔ)等方面開展研究,發(fā)表SCI論文一百余篇,主要成果發(fā)表于Adv.Mater、ACS Nano、Biomaterials、Small、Adv Funct Mater、Cell Res等期刊,獲得國(guó)家發(fā)明專利30余項(xiàng)。獲得國(guó)家自然科學(xué)二等獎(jiǎng)1項(xiàng)、省部級(jí)科技獎(jiǎng)多項(xiàng)。
通過(guò)磁場(chǎng)操控使攜帶磁性納米顆粒的微囊富集在生物體特定部位,可實(shí)現(xiàn)微囊對(duì)特定組織或器官的靶向輸送。負(fù)載抗腫瘤藥物的磁性微囊既可以磁靶向到腫瘤組織,又有緩釋、控釋藥物的優(yōu)點(diǎn),已成為實(shí)現(xiàn)腫瘤靶向治療的新型藥物載體。本文綜述了脂質(zhì)體、聚合物電解質(zhì)微囊、聚合物微球等藥物載體攜帶磁性納米顆粒的制備方法,及其用于抗腫瘤藥物載體的基礎(chǔ)研究進(jìn)展。
磁性納米顆粒 磁靶向 磁性微囊 控制釋放 熱療聯(lián)合化療
隨著化療在腫瘤綜合治療中的重要性提高,藥物載體技術(shù)也取得了顯著發(fā)展[1]。尤其隨著納米技術(shù)與現(xiàn)代醫(yī)學(xué)和生物學(xué)的交叉融合,納米生物醫(yī)學(xué)取得了長(zhǎng)足發(fā)展。其中磁性納米材料由于其獨(dú)特的性能而備受關(guān)注[2],磁靶向藥物傳遞系統(tǒng)是以磁性復(fù)合顆粒作為藥物載體,進(jìn)入生物體后,在磁場(chǎng)的作用下,磁性載藥微粒富集于病變部位,所負(fù)載的藥物受控釋放,實(shí)現(xiàn)靶向治療[3];此外,磁性納米顆粒在交變磁場(chǎng)作用下能產(chǎn)生熱能[4],還可實(shí)現(xiàn)局部熱療。因此,具有靶向藥物釋放和熱療的多功能磁性微囊已發(fā)展成新型的藥物載體。本文主要綜述了磁性脂質(zhì)體藥物載體、磁性聚合物微球藥物載體、磁性聚合物電解質(zhì)微囊藥物載體以及其他磁性藥物載體的研究進(jìn)展。
磁性納米顆粒因其固有的磁性及納米顆粒表面效應(yīng),廣泛用于磁靶向、影像診斷、藥物載體、磁熱療及磁分離等領(lǐng)域。通過(guò)表面修飾可提高納米顆粒的理化穩(wěn)定性,結(jié)合磁性納米顆粒制備的多功能材料也備受關(guān)注。
載藥微囊是將固態(tài)或液態(tài)藥物用脂質(zhì)或高分子等藥物輔料包裹的微囊,在載藥量、滯留率等方面有優(yōu)勢(shì)。有關(guān)微囊藥物載體的研究主要集中在載藥量和藥物釋放等方面,如何調(diào)控藥物釋放是載藥微囊研究的重要課題。
磁性載藥微囊是具有磁靶向性和磁熱療作用的多功能微囊,磁性納米顆粒與微囊的結(jié)合方式有包裹、摻雜和吸附等方式。
磁性脂質(zhì)體是指結(jié)合磁性納米顆粒的載藥脂質(zhì)體,已經(jīng)制備了內(nèi)部包裹磁性納米顆粒和磁性納米顆粒鑲嵌在脂質(zhì)膜殼內(nèi)等多種形式的載藥脂質(zhì)體,并通過(guò)低、高頻交變磁場(chǎng)評(píng)價(jià)了其藥物釋放及對(duì)腫瘤的療效。2000年,Babincova等[5]制備了包裹標(biāo)記Tc-99m的人血清白蛋白和磁性顆粒的磁性脂質(zhì)體,通過(guò)靜脈注入小鼠體內(nèi),磁鐵(0.35T)貼在右腎,發(fā)現(xiàn)磁靶向右腎的輻射能(25.92%±5.84%)顯著高于非靶向的左腎(0.93%±0.05%)。隨后采用逆向蒸發(fā)法制備了包裹阿霉素的磁性脂質(zhì)體,在交變磁場(chǎng)(3.5 MHz)作用下,磁性脂質(zhì)體(1.2 mg Fe/mL)能在2 min內(nèi)升溫到42℃(交變磁場(chǎng)作用6 min,水溶液只升高2℃),實(shí)現(xiàn)了對(duì)負(fù)載抗癌藥物(阿霉素)的可控釋放[6]。Bealle等[7]將水溶性氧化鐵納米顆粒(7 nm,9 nm)包裹在脂質(zhì)體內(nèi),所制備的磁性脂質(zhì)體在交變磁場(chǎng)作用下具有顯著的升溫效果7 nm(ΔT=14.9±0.5℃),9 nm(ΔT=40.7±0.5℃),能夠?qū)崿F(xiàn)磁熱療,并通過(guò)MRI證實(shí)了磁性脂質(zhì)體在靜磁場(chǎng)下的磁靶向性。Chen和Amstad等[8-9]將疏水性磁性納米顆粒鑲嵌在磁性脂質(zhì)體的模殼內(nèi),結(jié)果表明磁性脂質(zhì)體在交變磁場(chǎng)下既有升溫效果,也有受控?zé)晒忉尫判袨椤obuto和Mikhaylov等[10-11]制備了包裹阿霉素(DOX)和半胱氨酸蛋白酶抑制劑(JPM-565)的磁性脂質(zhì)體,通過(guò)磁靶向?qū)崿F(xiàn)在腫瘤部位的富集和增加局部藥物濃度,提高了磁性脂質(zhì)體的療效。Yoshida等[12]首先利用負(fù)載多西紫杉醇的磁性脂質(zhì)體在交變磁場(chǎng)作用下實(shí)現(xiàn)了對(duì)腫瘤化療聯(lián)合熱療,在交變磁場(chǎng)作用下,治療組腫瘤表面溫度在42~43℃,腫瘤體積明顯縮小,動(dòng)物生存期明顯延長(zhǎng)。
一般來(lái)說(shuō),磁性聚合物微球藥物載體應(yīng)具有良好的生物相容性,能在體內(nèi)降解并且降解產(chǎn)物無(wú)毒。本文以聚乳酸-羥基乙酸共聚物(PLGA)為例介紹磁性聚合物載藥微球的磁靶向性及磁控制釋放研究。Pou Ponneau通過(guò)乳化法,制備了包裹阿霉素和鐵鈷納米顆粒的磁性微球,該微球具有高飽和磁化強(qiáng)度(Ms=72 emug-1)[13]。肝動(dòng)脈注射磁性載藥微球后,可實(shí)現(xiàn)了對(duì)肝左動(dòng)脈的栓塞操縱,為栓塞化療奠定了基礎(chǔ)。Liu等[14]通過(guò)乳化法制備了包裹氧化鐵的磁性微球,在交變磁場(chǎng)作用下5 min內(nèi)可以升高5℃。磁性微球表面的馬來(lái)酰亞胺基團(tuán)與熒光的巰基基團(tuán)進(jìn)行共價(jià)鍵結(jié)合后,可將靶向抗體偶聯(lián)到磁性微球表面,實(shí)現(xiàn)靶向功能,成為靶向磁熱療載體。Kong等[15]制備包裹氧化鐵和喜樹堿的聚合物磁性微球,研究了材料的穩(wěn)定性、細(xì)胞吞噬過(guò)程、及在交變磁場(chǎng)下的藥物可控釋放行為。Yang等[16]采用雙乳化溶劑蒸發(fā)法制備了四氧化三鐵摻雜的聚合物膜殼,包裹精氨酸的磁性微囊,在交變磁場(chǎng)作用下,外部的雙氧水能進(jìn)入微囊內(nèi)部和精氨酸反應(yīng),生成一氧化氮(NO),驗(yàn)證了制備的磁性微囊具有影像和治療一體化潛在功能。Chiang等[17]采用同樣的方法制備囊壁摻雜氧化鐵,內(nèi)部包裹有阿霉素的磁性載藥中空微球,通過(guò)交變磁場(chǎng)的作用,實(shí)現(xiàn)了對(duì)磁性載藥中空微球的脈沖釋放。
聚合物電解質(zhì)微囊是基于模板通過(guò)層層自組裝(LBL)構(gòu)建的微囊,可通過(guò)組裝過(guò)程來(lái)調(diào)節(jié)囊壁的滲透性,這類微囊也廣泛用于藥物載體研究。結(jié)合磁性納米顆粒的聚合物電解質(zhì)微囊的多功能化研究已成為新熱點(diǎn)[18]。Lu等[19]通過(guò)層層自組裝在囊壁上結(jié)合Co@Au納米顆粒,內(nèi)部包裹大分子藥物模型(FITC-DEX),研究了在交變磁場(chǎng)作用磁性聚合物電解質(zhì)微囊囊壁的滲透性。Hu等[20]也通過(guò)層層自組裝將磁性納米顆粒組裝到聚合物電解質(zhì)囊壁上,研究了該微囊的熒光和阿霉素釋放行為,觀察到在交變磁場(chǎng)作用下微囊囊壁的開孔變化過(guò)程及30 min后微囊破裂。Liu等[21-22]以磁性海藻酸鈉微球?yàn)槟0?,制備了包裹氧化鐵和阿霉素的載藥磁性微囊,并結(jié)合溫敏性量子點(diǎn)實(shí)時(shí)觀察磁場(chǎng)作用下磁性微囊升溫變化,研究交變磁場(chǎng)對(duì)微囊內(nèi)藥物釋放行為的影響。聚合物電解質(zhì)微囊的囊壁具有納米孔洞,對(duì)包裹小分子藥物有一定的限制,Katagiri等[23]通過(guò)脂質(zhì)膜包裹磁性聚合物電解質(zhì)微囊來(lái)改善其滲透性,在囊壁上通過(guò)Pd催化合成氧化鐵納米顆粒,研究了磁性微囊在交變磁場(chǎng)下的可控釋放行為,觀察到在交變磁場(chǎng)作用后,微囊的破裂過(guò)程。Zebi等[24]通過(guò)結(jié)合量子點(diǎn)(CdTe)和氧化鐵納米顆粒制備了磁性微囊,研究了靜磁場(chǎng)對(duì)磁性微囊細(xì)胞吞噬量的影響,發(fā)現(xiàn)磁場(chǎng)可增加磁性微囊與細(xì)胞的接觸,從而提高細(xì)胞對(duì)微囊的攝取量。
聚合物囊泡(polymersome)是基于脂質(zhì)體發(fā)展起來(lái)的一種新型載藥體系,其通過(guò)雙嵌段聚合物在溶液中自組裝形成囊泡結(jié)構(gòu),將磁性納米顆粒結(jié)合在囊壁上,在交變磁場(chǎng)作用下,磁性顆粒升溫破壞囊壁,從而實(shí)現(xiàn)控制藥物釋放[25]。磁性凝膠是在凝膠中摻雜磁性納米顆粒,在交變磁場(chǎng)作用下,納米顆粒升溫引起凝膠分子的結(jié)構(gòu)變化或破壞,從而實(shí)現(xiàn)控釋藥物釋放[26]。多孔硅結(jié)合磁性納米顆粒作為藥物載體也被廣泛研究,多孔硅結(jié)合藥物可采用包裹的方式[27],或者以磁性微球作為模板包裹二氧化硅[28],然后去除內(nèi)部模板后裝填藥物,得到多孔硅藥物載體。在磁場(chǎng)作用下磁性納米顆粒升溫破壞包裹層,從而達(dá)到控制藥物釋放的目的。
各種負(fù)載磁性納米顆粒的載藥微囊在材料制備和性能研究方面已經(jīng)取得了很大的進(jìn)展,并逐漸成為一個(gè)新的研究熱點(diǎn)。我們對(duì)文中涉及的磁性載藥微囊在動(dòng)物腫瘤模型中的應(yīng)用進(jìn)行了簡(jiǎn)單的總結(jié)(見表1)。
表1 負(fù)載磁性納米顆粒的載藥微囊在動(dòng)物腫瘤模型中的應(yīng)用Table 1 Application of drug-loaded magnetic nanoparticles modified microcapsules in animal tumor model
盡管磁響應(yīng)性藥物載體在磁靶向、化療和熱療等方面取得了一些重要進(jìn)展,但仍需重點(diǎn)解決下列問題:1)磁性藥物載體制備過(guò)程中藥物的包封率及磁納米顆粒的含量問題,這是提高載體性能的前提;2)磁性納米顆粒的飽和磁化強(qiáng)度、穩(wěn)定性及體內(nèi)因素對(duì)磁靶向性的影響,這是提高療效的核心。解決這些問題,是發(fā)展以磁靶向?yàn)槭侄螌?shí)現(xiàn)聯(lián)合熱化療的研究方向。
1 Allen TM,Culli PR.Drug delivery systems:Entering the mainstream[J].Science,2004,303(5665):1818-1822.
2 Lee JH,Kim JW,Cheon J.Magnetic nanoparticles for multi-imaging and drug delivery[J].Mol Cells,2013,35(4):274-284.
3 Widder KJ,Senyel AE,Scarpelli GD.Magnetic microspheres:a model system of site specific drug deliveryin vivo[J].Proc Soc Exp Biol Med,1978,158(2):141-146.
4 Kumar CS,Mohammad F.Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery[J].Adv Drug Deliv Rev,2011,63(9):789-808.
5 Babincova M,Altanerova V,Lampert M,et al.Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field[J].Z Naturforsch C,2000,55(3-4):278-281.
6 Babincova M,Cicmanec P,Altanerova V,et al.AC-magnetic field controlled drug release from magnetoliposomes:design of a method for site-specific chemotherapy[J].Bioelectrochemistry,2002,55(1-2):17-19.
7 Bealle G,Di CR,Kolosnjaj Tabi J,et al.Ultra Magnetic Liposomes for MR Imaging,Targeting,and Hyperthermia[J].Langmuir,2012,28(32):11834-11842.
8 Chen YJ,Bose A,Bothun GD.Controlled Release from Bilayer-Decorated Magnetoliposomes via Electromagnetic Heating[J].ACS Nano,2010,4(6):3215-3221.
9 Amstad E,Kohlbrecher J,Muller E,et al.Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes[J].Nano Lett,2011,11(4):1664-1670.
10 Nobuto H,Sugita T,Kubo T,et al.Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet[J].Int J Cancer,2004,109(4):627-635.
11 Mikhaylov G,Mikac U,Magaeva AA,et al.Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment[J].Nat Nanotechnol,2011,6(9):594-602.
12 Yoshida M,WatanabeY,Sato M,et al.Feasibility of chemohyperthermia with docetaxel-embedded magnetoliposomes as minimally invasive local treatment for cancer[J].Int J Cancer,2010,126(8):1955-1965.
13 Pouponneau P,Leroux JC,Soulez G,et al.Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation[J].Biomaterials,2011,32(13):3481-3486.
14 Liu XQ,Novosad V,Rozhkova EA,et al.Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia[J].IEEE T Magn,2007,43(6):2462-2464.
15 Kong SD,Sartor M,Hu CM,et al.Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release[J].Acta Biomater,2013,9(3):5447-5452.
16 Yang F,Chen P,He W,et al.Bubble Microreactors Triggered by an Alternating Magnetic Field as Diagnostic and Therapeutic Delivery Devices[J].Small,2010,6(12):1300-1305.
17 Chiang WL,Ke CJ,Liao ZX,et al.Pulsatile Drug Release from PLGA Hollow Microspheres by Controlling the Permeability of Their Walls with a Magnetic Field[J].Small,2012,8(23):3584-3588.
18 DeshmukhPK,Ramani KP,Singh SS,et al.Stimuli-sensitive layer-by-layer(LbL)self-assembly systems:Targeting and biosensory applications[J].J Control Release,2013,166(3):294-306.
19 Lu ZH,Prouty MD,Guo ZH,et al.Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles[J].Langmuir,2005,21(5):2042-2050.
20 Hu SH,Tsai CH,Liao CF,et al.Controlled Rupture of Magnetic Polyelectrolyte Microcapsules for Drug Delivery[J].Langmuir,2008,24(20):11811-11818.
21 Liu JW,Zhang Y,Yan CZ,et al.Synthesis of Magnetic/Luminescent Alginate-Templated Composite Microparticles with Temperature-Dependent Photoluminescence under High-Frequency Magnetic Field[J].Langmuir,2010,26(24):19066-19072.
22 Liu JW,Zhang Y,Wang CY,et al.Magnetically Sensitive Alginate-Templated Polyelectrolyte Multilayer Microcapsules for Controlled Release of Doxorubicin[J].J Phys Chem C,2010,114(17):7673-7679.
23 Katagiri K,Nakamura M,Koumoto K.Magnetoresponsive Smart Capsules Formed with Polyelectrolytes,Lipid Bilayers and Magnetic Nanoparticles[J].ACS Appl Mater Interfaces,2010,2(3):768-773.24 Zebli B,Susha AS,Sukhorukov GB,et al.Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals[J].Langmuir,2005,21(10):4262-4265.
25 Oliveira H,Perez-Andres E,Thevenot J,et al.Magnetic field triggered drug release from polymersomes for cancer therapeutics[J].J Control Release,2013,169(3):165-170.
26 Li YH,Huang GY,Zhang XH,et al.Magnetic Hydrogels and Their Potential Biomedical Applications[J].Adv Funct Mater,2013,23(6):660-672.
27 Chen PJ,Hu SH,Hsiao CS,et al.Multifunctional magnetically removable nanogated lidsofFe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging[J].J Mater Chem,2011,21(8):2535-2543.
28 Kong SD,Zhang WZ,Lee JH,et al.Magnetically Vectored Nanocapsules for Tumor Penetration and Remotely Switchable On-Demand Drug Release[J].Nano Lett,2010,10(12):5088-5092.
(2013-10-09收稿)
(2013-11-13修回)
Recent development in preparation and application of drug-loaded magnetic nanoparticle-modified microcapsules
Ning GU;E-mail:guning@seu.edu.cn
State Key Laboratory of Bioelectronics,Jiangsu Key Laboratory for Biomaterials and Devices,School of Biological Science and Medical Engineering,Southeast University,Nanjing 210096,China.
This work was supported by the National Important Science Research Program of China(No.2011CB933503)and the National Natural Science Foundation of China(No.31000453).
Coupled magnetic nanoparticles in the microcapsule structure,such as magnetic microcapsules,can be delivered in specific organism or tissues under magnetic field exposure.Thus,the microcapsules can achieve active targeting functions by manipulating the magnetic field.Based on the magnetic microcapsules,the antitumor drugs can also be loaded to realize magnetic response,which gives microcapsules sustained and controlled release advantages.To date,the drug microcapsules carrying magnetic nanoparticles have become promising novel delivery carriers for the treatment of tumor diseases.This paper mainly reviews the method of preparation of the magnetic nanoparticle-coupled microcapsules,including liposomes,polyelectrolyte microcapsules,and polymer microspheres.The basic research progress of these microcapsules as anticancer drug carriers for the tumor therapy was also reviewed.
magnetic nanoparticles,magnetic targeting,magnetic microcapsules,controlled release,hyperthermia combined chemotherapy
東南大學(xué)生物科學(xué)與醫(yī)學(xué)工程學(xué)院,江蘇省生物材料與器件重點(diǎn)實(shí)驗(yàn)室,生物電子學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(南京市210096)
*本文課題受國(guó)家重大科學(xué)研究計(jì)劃項(xiàng)目(編號(hào):2011CB933500)和國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31000453)資助
顧寧 guning@seu.edu.cn
10.3969/j.issn.1000-8179.20131766
Kun FANG,Fang YANG,Ning GU
(本文編輯:周曉穎)