楊尚俊
(安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥230039)
低階對(duì)稱雙隨機(jī)矩陣逆特征值問(wèn)題的通解
楊尚俊
(安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥230039)
對(duì)給定的實(shí)或復(fù)n-重Λ={λ1,…,λn},決定是否存在以Λ為譜的非負(fù)(隨機(jī))矩陣的問(wèn)題稱為非負(fù)(隨機(jī))矩陣逆特征值問(wèn)題,這一直是非負(fù)矩陣?yán)碚撝猩形赐耆鉀Q的一個(gè)研究熱點(diǎn).作者曾對(duì)n∈{2,3,4,5},研究n階雙隨機(jī)矩陣逆特征值問(wèn)題有解的充分條件并給出相應(yīng)解的公式.最近,又對(duì)任意正整數(shù)n,先給出行和為常數(shù)的對(duì)稱矩陣的逆特征值問(wèn)題的充要條件和解的公式,后給出對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題有解的兩種充分條件和解的公式.論文在提出任意階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題通解的概念和3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題完全通解的概念之后,首先給出3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題存在完全通解的充要條件和完全通解的公式;其次給出3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題存在通解的充要條件和通解的公式;最后給出4階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題有解的幾種充分條件和相應(yīng)解的公式.
逆特征值問(wèn)題的通解;對(duì)稱雙隨機(jī)矩陣逆特征值問(wèn)題;特殊正交矩陣
對(duì)給定的實(shí)或復(fù)n-重Λ={λ1,…,λn},決定是否存在以Λ為譜的非負(fù)(隨機(jī))矩陣的問(wèn)題稱為非負(fù)(隨機(jī))矩陣逆特征值問(wèn)題.由于非負(fù)矩陣(隨機(jī))逆特征值問(wèn)題具有深遠(yuǎn)理論興趣和廣泛應(yīng)用價(jià)值,它一直是矩陣論研究的一個(gè)熱門課題[1-12],并遠(yuǎn)未得到滿意解決.文[11]對(duì)n∈{2,3,4,5}研究n階雙隨機(jī)矩陣逆特征值問(wèn)題有解的充分條件并給出相應(yīng)解的公式.文[12]對(duì)任意正整數(shù)n先給出行和為常數(shù)的對(duì)稱矩陣的逆特征值問(wèn)題的充要條件和解的公式,后給出對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題有解的兩種充分條件和解的公式.論文提出任意階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題通解的概念和3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題完全通解的概念.
沿用文[12]的定義.如果n階對(duì)稱矩陣A的n個(gè)特征值依次是λ1,…,λn,則稱A以給定的實(shí)n-重Λ=(λ1,λ2,…,λn)(n>1)為譜;有一列是的n階正交矩陣S稱為是一個(gè)n階特殊正交矩陣;同階方陣A,B稱為是置換相似的,如果存在置換矩陣H使得B=HAH*.
定理1[12]對(duì)稱方陣A以Λ=(λ1,λ2,…,λn)(n>1,λ1≥λ2≥…≥λn)為譜并且行和全為λk(k∈ {1,…,n})的充分必要條件是存在n階特殊正交矩陣Sn=(ξ1,ξ2,…,ξn),un(列分塊形式)使得
從而ξ1,…,ξn是A的正交標(biāo)準(zhǔn)特征向量組,上式稱為由n階特殊正交矩陣Sn決定的A的譜分解式[12].
定理2任何3階對(duì)稱矩陣都置換相似于下列矩陣簇
中的某個(gè)矩陣,其中
命題1存在以Λ=(1=λ1,λ2)為譜的2階對(duì)稱隨機(jī)矩陣的充要條件是1≥λ2≥-1.當(dāng)上述條件滿足時(shí),對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題有唯一解
證明必要性由隨機(jī)矩陣的譜半徑是1直接推出.充分性顯然,因以Λ為譜的矩陣(3)在條件1≥ λ2≥-1下是對(duì)稱隨機(jī)矩陣.下證解的唯一性.若A是以Λ為譜的對(duì)稱隨機(jī)矩陣,則是A的對(duì)應(yīng)特征值1的單位特征向量,對(duì)應(yīng)特征值λ2的單位特征向量是與u2正交的單位向量:,從而.所以,矩陣(3)在條件1≥λ2≥ -1下是唯一的以Λ為譜的對(duì)稱隨機(jī)矩陣.
引理1令
其中:S3(x)=(u3,ξ2(x),ξ3(x))(列分塊形式)是由(2)式定義的特殊正交矩陣簇,則由(4)式定義的以Λ=(1=λ1,λ2,λ3)為譜、并且行和全為1對(duì)稱矩陣簇(定理1)滿足
證明因?yàn)?/p>
其中:α=2x2+2x+2>0,x∈[0,1].公式(5)給出
≥0,蘊(yùn)含min{a11(x),a22(x),a33(x)}=a33(x),0≤x≤1.當(dāng)2+3λ2+λ3>0時(shí),有
當(dāng)2+3λ2+λ3≤0時(shí),有
因?yàn)?+2λ2≥1+2λ3,2+λ2+3λ3≥2+4λ3=2(1+2λ3),所以
因?yàn)?+3λ2-5λ3≥2-2λ3≥2-3λ2+λ3蘊(yùn)含a13(x)≥a23(x),0≤x≤1.再注意到3α(a23(x)-a12(x))=3(1-x2)(λ2-λ3)≥0,有min{a12(x),a13(x),a23(x)}=a12(x),0≤x≤1.當(dāng)2-2λ3>0時(shí),有
當(dāng)2-2λ3=0時(shí),有
因?yàn)?+λ2-3λ3≥0,2-2λ3≥0,所以,
定義1 n階對(duì)稱隨機(jī)矩陣的集合Ω,稱為以已知實(shí)n重Λ=(1=λ1,λ2,…,λn)(1>λ2≥…≥λn≥-1)為譜的n階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的通解,如果Ω的每個(gè)矩陣都是該逆特征值問(wèn)題的解,并且該逆特征值問(wèn)題的任何一個(gè)解都與Ω的某個(gè)矩陣置換相似.如果(4)(即(5))給出的以Λ=(1=λ1,λ2,λ3)(1≥λ2≥λ3≥-1)為譜的矩陣簇A(x),0≤x≤1全是隨機(jī)矩陣,則稱它為以Λ為譜的3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的完全通解.
注1由命題1知:存在以Λ=(1=λ1,λ2)為譜的2階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的通解的充要條件是1≥λ2≥-1,并且該通解是一元集顯而易見(jiàn),3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的完全通解A(x)的參數(shù)x定義在整個(gè)閉區(qū)間[0,1]上,而3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的非完全通解A(x)的參數(shù)x則只能是定義在[0,1]的某個(gè)真子集上.
定理3存在以Λ=(1=λ1,λ2,λ3)(1≥λ2≥λ3≥-1)為譜的3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的完全通解充要條件是
并且該通解由(5)給出.
證明按定理2,任何以Λ為譜的、行和全為1的任何3階對(duì)稱矩陣(包括任何對(duì)稱隨機(jī)矩陣在內(nèi)),必須置換相似于(5)(即(1))中的某個(gè)矩陣A(x)=S3(x)diag(1,λ2,λ3)ST3(x),x∈[0,1].按引理1,條件(6)是對(duì)每個(gè)x∈[0,1],(5)(即(4))的矩陣A(x)都是非負(fù)矩陣,即都是對(duì)稱隨機(jī)矩陣的充要條件.這就證明,(6)是3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題有完全通解的充要條件并且通解由(5)給出.
如所周知,當(dāng)且僅當(dāng)二次多項(xiàng)式f(x)=ax2+bx+c,a≠0的判別式Δ=b2-4ac大于或等于0時(shí),f(x)才有2實(shí)根x±=,并且當(dāng)a>0(a<0)時(shí),x在區(qū)間(-∞,x-]∪[x+,∞)([x-,x+])上有f(x)≥0.
不難看出:二次多項(xiàng)式3αa33(x)=(2+3λ2+λ3)x2+(2+4λ3)x+2+4λ3有2個(gè)不同實(shí)根
的充要條件是1+2λ3<0<1+2λ2,并且當(dāng)2+3λ2+λ3>0時(shí),有u-<0<u+;二次多項(xiàng)式3αa12(x) =(2-2λ3)x2+(2-3λ2+λ3)x+2-3λ2+λ3有2不同實(shí)根
的充要條件是2-3λ2+λ3<0<2+λ2-3λ3,并且當(dāng)2+3λ2+λ3>0時(shí),有v-<0<v+.
定理4以Λ=(1=λ1,λ2,λ3)(1≥λ2≥λ3≥-1)為譜的3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題存在通解的充要條件是
其通解A(x)=S3(x)diag(1,λ2,λ3)ST3(x)由(5)式給出,并且,A(x)的定義域是:當(dāng)min{1+2λ3,2-3λ2+λ3}≥0時(shí),x∈[0,1];當(dāng)1+2λ3≥0和2-3λ2+λ3<0時(shí),x∈[v+,1];當(dāng)1+2λ3<0和2-3λ2+λ3≥0時(shí),x∈[u+,1];當(dāng)1+2λ3<0和2-3λ2+λ3<0時(shí),x∈[max{u+,v+},1].
證明設(shè)A(x)=(aij(x))=S3(x)diag(1,λ2,λ3)ST3(x),0≤x≤1是以Λ為譜的并由特殊正交矩陣S3(x)決定的、行和全為1的3階對(duì)稱矩陣簇(5).對(duì)i,j∈{1,2,…,n};x∈[0,1],以Nij(x)記aij(x)的非負(fù)區(qū)間,即滿足,aij(x)≥0當(dāng)且僅當(dāng)x∈Nij(x),并令Nij=∪0≤x≤1Nij(x).由定理3知: A(x)是以Λ為譜的3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題解的充要條件是x∈Ω=∩1≤i,j≤3Nij.所以,3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題存在通解的充要條件是Ω≠?,并且當(dāng)Ω≠?時(shí)其通解可由定義域?yàn)棣傅木仃嚧?5)給出.因?yàn)镹ij(x)=Nji(x),i,j∈{1,2,3},x∈[0,1];同時(shí),由引理1的證明知N22(x)?N11(x)N33(x)?N11(x),N12(x)?N23(x)?N13(x),x∈[0,1],所以,Ω=N33∩N12.
若條件(9)不成立,則2+4λ3≤2+λ2+3λ3<0,在此情況下,如果2+3λ2+λ3<0,那么按引理1,有3αa33(x)<0對(duì)任意x∈[0,1]成立;如果2+3λ2+λ3<0,那么3αa33(x)≤(2+3λ2+ λ3)x+(2+4λ3)x+2+4λ3=3(2+λ2+3λ3)<0對(duì)任意x∈[0,1]成立.所以,(9)不成立將蘊(yùn)含N33=?,從而Ω=?,得證條件(9)的必要性.
為證其充分性,只需證明:(9)蘊(yùn)含Ω≠?即可.設(shè)(9)成立,則1+λ2+λ3≥0.按引理1,若1+2λ3≥0,則N33=[0,1];若1+2λ3<0,則1+2λ3<0≤(2+λ2+3λ3)=1+2λ2,u-<min {0,u+}從而N33=[0,1]∩([-∞,u-]∪[u+,∞])=[u+,1];若2-3λ2+λ3≥0,則N12=[0,1];若2-3λ2+λ3<0,則λ2>λ3;v-<min{0,v+},從而N12=[0,1]∩([-∞,v-]∪[v+,∞])=[v+,1].為了完成本定理的證明,只需證明max{u+,v+}≤1(從而Ω=N33∩N12∈{[0,1],[u+,1],[v+, 1],[max{u+,v+}}非空)即可.事實(shí)上,按(7)u+>1等價(jià)于3λ2+λ3,但這是不可能的,因?yàn)樵跅l件(9)下,這個(gè)不等式等價(jià)于下列矛盾式
但這是不可能的,因?yàn)?,這個(gè)不等式等價(jià)于下列矛盾式
例1因Λ1=(1,0,-0.25)滿足定理3的條件(6),故不存在以它為譜的3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的完全通解A(x),其中
是對(duì)稱矩陣,α=2(x2+x+1).
因Λ1滿足文[12]中定理3.1的條件,從而用該定理的方法可求得一個(gè)以Λ1譜的對(duì)稱隨機(jī)矩陣是
例2因Λ2=(1,0,-0.6)不滿足定理3的條件(6),故不存在以它為譜的3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的完全通解.但因Λ1滿足文[12]中定理3.1的條件,從而用該定理的方法可求得一個(gè)以Λ2譜的對(duì)稱正隨機(jī)矩陣是A*此外,Λ2滿足條件(6),從而按定理4,存在以Λ2為譜的3階對(duì)稱隨機(jī)矩陣逆特征值問(wèn)題的通解.
因1+2λ3<0≤2+3λ2+λ3,0<0<u+==0.535 14<1,故N33=[u+,1];因2-3λ2+λ3>0,故N12=[0,1].從而,Ω=N33=[0.535 14,1]≠?.最后求得通解是
值得注意的是:由此通解公式也可推出A(1)=A*是以Λ2為譜的3階對(duì)稱隨機(jī)矩陣.
文[12]給出下列幾個(gè)實(shí)質(zhì)不同的4階特殊正交矩陣
和含1個(gè)參數(shù)x的4階特殊正交矩陣簇
利用文[12]的定理5和4階特殊正交矩陣S*4可推出命題2.
命題2令Λ=(1=λ1,λ2,λ3,λ4)(1≥λ2≥λ3≥λ4≥-1).若
利用文[12]的定理3.2和4階特殊正交矩陣S4可推出命題3.
命題3令Λ=(1=λ1,λ2,λ3,λ4)(1≥λ2≥λ3≥λ4≥-1),β=-1)/(n-1).若
則存在由特殊正交矩陣S4決定的,以Λ為譜的4階對(duì)稱隨機(jī)矩陣
命題4令Λ=(1=λ1,λ2,λ3,λ4)(1≥λ2≥λ3≥λ4≥-1).若
則存在由特殊正交矩陣S'4決定且以Λ為譜的4階對(duì)稱隨機(jī)矩陣
證明按定理1,A=S'4diag(1,λ2,λ3,λ4)(S'4)T以Λ為譜并且行和全為1.注意到1-λ2≥0,1+λ2-2λ4≥0,1+λ2+λ3≥1+λ2+λ4并且當(dāng)λ4<0時(shí),1+λ2+λ4≥1+λ2+2λ4;當(dāng)λ4≥0時(shí),1+λ2+λ4≥0.因此,在條件(19)下,上面以Λ為譜的行和全為1的對(duì)稱矩陣A是非負(fù)矩陣,從而是對(duì)稱隨機(jī)矩陣.證畢.
定理5令Λ=(1=λ1,λ2,λ3,λ4)(1≥λ2≥λ3≥λ4≥-1).若
則存在由特殊正交矩陣S4(x)決定含1個(gè)參數(shù)x且以Λ為譜的4階對(duì)稱隨機(jī)矩陣簇
證明按定理1對(duì)稱矩陣簇(22)的每個(gè)矩陣都以Λ為譜并且行和全為1,故只需證明:在條件(19)下對(duì)稱矩陣簇(22)的每個(gè)矩陣都是非負(fù)矩陣(隨機(jī)矩陣)即可.把矩陣簇(22)改寫為
是由(2)定義的含參數(shù)x的特殊正交矩陣簇.在條件(21)下,A(x)第1行列的元素全大于等于0.令W(x)=(wij(x)),需要證明:在條件(21)下,對(duì)任意x∈[0,1],i,j=1,…,n,都有wij(x)≥0.令α =2x2+2x+2,則對(duì)任意x≥0,都有α>0.直接計(jì)算給出
因3α(w11(x)-w33(x))=(3-3x2)(λ3-λ4)≥0,3α(w22(x)-w33(x))=(6x+3)(λ3-λ4)≥0,故min{w11(x),w22(x),w33(x)}=w33(x),0≤x≤1.在條件(21)下,有
又因3α(w13(x)-w12(x))=3(λ3-λ4)≥0,3α(w23(x)-w12(x))=3(λ3-λ4)(1-x2)≥0,故min{w12(x),w13(x),w23(x)}=w12(x),0≤x≤1.在條件(21)下有
這就證明了:在條件(21)下在閉區(qū)間[0,1]上的單參數(shù)對(duì)稱隨機(jī)矩陣簇(22)的每個(gè)矩陣A(x)都以Λ為譜.證畢.
[1]Borobia A.On the nonegative eigenvalue problem[J].Linear Algebra Appl,1995,223:131-140.
[2]Fiedler M.Eigenvalues of nonnegative symmetricmatrices[J].Linear Algebra Appl,1974,9:119-142.
[3]Hwang SG,Pyo SS.The inverse eigenvalue problem for symmetric doubly stochastic matrices[J].Linear Algebra Appl,2004,379:77-83.
[4]Kaddoural C,Mourad B.On a conjecture concerning the inverse eigenvalue problem of 4×4 symmetric doubly stochastic matrices[J].International Mathematical Forum,2008,31(3):1513-1519.
[5]Mourad B.On a spectrum property of doubly stochastic matrices and its applications to their inverse eigenvalue problem[J].Linear Algebra Appl,2012,435:3400-3412.
[6]Reams R.An inequality for nonnegativematrices and the inverse eigenvalue problem[J].Linear Algebra Appl,1996,41:267-375.
[7]Satzman F L.A note on eigenvalues of nonnegativematrices[J].Linear Algebra Appl,1972,41:329-338.
[8]Soto R,Rojo O.Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[J].Linear Algebra Appl,2006,416:844-856.
[9]Yang S,Li X.Inverse eigenvalue problems of 4×4 irreducible nonnegative matrices[C]∥Advances in Matrix Theory and Applications,the proceedings of the Eighth International Conference on Matrix Theory and Applications,World Academic Union,2008.
[10]Yang S,Xu C.Row stochastic inverse eigenvalue problem[J].Journal of Inequalities and Applications,2011(24):1-5.
[11]楊尚俊.低階雙隨機(jī)矩陣逆特征值問(wèn)題[J].安徽大學(xué)學(xué)報(bào):自然科學(xué)版,2013,37(2):1-7.
[12]楊尚俊.對(duì)稱雙隨機(jī)矩陣逆特征值問(wèn)題[J].安徽大學(xué)學(xué)報(bào):自然科學(xué)版,2013,37(6):1-7.
(責(zé)任編輯 朱夜明)
On the inverse eigenvalue problem for symmetric doubly stochastic matrices of order two to four
YANG Shang-jun
(School of Mathematical Science,Anhui University,Hefei 230039,China)
Given an n-tupleΛof numbers,real or complex,the problem of deciding the existence of a nonnegative(stochastic)matrix with spectrumΛis called the nonnegative(stochastic)inverse eigenvalue problem.This problem has long time been one of the problems ofmain interest in the theory of matrices.Other reference gave the sufficient conditions for doubly stochastic inverse eigenvalue problem of order two to five to have a solution and the formulas of the corresponding solution,and firstly gave the sufficient conditions for constant row sums symmetric inverse eigenvalue problem(of any order)to have a solution and the formula of corresponding solution,and then gave the sufficient conditions for the symmetric stochastic inverse eigenvalue problem to have a solution and the corresponding solution.In this paper,after presenting the concept of general solution of an inverse eigenvalue problem(of any order)and the concept of totally general solution of a 3×3 symmetric doubly stochastic inverse eigenvalue problem,we firstly gave the sufficient and necessary conditions for a 3×3 symmetric doubly stochastic inverse eigenvalue problem to had the totally general solution with the formula of the totally general solution,secondly gave the sufficient and necessary conditions for a 3×3 symmetric doubly stochastic inverse eigenvalue problem to had thegeneral solution with the formula of the totally general solution,and finally gave several sufficient conditions for a 4×4 symmetric doubly stochastic inverse eigenvalue problem to had a solution with the formula of the general solution.
general solution of an inverse eigenvalue problem;symmetric doubly stochastic inverse eigenvalue problem;typical orthogonalmatrix
O151.2
A
1000-2162(2014)04-0001-08
10.3969/j.issn.1000-2162.2014.04.001
2014-01-02
安徽大學(xué)創(chuàng)新團(tuán)隊(duì)基金資助項(xiàng)目(KJTD001B)
楊尚俊(1937—),男,貴州貞豐人,安徽大學(xué)教授,碩士生導(dǎo)師.