曹婷+代惠萍
摘要:以紫花苜蓿品種敖漢、金皇后、三得利和隆西為材料,采用土培試驗(yàn)方法,研究了Zn2+脅迫對(duì)4種紫花苜蓿葉片酶促防御系統(tǒng)的保護(hù)酶SOD、CAT 和APX活性和H2O2、MDA含量及生物量的影響。結(jié)果表明,隨著Zn2+脅迫程度的加劇,4種紫花苜蓿葉片H2O2、MDA含量均呈增加趨勢(shì),這說(shuō)明它們分別遭受了Zn2+所造成的氧化脅迫,且Zn2+脅迫程度越大其遭受的氧化脅迫也越大。不同濃度Zn2+脅迫下,4種苜蓿葉片抗氧化酶活性與生物量積累相比較,敖漢的SOD、CAT、APX活性和生物量含量顯著高于其他3種苜蓿,且差異顯著。綜合評(píng)價(jià)表明,敖漢的抗氧化能力最強(qiáng),其次為金皇后和三得利,隆西的抗氧化能力最差。
關(guān)鍵詞:紫花苜蓿;Zn2+脅迫;生理特性
中圖分類(lèi)號(hào):X171.5文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):0439-8114(2014)10-2365-03
Biochemical Characteristics of Different Alfalfa Leaves under Zinc Stress
CHAO Ting,DAI Hui-ping
(College of Biological Science & Engineering,Shaanxi University of Technology,Hanzhong 723000,Shaanxi,China)
Abstract: Effects of Zn2+ stress on four alfalfa(Medikageo staival L.) including Aohan,Golden Empress,Sanditi,and Longxi were studied with soil culture. The indexes including the protective enzymes activities of SOD,CAT,APX,the content ofperoxidation and MDA,and biomass contents were determined. The results showed that the MDA and H2O2 contents in the leaves of four alfalfa species increased with the increasing levels of Zn2+ stress. All alfalfa suffered oxidative damage under different levels of Zn2+ stress. The oxidative damage became more serious with increasing levels ofZn2+ stress. Under different levels of Zn2+ stress,Aohan had the highest activities of SOD,CAT,APX and biomass contents, significantly different with other species.The order of antioxidant capacity of the four alfalfa species was Aohan,Golden Empress,Sanditi and Longxi.
Key words: alfalfa(Medikageo staival L.); zinc stress; biochemical characteristics
基金項(xiàng)目:陜西省自然科學(xué)基金項(xiàng)目(2013JQ3015);陜西理工學(xué)院人才啟動(dòng)項(xiàng)目(SLGQD13-16);陜西省重點(diǎn)學(xué)科專(zhuān)項(xiàng)建設(shè)經(jīng)費(fèi)資助
隨著礦產(chǎn)資源的大量開(kāi)發(fā)利用,各種化學(xué)產(chǎn)品、農(nóng)藥、化肥及城市污泥、污水在農(nóng)業(yè)生產(chǎn)中的廣泛使用,重金屬對(duì)土壤的污染越來(lái)越嚴(yán)重[1-5]。鋅(Zn2+)作為植物生長(zhǎng)的必需元素,在植物體內(nèi)的生化過(guò)程中相當(dāng)活躍,但作為重金屬元素加之在植物代謝過(guò)程中易于轉(zhuǎn)移,當(dāng)其過(guò)量時(shí)會(huì)對(duì)植物的正常生長(zhǎng)造成傷害[6-9]。前人研究表明,植物在重金屬脅迫下產(chǎn)生超氧陰離子自由基、羥自由基等活性氧[10,11],能引起細(xì)胞脂質(zhì)過(guò)氧化,破壞光合系統(tǒng)和加速植物衰老[12]。而植物體內(nèi)存在酶促與非酶促兩類(lèi)活性氧清除系統(tǒng),消除活性氧自由基,降低其對(duì)植物的傷害[13]。關(guān)于重金屬鋅脅迫下紫花苜蓿葉片保護(hù)酶活性及膜脂過(guò)氧化的研究還鮮見(jiàn)報(bào)道。本試驗(yàn)以鋅為脅迫因子,以紫花苜蓿(Medikago sativa L.)為材料,研究鋅脅迫對(duì)4種紫花苜蓿葉片保護(hù)酶活性及膜脂過(guò)氧化的影響,為培育抗Zn2+苜蓿新品種探索新的途徑。
1材料與方法
1.1材料
選用陜西主栽苜蓿品種AH(敖漢)、GE(金皇后)、SDI(三得利)和LX(隆西) 4品種。
1.2試驗(yàn)設(shè)計(jì)
試驗(yàn)于2013年3月在陜西理工學(xué)院生工學(xué)院植物學(xué)實(shí)驗(yàn)室進(jìn)行。選飽滿(mǎn)、無(wú)病蟲(chóng)害的苜蓿種子,用0.1%的HgCl2消毒10 min,以蛭石和草炭為栽培基質(zhì),用Hoagland作為營(yíng)養(yǎng)液在陽(yáng)光充足的不透明盆內(nèi)培養(yǎng)。苜蓿幼苗生長(zhǎng)2個(gè)月后,選生長(zhǎng)一致的幼苗,向盆內(nèi)加入ZnSO4,使Zn2+濃度分別達(dá)到300、600和900 μmol/L,設(shè)對(duì)照組(CK)不作處理。每個(gè)處理設(shè)置6次重復(fù),pH調(diào)至6.5。在脅迫23 d時(shí)進(jìn)行收獲,每個(gè)處理收獲6盆。
1.2.1 測(cè)定項(xiàng)目的方法H2O2含量、MDA含量、抗氧化酶SOD活性、CAT活性和APX活性均參照Dai等[2]的方法測(cè)定。
1.2.2生物量的測(cè)定分別在脅迫23 d后進(jìn)行收獲,每個(gè)處理收獲6株,將每株葉片分開(kāi),105 ℃殺青后,70 ℃烘干,稱(chēng)量干重。
1.3數(shù)據(jù)分析
所有數(shù)據(jù)均采用平均值計(jì)算,用統(tǒng)計(jì)軟件SPSS 12進(jìn)行統(tǒng)計(jì)分析。One-Way ANOVA方差分析比較不同處理間各項(xiàng)指標(biāo)的差異,通過(guò)LSD法進(jìn)行差異顯著性(P<0.05)分析。
2結(jié)果與分析
2.1 Zn2+脅迫對(duì)4種紫花苜蓿葉片生物量積累的影響
由圖1表明,不同濃度Zn2+脅迫下敖漢苜蓿葉片的生物量顯著高于對(duì)照(P<0.05)。結(jié)果表明,不同濃度Zn2+脅迫下可促進(jìn)敖漢苜蓿葉片生物量積累,而金皇后、三得利和隆西葉片生物量呈降低的趨勢(shì)。
2.2Zn2+脅迫對(duì)4種紫花苜蓿H2O2和MDA含量的影響
由圖2可知,隨著Zn2+脅迫的加劇,4種苜蓿葉片的H2O2和MDA含量分別呈增加趨勢(shì)。在不同Zn2+脅迫條件下,敖漢葉片的H2O2和MDA含量均最低,隆西葉片的H2O2和MDA含量均最高,且隆西葉片的H2O2和MDA含量分別顯著高于其他3種苜蓿(P<0.05),金皇后和三得利葉片的H2O2和MDA含量顯著高于敖漢(P<0.05)。研究表明,Zn2+脅迫可以對(duì)4種苜蓿造成不同程度的氧化脅迫,其中敖漢所遭受的氧化脅迫程度最低,隆西所遭受的氧化脅迫程度最高。
2.2Zn2+脅迫對(duì)4種紫花苜蓿SOD、CAT和APX活性的影響
由圖3a可知,隨著Zn2+脅迫程度的加劇,4種紫花苜蓿葉片SOD活性均呈先增加后降低的變化趨勢(shì),在300 μmol/L Zn2+和600 μmol/L Zn2+條件下,敖漢葉片SOD活性分別比對(duì)照增加23.8%和57.4%,金皇后葉片SOD活性分別比對(duì)照增加5.5%和22.0%,三得利葉片SOD活性分別比對(duì)照增加16.1%和6.7%,隆西葉片SOD活性分別比對(duì)照增加14.9%和0.2%;在900 μmol/L Zn2+條件下,敖漢的SOD活性顯著高于其他3種苜蓿(P<0.05)。
由圖3b表明,隨著Zn2+脅迫程度的加劇,4種紫花苜蓿葉片CAT活性呈先增加后降低的變化趨勢(shì),在300 μmol/L Zn2+條件下,4種紫花苜蓿葉片的CAT活性顯著高于對(duì)照,在600 μmol/L Zn2+條件下,敖漢葉片的CAT活性比對(duì)照增加了71.2%,金皇后葉片的CAT活性分別比對(duì)照增加了36.7%,三得利葉片的CAT活性比對(duì)照增加了5.3%,但隆西葉片CAT活性比對(duì)照降低了17.7%;在900 μmol/L Zn2+條件下,敖漢和金皇后的CAT活性顯著高于對(duì)照47.1%和6.1%(P<0.05),但三得利和隆西分別低于對(duì)照(P<0.05)。
由圖3c可知,敖漢具有較高的APX活性,其次為金皇后和三得利,隆西APX活性最低。隨著Zn2+脅迫的加劇,在300 μmol/L和600 μmol/L Zn2+條件下,4種紫花苜蓿葉片APX活性分別高于對(duì)照;在900 μmol/L Zn2+條件下,敖漢的APX活性比對(duì)照增加了24.7%,而金皇后、三得利和隆西葉片的APX活性分別比對(duì)照降低了4.3%、8.2%和9.3%。
3小結(jié)與討論
在正常情況下,植物細(xì)胞內(nèi)自由基的產(chǎn)生和清除處于動(dòng)態(tài)平衡狀態(tài),自由基水平低,不會(huì)傷害細(xì)胞。但在逆境條件下,平衡被打破,從而使活性氧產(chǎn)生加劇而過(guò)剩,活性氧不僅會(huì)引發(fā)或加劇膜脂過(guò)氧化作用,而且還會(huì)使蛋白質(zhì)脫氫而產(chǎn)生蛋白質(zhì)自由基,使蛋白質(zhì)發(fā)生鏈?zhǔn)骄酆戏磻?yīng),從而使細(xì)胞膜系統(tǒng)損傷[14-18]。因此,H2O2和MDA含量是衡量氧化脅迫程度的重要指標(biāo)[2]。在本研究中,敖漢、金皇后、三得利和隆西在Zn2+脅迫條件下其葉片H2O2和MDA含量均增加,這說(shuō)明Zn2+脅迫均導(dǎo)致4種紫花苜蓿遭受了氧化脅迫,且隨著Zn2+脅迫程度的加劇,4種紫花苜蓿遭受的氧化脅迫均加重。在900 μmol/L Zn2+水平下,隆西葉片的H2O2和MDA含量均顯著高于其他3種苜蓿,說(shuō)明隆西在脅迫條件下比其他苜蓿遭受了更為嚴(yán)重的氧化脅迫傷害,敖漢葉片的H2O2和MDA含量均顯著低于其他3種苜蓿,這與其具有較強(qiáng)的抗氧化能力有關(guān),同時(shí),它們的抗氧化特性存在一定的共性,在900 μmol/L Zn2+脅迫下,4種紫花苜蓿均可以通過(guò)增強(qiáng)抗氧化酶SOD、CAT和APX活性來(lái)抵御氧化脅迫的傷害。4種紫花苜蓿抗氧化能力的綜合評(píng)價(jià)結(jié)果表明,敖漢的抗氧化能力最強(qiáng),其次為金皇后和三得利的,隆西的抗氧化能力最差。因此,這對(duì)于評(píng)價(jià)敖漢苜蓿的抗鋅品種的選育具有一定的理論和實(shí)踐意義。
參考文獻(xiàn):
[1] DAI H P ,WEI Y ,YANG T X,et al.Influence of cadmium stress on chlorophyll fluorescence characteristics in Populus×canescens[J]. Journal of Food,Agriculture & Environment,2012, 10(2):1281-1283.
[2] DAI H P,SHAN C J,LU C,et al.Response of antioxidant enzymes in populus × canescens under cadmium stress[J].Pakistan Journal of Botany,2012,44(6): 1943-1949.
[3] DAI H P,SHAN C J,JIA G L,et al.Cadmium detoxification in Populus × canescens[J]. Turkish Journal of Botany,2013,37: 950-955.
[4] DAI H P,SHAN C J,JIA G L,et al. Responses to cadmium tolerance, accumulation and translocation in Populus × canescens[J]. Water,Air,& Soil Pollution,2013,224:1504.
[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.
[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.
[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.
[8] 楊紅飛,王友保,李建龍.銅、鋅污染對(duì)水稻土中油菜(Brassica chinensis L.)生長(zhǎng)的影響及累積效應(yīng)研究[J].生態(tài)環(huán)境學(xué)報(bào),2011,20(10):1470-1477.
[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.
[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.
[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.
[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.
[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982
[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.
[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.
[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.
[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.
[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.
[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.
[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.
[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.
[8] 楊紅飛,王友保,李建龍.銅、鋅污染對(duì)水稻土中油菜(Brassica chinensis L.)生長(zhǎng)的影響及累積效應(yīng)研究[J].生態(tài)環(huán)境學(xué)報(bào),2011,20(10):1470-1477.
[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.
[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.
[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.
[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.
[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982
[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.
[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.
[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.
[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.
[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.
[5] DAI H P,WEI A Z,YANG T X,et al.Cadmium uptake,localization and detoxification in Populus × canescens[J]. Journal of Food,Agriculture & Environment,2013,11(1):875-877.
[6] CHANG J,YOON I,KIM K.Heavy metal and arsenic accumulating fern species as potential ecological indicators in as-contaminated abandoned mines[J]. Ecological Indicators,2009,9(6):1275-1279.
[7] EMILY H.Zinc deficiency,DNA damage and cancer risk[J].Journal of Nutritional Biochemistry,2004,15:572-578.
[8] 楊紅飛,王友保,李建龍.銅、鋅污染對(duì)水稻土中油菜(Brassica chinensis L.)生長(zhǎng)的影響及累積效應(yīng)研究[J].生態(tài)環(huán)境學(xué)報(bào),2011,20(10):1470-1477.
[9] CAKMAK Ismail.Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J]. New Phytologist,2000,146:185-205.
[10] YEON-OK K,MASAKAZU H,TORU K.Response of an active oxygen scavenging system to cadmium in cadmium-tolerant cell of carrot[J]. Plant Biotechology,2001,18:39-43.
[11] KAVITA S,TITAMBHARA C,KUMAR,et al.Effect of cadmium on lipid peroxidation,superoxide anion generation activities or antioxidant enzymes in growing rice seedings[J]. Plant Science,2001,161(6):1135-1141.
[12] LI X N,YANG Y L,JIA L Y.Zinc-induced antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environmental Safety,2013,89(1):150-157.
[13] MARIA A I,Abrizio P,LUCIA F.Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology Biochemistry,2002,40(11):977-982
[14] ORACZ K,BAILLY C,GNIAZDOWSKA A,et al. Indution of oxidative stress by sunflower phytotoxins in germinating mustard seeds[J].Journal of Chemical Ecology,2007,33:251-264.
[15] LIN C W,LIN C Y,CHANG C C ,et al. Early signalling pathways in rice roots under vanadate stress [J].Plant Physiology and Biochemistry 2009,47(5):369-376.
[16] PANDEY V,DIXIT V, SHYAM R. Chromium(VI) induced changes in growth and root plasma membrane redox activities in pea plants[J].Protoplasma,2009,235(1-4):49-55.
[17] AVU O LU K,ERGENE A,YALCIN E,et al. Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L.[J]. Fresenius Environmental Bulletin,2009,18(9):1654-1661.
[18] TIWARI KK,DWIVEDI S,SINGH NK,et al. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients[J]. Journal of Environmental Biology,2009,30(3):389-394.