• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      加速溶劑萃取同位素質(zhì)譜分析土壤水的氫氧同位素

      2014-09-26 09:33朱慶增等
      分析化學(xué) 2014年9期

      朱慶增等

      摘要土壤水是水循環(huán)的重要組成部分,其氫氧同位素組成在生態(tài)學(xué)、環(huán)境學(xué)、水文學(xué)等領(lǐng)域有著廣泛應(yīng)用。不同的提取水方法存在較大偏差,因此本研究建立了加速溶劑萃?。ˋSE)提取同位素質(zhì)譜(IRMS)分析土壤水中氫氧同位素的方法。ASE提取土壤水的條件是:萃取溶劑二氯甲烷,萃取溫度100 ℃,萃取壓力10.3 MPa, 靜態(tài)萃取時(shí)間10 min,重復(fù)提取3次,循環(huán)次數(shù)分別為4, 4和3次,合并提取土壤水并經(jīng)活性炭固相萃取柱(SPE)凈化后,利用同位素比質(zhì)譜分析土壤水的氫氧同位素組成。與過注水相比,提取土壤水的δD增加2.12‰~4.58‰,δ18O增加

      Symbolm@@ 0.17‰~0.93‰,氫氧同位素的分析精度分別為0.89‰和0.37‰。

      關(guān)鍵詞土壤水;氫同位素;氧同位素;加速溶劑萃取

      1引言

      土壤水是水循環(huán)重要的組成部分,其氫氧同位素組成在環(huán)境學(xué)\[1\]、地球科學(xué)\[2~4\]、水文學(xué)\[5,6\]、植物生理學(xué)\[7~9\]等領(lǐng)域有著廣泛的應(yīng)用。提取土壤水的方法主要有真空蒸餾法、共沸蒸餾法、離心分離法和氦氣吹掃等\[1,8~22\]。

      水的氫氧同位素差值分別為+2.0‰~+3.2‰和+0.35~+0.77‰。離心分離法\[14,17\]是利用有機(jī)溶劑置換和高速離心分離土壤水,對(duì)于含水量高于10%的樣品,提取水與加入水的氫同位素差值為0~+3‰\[14\]。Ignatev等\[19\]運(yùn)用恒溫加熱氦氣吹掃液氮收集的方法提取土壤水,δD和δ18O的精度分別為0.7‰和0.08‰。 Walker等\[13\]對(duì)比了14個(gè)實(shí)驗(yàn)室利用不同提取方法提取土壤水進(jìn)行同位素分析的結(jié)果,氫同位素和氧同位素的最大偏差分別為30‰和3.4‰??梢娫谕寥浪畾溲跬凰匮芯恐校貏e是低含水量樣品中,不同的提取方法對(duì)土壤水氫氧同位素影響較大,存在較大偏差。

      加速溶劑萃?。ˋSE)是一種在高溫(≤200 ℃)、高壓(≤20 MPa)條件下快速提取固體或半固體樣品中有機(jī)質(zhì)的前處理方法\[23\],主要用于提取氯化殺蟲劑、除草劑、多氯聯(lián)苯、石油烴類等環(huán)境中的有機(jī)物\[23~25\],但利用該技術(shù)提取土壤中水尚未見報(bào)道。本研究建立了ASE提取SPE凈化IRMS分析土壤水的氫氧穩(wěn)定同位素的方法,可簡(jiǎn)單有效地對(duì)土壤,特別是對(duì)低含水量的土壤提取水和氫氧同位素分析。

      2實(shí)驗(yàn)部分

      2.1儀器與試劑

      MAT253氣體穩(wěn)定同位素比質(zhì)譜儀和Flash EA HT 1112元素分析儀通過Conflo Ⅲ連接組成同位素分析單元 (美國(guó) Therm公司); ASE350加速溶劑萃取儀(美國(guó) Dionex公司); KQ500PB數(shù)控超聲清洗儀(舒美公司); LXJⅡB型低速大容量離心機(jī)(上海安亭公司); SPE萃取裝置(Supelco公司); CNW活性炭SPE柱(100 mg/1 mL); 二氯甲烷(色譜級(jí),F(xiàn)isher公司); 實(shí)驗(yàn)用水為去離子水。

      Symbolm@@ 6.00‰。與100 ℃條件下相比,80 ℃條件下土壤水的提取率低20%,土壤水的氫同位素均值偏負(fù)8‰,氧同位素值均值偏負(fù)1‰。原因可能是ASE提取土壤水過程中優(yōu)先提取質(zhì)量較輕同位素,提取不完全可能導(dǎo)致同位素值偏負(fù),因此選擇100 ℃作為提取溫度。3.2.2萃取次數(shù)在萃取壓力、靜態(tài)萃取時(shí)間、萃取溫度等參數(shù)不變時(shí),只改變提取次數(shù),探究提取次數(shù)對(duì)提取土壤水(含水量為9.1%)δD和δ18O值的影響。當(dāng)樣品提取1次,循環(huán)次數(shù)為4時(shí),土壤水提取率均值為24%。樣品連續(xù)提取兩次,循環(huán)次數(shù)均為4次時(shí),提取率均值為45%。樣品連續(xù)提取3次,循環(huán)次數(shù)分別是4,4和3次時(shí),提取率均值為57%。提取次數(shù)越多,回收率越高; 氫氧同位素富集倍數(shù)也提高,說明質(zhì)量較輕的同位素優(yōu)先提取,而含重同位素的水后被提?。▓D2)。經(jīng)過優(yōu)化后ASE提取土壤水的條件為:萃取溫度100 ℃,萃取壓力10.3 MPa,靜態(tài)萃取時(shí)間10 min,樣品重復(fù)提取3次,循環(huán)次數(shù)分別為4,4和3次。

      3.3ASE提取法對(duì)不同含水量樣品的提取蒸餾法等提取低含水量樣品的土壤水時(shí)精確度和準(zhǔn)確度會(huì)降低,原因可能是土壤與水混合過程中,水與土壤基質(zhì)和礦物之間發(fā)生相互作用,低含水量樣品中這部分水所占比例偏高,同位素分餾明顯\[9,13,18,21\]。實(shí)驗(yàn)中利用ASE提取了水含量分別為9.1%,6.3%和4.8%的土壤水,精確度和準(zhǔn)確度較好,說明該方法可以作為一種較理想方法提取低含水量土壤中的水\[20,21\]。

      3.4ASE提取法和超聲離心分離法的比較

      超聲離心分離法(USE)提取含水量為9.1%的土壤樣品時(shí),提取1 g水需要約57 g土壤樣品,ASE提取法需要約18 g土壤樣品,即超聲離心分離法所需樣品量是ASE提取法的3倍。超聲離心分離法和ASE提取法提取土壤水的同位素相比于δDspe和δ18Ospe值都明顯富集,ASE提取法得到的水的δDase和δ18Oase分別增加約3.6‰和0.36‰,超聲離心分離法的氫氧同位素分別增加約1‰和0.49‰(見圖4),原因可能是弱束縛水、土壤有機(jī)質(zhì)、礦物類型以及土壤基質(zhì)的影響\[12,13\]。比較超聲離心分離法和ASE提取法提取更低含水量土壤水的效果,發(fā)現(xiàn)超聲離心分離無法從含水量為6.3%和4.8%的土壤中提取出足夠的水用于同位素分析,而ASE提取法可以提取足夠量的水,并且同位素分析結(jié)果較好,說明ASE提取法提取低含水量的土壤有更好效果。

      3.5方法精密度和準(zhǔn)確度

      應(yīng)用ASE提取法對(duì)含水量為9.1%的7個(gè)土壤樣品進(jìn)行提取、SPE凈化和氫氧同位素分析

      大量研究表明,水分蒸發(fā)過程會(huì)發(fā)生顯著的氫氧同位素分餾,輕同位素將優(yōu)先蒸發(fā),殘留水分的δD值和δ18O值因蒸發(fā)強(qiáng)度的增加而增加。在樹木覆蓋和無植被覆蓋情況下,后者土壤水的蒸發(fā)量明顯大于前者,造成后者的δD值和δ18O值也明顯高于前者。

      4結(jié)論

      本研究建立了ASE提取SPE凈化IRMS分析土壤水中氫氧同位素的方法。ASE提取土壤水的條件是萃取溫度100 ℃、萃取壓力10 MPa、靜態(tài)萃取時(shí)間10 min,連續(xù)提取3次,循環(huán)次數(shù)分別為4, 4和3次, 將提取水合并后,利用活性炭SPE柱凈化除去有機(jī)物,IRMS分析土壤水的氫氧同位素。提取含水量為9.1%的樣品時(shí),δD和δ18O的標(biāo)準(zhǔn)偏差分別為0.89‰和0.37‰,提取水與過柱水的氫氧同位素差值分別為2.12‰~4.58‰和

      References

      1Koeniger P, Leibundgut C, Link T, Marshall J D. Org. Geochem., 2010, 41(1): 31-40

      2Luo P, Peng P, Gleixner G, Zheng Z, Pang Z, Ding Z. Earth Planet. Sc. Lett., 2011, 301(1): 285-296

      3Jia G, Wei K, Chen F, Peng P A. Geochim. Cosmochim. Ac., 2008, 72(21): 5165-5174

      4Liu W, Yang H. Global Change Biol., 2008, 14(9): 2166-2177

      5Gat J R. Annu. Rev. Earth Pl. Sc., 1996, 24(1): 225-262

      6MA XueNing, ZHANG MingJun, LI YaJu, MA Qian, LI XiaoFei. Soils, 2012, 44(4): 554-561

      馬雪寧, 張明軍, 李亞舉, 馬 潛, 李小飛. 土壤, 2012, 44(4): 554-561

      7Sternberg L D S L. Nature, 1988, 333(6168): 59-61

      8LIU WenRu, SHEN YeJie, PENG XinHua, CHEN XiaoMin. Chinese Journal of Ecology., 2012, 31(7): 1870-1875

      劉文茹, 沈業(yè)杰, 彭新華, 陳效民. 生態(tài)學(xué)雜志, 2012, 31(7): 1870-1875

      9Koeniger P, Marshall J D, Link T, Mulch A. Rapid Commun. Mass Spectrosm., 2011, 25(20): 3041-3048

      10West A G, Goldsmith G R, Brooks P D, Dawson T E. Rapid Commun. Mass Spectrosm, 2010, 24(14): 1948-1954

      11ZHANG CongZhi, ZHANG JiaBao ZHANG Hui, WANG Yan. Journal of Irriagation and Drainage., 2008, 27(4): 10-13

      張叢志, 張佳寶, 張 輝, 王 艷. 灌溉排水學(xué)報(bào), 2008, 27(4): 10-13

      12AraguásAraguás L, Rozanski K, Gonfiantini R, Louvat D. J. Hydrol., 1995, 168(1): 159-171

      13Walker G R, Woods P H, Allison G B. Chem. Geol., 1994, 111(1): 297-306

      14Leaney F W, Smettem K, Chittleborough D J. J. Hydrol., 1993, 147(1): 83-103

      15Revesz K, Woods P H. J. Hydrol, 1990, 115(1): 397-406

      16Shatkay M, Magaritz M. Geochim. Cosmochim. Ac., 1987, 51(5): 1135-1141

      17Mubarak A, Olsen R A. Soil Sci. Soc. Am. J., 1976: 40

      18Ingraham N L, Shadel C. J. Hydrol., 1992, 140(1): 371-387

      19Ignatev A, Velivetckaia T, Sugimoto A, Ueta A. J. Hydrol., 2013, 498: 265-273

      20Koehler G, Wassenaar L I, Hendry M J. Anal. Chem., 2000, 72(22): 5659-5664

      21Mcconville C, Kalin R M, Flood D. Rapid Commun. Mass Spectrosm., 1999, 13: 1339-1345

      22Scrimgeour C M. J. Hydrol., 1995, 172(1): 261-274

      23Golet E M, Strehler A, Alder A C, Giger W. Anal. Chem., 2002, 74(21): 5455-5462

      24GiergielewiczMozajska H, Dabrowski L, Namiesnik J. Crit. Rev. Anal. Chem., 2001, 31(3): 149-165

      25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206

      張 普, 劉衛(wèi)國(guó). 巖礦測(cè)試, 2010, 29(3): 201-206

      26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752

      27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293

      AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.

      KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction

      25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206

      張 普, 劉衛(wèi)國(guó). 巖礦測(cè)試, 2010, 29(3): 201-206

      26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752

      27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293

      AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.

      KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction

      25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206

      張 普, 劉衛(wèi)國(guó). 巖礦測(cè)試, 2010, 29(3): 201-206

      26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752

      27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293

      AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.

      KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction

      宁安市| 渝中区| 昌宁县| 张掖市| 华安县| 临武县| 梁河县| 潞城市| 施秉县| 满洲里市| 乳源| 蓬溪县| 桂东县| 广州市| 虞城县| 翁牛特旗| 内丘县| 海晏县| 麻江县| 邻水| 长武县| 宜阳县| 那坡县| 防城港市| 桦南县| 万源市| 密山市| 高清| 修武县| 鹿泉市| 开化县| 宁明县| 苏尼特右旗| 抚松县| 景德镇市| 加查县| 故城县| 义马市| 惠水县| 许昌市| 随州市|