張慧妍 張珍吉 邢虎 何治柯
摘要利用紙基微芯片便捷、直觀的優(yōu)勢(shì),采用吩嗪二甲酯硫酸鹽(PMS)/氯化硝基四氮唑藍(lán)(NBT)顯色體系,借助凝膠成像儀和普通照相機(jī)兩種成像方式,建立了紙基微孔陣列芯片比色法檢測(cè)乳酸脫氫酶(LDH)的方法。在最佳實(shí)驗(yàn)條件下,顯色強(qiáng)度與LDH濃度呈線性相關(guān)。采用凝膠成像儀檢測(cè)時(shí),線性范圍為10~150 U/L,檢出限(3σ)為9.44 U/L(n=18)。采用照相法獲得的線性范圍為15~150 U/L,檢出限(3σ)為12.36 U/L(n=18)。實(shí)驗(yàn)表明,人血清白蛋白(HSA)對(duì)顯色結(jié)果具有增強(qiáng)作用,探討了HSA的增色作用,并以HSA為增強(qiáng)試劑得到工作曲線。基于紙基微孔陣列芯片的LDH活性測(cè)定方法具有操作簡(jiǎn)單、結(jié)果直觀可見(jiàn)、靈敏度高等優(yōu)點(diǎn),對(duì)于脫氫酶類的便捷檢測(cè)有一定參考價(jià)值,可望在生物醫(yī)療檢測(cè)領(lǐng)域獲得應(yīng)用。
關(guān)鍵詞乳酸脫氫酶; 人血清白蛋白; 紙基微孔陣列芯片; 比色法
1引言
紙基微流控芯片是一種以紙張為基質(zhì)的新型微流控分析器件,利用特定材料在紙上構(gòu)建疏水柵欄\[1~4\],將液體流限制在親水區(qū)域,實(shí)現(xiàn)流體的復(fù)雜調(diào)控及分析檢測(cè)等功能。紙基微芯片試樣和試劑消耗少、分析速度快,操作簡(jiǎn)單,某些情況下可替代玻璃以及高聚物芯片進(jìn)行現(xiàn)場(chǎng)分析檢測(cè)\[5~9\]。紙基微芯片以紙為基質(zhì),不僅生物相容性好\[10,11\],可與多種檢測(cè)方法兼容\[12,13\],而且價(jià)格低廉, 用完即可丟棄,因此,紙基微芯片已成為一種備受關(guān)注的廉價(jià)檢測(cè)技術(shù)平臺(tái)\[14\]。
乳酸脫氫酶(LDH)是臨床酶學(xué)中經(jīng)常測(cè)定的指標(biāo),作為一種工具酶,LDH水平可作為有關(guān)器官正常與否的特異性生化指標(biāo),因此,血清中LDH活性的測(cè)定在疾病診斷中具有重要的臨床意義。常用的LDH活性測(cè)定方法有化學(xué)發(fā)光法\[15\]、生物發(fā)光法\[16\]、微熱量測(cè)量法\[17\]、熒光分析法\[18\]、毛細(xì)管電泳法\[19\]等,但通常由于部分檢測(cè)儀器價(jià)格較高,或是缺乏熟練的操作人員,使得一些檢測(cè)技術(shù)在偏遠(yuǎn)或貧困地區(qū)難以使用。紙基微芯片致力于為民眾提供廉價(jià)、便捷的檢測(cè)平臺(tái),減少?gòu)?fù)雜儀器、裝置的使用\[20\]。顯色法可以提供直觀可見(jiàn)的結(jié)果,不需專業(yè)分析人員就可以依照標(biāo)準(zhǔn)品對(duì)檢測(cè)結(jié)果做出判斷,使偏遠(yuǎn)、貧困或者資源匱乏地區(qū)的個(gè)人診斷成為可能\[21~23\]。本研究基于紙基微孔陣列芯片顯色法檢測(cè)LDH,采用凝膠成像儀和普通照相機(jī)兩種方法記錄結(jié)果,為L(zhǎng)DH的靈敏檢測(cè)提供了一種快速、直觀、便捷的分析手段。
2實(shí)驗(yàn)部分
2.1儀器與試劑
G17光刻機(jī)(成都鑫南光機(jī)械設(shè)備有限公司),KW4H350烤膠機(jī)(上海凱美特功能陶瓷技術(shù)有限公司),PB10酸度計(jì)(北京賽多利斯儀器系統(tǒng)有限公司),HZQF160立式全溫振蕩培養(yǎng)箱(上海一恒科學(xué)儀器有限公司),MilliQ Advantage A10超純水系統(tǒng)(美國(guó)Millipore公司),凝膠成像系統(tǒng)(CHEMIDOC XRS,美國(guó)BIORAD公司),佳能Power Shot G1 X相機(jī),1號(hào)定性濾紙(Whatman公司)。
乳酸脫氫酶(LDH,Sigma公司);吩嗪二甲酯硫酸鹽(PMS)、氯化硝基四氮唑藍(lán)(NBT)、氧化型輔酶Ⅰ(NAD+)、乳酸鋰(上海楷洋生物技術(shù)有限公司);人血清白蛋白(HSA,Biosharp公司);木瓜蛋白酶(昆明杰輝生物技術(shù)有限公司);牛血清白蛋白(BSA,Roche文瀚科技公司);胰島素(Sigma公司);胰蛋白酶和溶菌酶(Amresco公司);葡萄糖(國(guó)藥集團(tuán)化學(xué)試劑有限公司);SU8 2010(MicroChem Corp)。實(shí)驗(yàn)用水為超純水(18.2 MΩ·cm,25 ℃)。[TS(][HT5”SS]圖1LDH 的檢測(cè)原理
Fig.1Principle of lactate dehydrogenase (LDH) detection[HT5][TS)]
2.2LDH檢測(cè)原理及紙芯片檢測(cè)方法
2.2.1檢測(cè)原理如圖1所示,實(shí)驗(yàn)利用H+轉(zhuǎn)移進(jìn)行顯色,乳酸鋰在LDH的催化脫氫作用下轉(zhuǎn)化為丙酮酸,NAD+作為轉(zhuǎn)遞電子的輔酶,接受脫下的氫生NADH。生成的 NADH使氧化型PMS變成還原型,還原型PMS與NBT反應(yīng)生成藍(lán)紫色甲臜,顏色的深淺與LDH的活性成正比,從而可根據(jù)顏色實(shí)現(xiàn)LDH的分析檢測(cè)。
2.2.2紙基微孔陣列芯片檢測(cè)方法采用光刻膠法\[24\]在濾紙上制作微孔陣列紙芯片,方法流程如圖2所示,微孔直徑2.5 mm,此時(shí)每孔最佳加入量2.5 μL。首先分別配制實(shí)驗(yàn)用顯色儲(chǔ)備液,置于4 ℃保存。實(shí)驗(yàn)時(shí)將2.5 μL顯色液預(yù)先滴加于微孔中,然后放于培養(yǎng)箱中37 ℃烘干(約10 min),最后加入LDH標(biāo)準(zhǔn)溶液,置于暗箱中避光條件下進(jìn)行顯色反應(yīng),[TS(][HT5”SS]圖2紙基微孔陣列芯片制作示意圖
Fig.2Schematic diagram of the fabrication of paperbased microwell arrays microfluidic device[HT5][TS)]采用凝膠成像儀和普通照相機(jī)成像,并讀取顯色強(qiáng)度(灰度值),進(jìn)行比色檢測(cè)。
在條件優(yōu)化過(guò)程中,采用3 × 10的微孔陣列,前5列加對(duì)應(yīng)的顯色液做空白對(duì)照,以減少芯片間差異(紙芯片制作過(guò)程引起)對(duì)實(shí)驗(yàn)結(jié)果的影響,使實(shí)驗(yàn)結(jié)果更加可靠。
3結(jié)果與討論
3.1緩沖溶液pH值對(duì)LDH活性測(cè)定的影響
酶的活性容易受其環(huán)境pH值的影響,因此選擇合適的pH值尤為重要。選用不同pH值的TrisHCl緩沖液配制顯色液和標(biāo)準(zhǔn)溶液,考察pH值對(duì)LDH活性的影響。結(jié)果表明,當(dāng)緩沖溶液的pH值從7.5增加到9.0時(shí),顯色強(qiáng)度逐漸增強(qiáng);當(dāng)pH>9.0時(shí), 由于高pH值改變了酶的構(gòu)象,降低了酶的活性,顯色強(qiáng)度逐漸降低(圖3)。因此,該體系最佳反應(yīng)pH值為9.0。
3.2NAD+及乳酸鋰濃度對(duì)LDH活性測(cè)定的影響
在各類乳酸鹽中,乳酸鋰純度高、穩(wěn)定性好,因而選用乳酸鋰作為反應(yīng)底物。乳酸根離子在LDH的催化脫氫作用下轉(zhuǎn)化為丙酮酸,NAD+作為轉(zhuǎn)遞電子的輔酶,接受脫下的氫生成NADH。因此乳酸鹽和NAD+的濃度會(huì)影響LDH活性測(cè)定。結(jié)果表明,當(dāng)NAD+濃度為12 mmol/L時(shí)顯色強(qiáng)度達(dá)到最大值, 隨著NAD+濃度繼續(xù)增加,顯色強(qiáng)度逐漸降低。當(dāng)乳酸鹽濃度逐漸增大到35 mmol/L時(shí),顯色強(qiáng)度達(dá)到最大值;隨著乳酸鹽濃度繼續(xù)增大,顯色減弱。實(shí)驗(yàn)結(jié)果符合酶促反應(yīng)理論,反應(yīng)存在最佳濃度,當(dāng)?shù)孜餄舛冗^(guò)高時(shí)會(huì)對(duì)反應(yīng)產(chǎn)生抑制\[25\]。在后續(xù)實(shí)驗(yàn)中,選用條件為35 mmol/L乳酸鹽、12 mmol/L NAD+。
3.3顯色底物濃度對(duì)LDH活性測(cè)定的影響
本方法中LDH發(fā)生脫氫作用后,受氫體PMS接受乳酸鹽脫下的氫原子而被還原,選用NBT為還原指示劑,反應(yīng)生成藍(lán)紫色的甲臜。實(shí)驗(yàn)濃度范圍的PMS溶液本身呈紫紅色,NBT溶液呈淡黃色,從而會(huì)使顯色液呈現(xiàn)一定底色。通過(guò)控制單一變量,考察了PMS、NBT濃度對(duì)顯色強(qiáng)度的影響,采用含不同濃度PMS、NBT的顯色液,同時(shí)在同一張芯片上進(jìn)行了空白對(duì)照。實(shí)驗(yàn)結(jié)果如圖4所示,當(dāng)PMS濃度為60 μmol/L, NBT濃度180 μmol/L, 可使顯色強(qiáng)度的相對(duì)值最大。
3.4反應(yīng)時(shí)間對(duì)LDH活性測(cè)定的影響
在一定溫度下,酶促反應(yīng)通常需要一定的時(shí)間才可以反應(yīng)完全;同時(shí)紙芯片上反應(yīng)過(guò)程中,溶液不斷蒸發(fā)也對(duì)顯色強(qiáng)度有一定影響。在同一張紙芯片上考察了顯色時(shí)間(5~70 min)對(duì)顯色強(qiáng)度的影響。結(jié)果表明,在50 min時(shí)顯色強(qiáng)度達(dá)到最大值。[TS(][HT5”SS]圖5LDH檢測(cè)的選擇性3.5方法的選擇性及線性范圍考察
采用7種物質(zhì)(胰島素、溶菌酶、HSA、木瓜蛋白酶、葡萄糖、胰蛋白酶、BSA)進(jìn)行選擇性驗(yàn)證,顯色結(jié)果如圖5所示。LDH的顯色強(qiáng)度遠(yuǎn)高于其它物質(zhì),可見(jiàn)此體系對(duì)LDH具有很好的選擇性。
3.6HSA對(duì)乳酸脫氫酶檢測(cè)的影響
血清是由多種物質(zhì)組成的復(fù)雜混合物,其中含有大量蛋白質(zhì)(含量為80~120 g/L),因此,在對(duì)實(shí)際樣品進(jìn)行檢測(cè)之前,需考察HSA(人血清白蛋白)對(duì)檢測(cè)體系的影響。實(shí)驗(yàn)考察了不同濃度HSA對(duì)LDH檢測(cè)的影響。當(dāng)HSA濃度為86 mg/L時(shí),對(duì)LDH檢測(cè)具有微弱的增強(qiáng)作用?;诖?,在含有86 mg/L HSA的條件下進(jìn)行測(cè)定,凝膠成像法所得線性范圍為10~180 U/L,回歸方程為Y=1.53X+41.97, R2=0.992,檢出限(3σ)為7.29 U/L(n=18)。照相法所得線性范圍為10~200 U/L,回歸方程為Y=0.18X+3.25,R2=0.993,檢出限(3σ)為3.61 U/L(n=18)??梢?jiàn)HSA不僅不會(huì)對(duì)LDH測(cè)定產(chǎn)生影響,還可改善檢測(cè)靈敏度、降低檢出限。
3.7HSA增強(qiáng)作用的探討
借助于紫外可見(jiàn)光譜法對(duì)HSA的顯色增強(qiáng)作用進(jìn)行了探討。在一定濃度的反應(yīng)液中加入不同量的HSA后,紫外可見(jiàn)光譜峰位置不變,但吸收值明顯增強(qiáng)(圖6A),結(jié)果與紙芯片上的顯色結(jié)果相吻合。借助紫外可見(jiàn)光譜法分別考察HSA與顯色反應(yīng)的反應(yīng)物PMS和NBT的相互作用,結(jié)果表明,HSA對(duì)PMS和NBT的吸收光譜幾乎無(wú)影響。隨后,考察了HSA對(duì)顯色反應(yīng)產(chǎn)物的相互作用,利用GSH(谷胱甘肽)還原NBT,再加入不同量的HSA,結(jié)果如圖6B所示,HSA對(duì)NBT顯色反應(yīng)產(chǎn)物的紫外可見(jiàn)吸收光譜具有增強(qiáng)作用。因此,初步推斷HSA的增敏作用主要是由于HSA對(duì)顯色反應(yīng)還原產(chǎn)物的作用。
4結(jié)論
紙基微芯片作為一種廉價(jià)的檢測(cè)平臺(tái),在疾病臨床指標(biāo)檢測(cè)中具有重要的應(yīng)用價(jià)值。利用PMS/NBT顯色法在紙基微孔陣列芯片上對(duì)乳酸脫氫酶進(jìn)行了定量檢測(cè),優(yōu)化了反應(yīng)條件,采用凝膠成像法和照相法同時(shí)記錄了檢測(cè)結(jié)果,方法簡(jiǎn)便、結(jié)果直觀、靈敏度高,充分發(fā)揮了紙基微芯片顯色檢測(cè)的優(yōu)勢(shì)。本方法與通用脫氫酶測(cè)定思路一致,可為部分脫氫酶類物質(zhì)的簡(jiǎn)便直觀檢測(cè)提供借鑒。在乳酸脫氫酶的檢測(cè)中還發(fā)現(xiàn)HSA對(duì)顯色結(jié)果具有增強(qiáng)作用,探討了HSA增敏作用的原因,對(duì)于實(shí)際樣品檢測(cè)具有參考價(jià)值。
References
1Abe K, Suzuki K, Citterio D. Anal. Chem., 2008, 80(18): 6928-6934
2Bruzewicz D A, Reches M, Whitesides G M. Anal. Chem., 2008, 80(9): 3387-3392
3Li X, Tian J F, Nguyen T, Shen W. Anal. Chem., 2008, 80(23): 9131-9134
4Carrilho E, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(16): 7091-7095
5Martinez A W, Phillips S T, Whitesides G M, Carrilho E. Anal. Chem., 2010, 82(1): 3-10
6Li X, Tian J, Shen W. Cellulose, 2010, 17(3): 649-659
7Wang S M, Ge L, Song X R, Yan M, Ge S G, Yu J H, Zeng F. Analyst, 2012, 137(16): 3821-3827
8Schilling K M, Lepore A L, Kurian J A, Martinez A W. Anal. Chem., 2012, 84(3): 1579-1585
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
楊文初, 俞愛(ài)民, 陳洪淵. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陳 錦, 何治柯. 分析科學(xué)學(xué)報(bào), 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
楊文初, 俞愛(ài)民, 陳洪淵. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陳 錦, 何治柯. 分析科學(xué)學(xué)報(bào), 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
楊文初, 俞愛(ài)民, 陳洪淵. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陳 錦, 何治柯. 分析科學(xué)學(xué)報(bào), 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)