鄧宗偉+唐葭+朱志祥+付貴海+聶如松
文章編號:16742974(2014)06008507
收稿日期:20140227
基金項目:國家自然科學(xué)基金資助項目(51108464);湖南省科技計劃項目(2013GK3086);湖南省教育廳重點研究項目(09A016);湖南省教育廳科學(xué)計劃項目(12C0580);湖南省教育廳青年項目(13B010)
作者簡介:鄧宗偉(1972-),男,湖南安化人,中南大學(xué)博士后,湖南城市學(xué)院副教授,博士
通訊聯(lián)系人,Email:teapotd@163.com
摘 要:為解決不同應(yīng)力水平下飽和軟土層的沉降計算問題,考慮土的流變特性,對西原模型低應(yīng)力分量進(jìn)行了分析和改進(jìn).通過Laplace變換與反變換,得到了瞬時加載條件下改進(jìn)西原模型的一維固結(jié)解析解,在此基礎(chǔ)上采用積分的方法推導(dǎo)了多級加載條件下的統(tǒng)一解析解,并將解析解應(yīng)用于洞庭湖軟土路堤試驗段的沉降計算.結(jié)果表明:該解析解沉降計算值在不同應(yīng)力水平下呈現(xiàn)不同的變化規(guī)律,均與對應(yīng)應(yīng)力水平下的沉降實測值吻合.在固結(jié)初期,該解析解的計算固結(jié)沉降速率大大低于相同條件下彈性模型的計算結(jié)果.因此,在計算軟基沉降時,必須考慮不同應(yīng)力水平對軟基沉降的影響,并考慮軟土流變所引起的滯后效應(yīng).
關(guān)鍵詞:固結(jié);改進(jìn)西原模型;軟土;沉降計算;滯后效應(yīng)
中圖分類號:TU470 文獻(xiàn)標(biāo)識碼:A
Analytical Solution for Rheological Onedimensional
Consolidation of Soft Soil based
on Improved Nishihara Model
DENG Zongwei1,2, TANG Jia2, ZHU Zhixiang1,2, FU Guihai1,2, NIE Rusong1
(1. School of Civil Engineering, Central South Univ, Changsha, Hunan 410075, China;
2. School of Civil Engineering, Hunan City Univ, Yiyang, Hunan 413000, China)
Abstract:In order to solve the settlement calculation problem of saturated soft soil under different stress levels, the low stress component of the Nishihara model was analyzed and improved after considering the rheological properties. Through the Laplace transform and its inverse transform, a onedimensional consolidation analytical solution was obtained under instantaneous loading condition. Based on the solution, the unified analytical solution was obtained in the method of integral under multilevel loading conditions. And the analytical solution was used in the settlement calculation for the test section of Dongting Lake Area soft soil embankment. It has been shown that the calculated settlement values of the analytical solutions under different stress levels have different change laws, which is in agreement with those of the field tests. At the early stage of consolidation, the calculated consolidation settlement rates are much lower than that of the elastic model under the same conditions. Therefore, when calculating the settlement of soft foundation, it is necessary to consider the influence of different stress levels on the settlement of soft foundation, and to consider lag effect caused by soft soil creep.
Key words: consolidation; the improved Nishihara model; soft soil; settlement calculation; lag effect
軟土的固結(jié)與流變是聯(lián)系在一起的,為探求軟土的流變特性對軟土固結(jié)的影響,許多學(xué)者對此展開過相關(guān)研究.Floque提出了考慮非飽和土流變問題的固結(jié)模型,并導(dǎo)出了其流變本構(gòu)模型[1];王盛源[2]研究了變荷載作用下飽和黏土的黏彈性一維固結(jié)問題,得到了荷載隨時間線性增長情況下的一維固結(jié)問題的解析解.近年來,李西斌[3]、謝康和[4]、王少媚[5]等分別針對循環(huán)荷載與其他可變荷載下軟土的黏彈性問題進(jìn)行了一維固結(jié)流變解答,得出了一些有益結(jié)論.但以上關(guān)于流變問題的研究都是針對同一應(yīng)力路徑狀態(tài)下的本構(gòu)方程進(jìn)行的.事實上,由于巖土體材料的特殊性,當(dāng)巖土體的內(nèi)部應(yīng)力超過某一“閾值”時[6-7],應(yīng)力路徑就會發(fā)生明顯變化,其流變性質(zhì)也隨之改變,因此必須尋求一種能同時描述不同應(yīng)力水平下的流變特性的巖土體本構(gòu)方程.在現(xiàn)有流變模型中,西原模型能很好地體現(xiàn)不同應(yīng)力水平下的流變變化,但它用兩個分式分別描述高低應(yīng)力水平下的流變特性,非常不利于固結(jié)流變問題的解答.鑒于此,本文對已有西原模型做適當(dāng)改進(jìn),建立不同應(yīng)力水平下的流變統(tǒng)一表達(dá)式,并在此基礎(chǔ)上對瞬時加載和多級加載條件下黏彈性土的一維固結(jié)解析解進(jìn)行推導(dǎo),為計算軟土地基的長期沉降,合理估計施工期沉降與工后沉降提供理論依據(jù).
1 問題的描述及基本控制方程
圖1為所求單層黏彈性地基土一維固結(jié)問題的計算示意圖,其中kv為滲透系數(shù),E0, E1, K0 和K1為流變模型的4個模型參數(shù),q(t)為隨時間變化的外加荷載,H為壓縮層厚度,地基表面透水,底邊界不透水.
圖1 單層黏彈性地基一維固結(jié)計算示意圖
Fig.1Calculation sketch for onedimensional
consolidation of single layer
viscoelastic subgrade
西原模型為五元件模型,由一個彈性模量為E0的獨立彈簧、一個Kelvin體、一個Bingham體串連組成,如圖2(a)所示.顯然,四元件流變模型(Schiffman模型)、三元件流變模型(Merchant模型)均為西原模型的特例.
(a) 西原模型
(b) Schiffman模型
(c) Merchant模型
圖2 西原模型及其特殊情況
Fig.2Nishihara model and its special cases
根據(jù)圖2中西原模型各元件的組成,其本構(gòu)關(guān)系可以由式(1)進(jìn)行描述:以應(yīng)力“閾值”σ0為界分為高低兩個應(yīng)力水平,不同應(yīng)力水平下,黏彈性本構(gòu)模型遵循不同的流變規(guī)律.而從文獻(xiàn)[8]中可知,對于黏彈性模型,為了更好地描述土體的變形特征和使模型具有較廣泛的適用性,可用大量元件組成廣義模型.如廣義Kelvin模型就是由一個Maxwell體和N個Kelvin體串聯(lián)組成的.因此,為提高低應(yīng)力水平下西原模型的計算精度,可用Schiffman模型對式(1)中低應(yīng)力水平下的Merchant模型進(jìn)行替換而成為式(2).由此,在低應(yīng)力水平下將σ0取為0,在高應(yīng)力水平下將σ0取為一定值,可以使不同應(yīng)力水平下的本構(gòu)關(guān)系得到統(tǒng)一.式(2)中各物理量意義明確,簡單直觀,方便了固結(jié)解析解的推導(dǎo).
εt=σE0+σE11-e-E1K1t, σ≤σ0;
σE0+σE11-e-E1K1t+σ-σ0K0t, σ>σ0. (1)
εt=σE0+σE11-e-E1K1t+σK0t ,σ≤σ0;
σE0+σE11-e-E1K1t+σ-σ0K0t , σ>σ0.(2)
基于修正后的西原模型的本構(gòu)關(guān)系,可得土體中的應(yīng)力應(yīng)變關(guān)系為:
ε(t,Z)=σ(τ,Z)E0+∫t0σ(τ,Z)-σ0K0dτ+
∫t0σ(τ,Z)E1e-E1K1(t-τ)dτ. (3)
式中:σ(τ,Z)為豎向有效應(yīng)力.
設(shè)土體完全飽和,土顆粒和孔隙水均不可壓縮,單位土體的壓縮量等于從單位時間內(nèi)土體排出水的體積,則有
kvγw2u(t,Z)Z2=-ξ(t,Z)t. (4)
根據(jù)有效應(yīng)力原理,
u(t,Z)=q(t)-σz(t,Z). (5)
初始外界荷載等于初始孔隙水壓時,
u(0,Z)=q(0). (6)
式(3),式(5)和(6)代入式(4)可得黏彈性土體一維固結(jié)控制方程:
cv2uz2=ut+E0K1∫t0uτe-E1K1(t-τ)dτ+E0K0u+q'(t). (7)
式中:
q'(t)=-dq(t)dt-E0K0[q(t)-σ0]-
E0K1∫t0dq(τ)dτe-E1K1(t-τ)dτ;(8)
cv=E0kvγw為固結(jié)系數(shù);γw為水的重度.
控制方程(7)的定解條件如下:
頂面排水: u(t,0)=0; (9)
底面不排水:u(t,H)Z=0; (10)
初始條件: u(0,Z)=q(0)=q0. (11)
2 問題的求解
2.1 瞬時加載時控制方程的求解
瞬時加載條件下,q'(t)=-E0K0[q(0)-σ0]代入控制方程(7)可得:
cv2uz2=ut+E0K1∫t0uτe-E1K1(t-τ)dτ+
E0K0u-E0K0[q(0)-σ0]. (12)
根據(jù)式(9),(10)和(11)的定解條件,采用固定函數(shù)法,求解控制方程(12).由邊界條件可假設(shè)解的形式為:
u(t,Z)=∑
SymboleB@
n=1Tn(t)sin (MHZ). (13)
式中: M=(2n-1)2π,n=1,2,3,…;Tn(t)僅為時間函數(shù).
將式(13)代入式(7)得:
-∑
SymboleB@
n=1cvM2H2Tn(t)sin (MHZ)=∑
SymboleB@
n=1dTn(t)dtsin (MHZ)+
∑
SymboleB@
n=1E0K1∫t0dTn(t)dtsin (MHZ)e-E1K1(t-τ)dτ+
E0K0∑
SymboleB@
n=1Tn(t)sin (MHZ)+∑
SymboleB@
n=12Mq′(t)sin (MHZ),(14)
簡化為:
cvM2H2Tn(t)+dTn(t)dt+E0K1∫t0dTn(t)dte-E1K1(t-τ)dτ+
E0K0Tn(t)+2Mq′(t)=0.(15)
令Tn(t)Laplace變換為L(Tn(t))=T-n(s),q′(t)=-E0K0[q(0)-σ0],應(yīng)用初始條件式(14)得Tn(0)=2Mq0,然后對方程(15)兩邊取Laplace變換可得:
n(s)=2q0M(1+E0E1+K1s+E0K0s)-2σ0ME0K0s(cvM2H2+s+E0sE1+K1s+E0K0). (16)
對式(16)做逆Laplace變換Tn(t)=L-1(Tn(t))得:
Tn(t)=L-1(Tn(t))=
2M[(q0-σ0)C1+q0(D2eX2Tv+D1eX1Tv)+
σ0(D4eX2Tv+D3eX1Tv)]. (17)
式中:x1,x2,C1,D1,D2,D3,D4,b,Tv,a1和a2為無量綱參數(shù),它們的表達(dá)式如下:
x1=-12b[(M2b+a1+a2+1)-
-4a1(M2b+a2)+(M2b+a1+a2+1)2];
x2=-12b[(M2b+a1+a2+1)+
-4a1(M2b+a2)+(M2b+a1+a2+1)2];
C1=a2M2b+a2;D1= M2bx1+M2(a1+1)(x1-x2)(M2b+a2);
D2=M2bx2+M2(a1+1)(x2-x1)(M2b+a2);
D3= a2[x1+(a1+1)/b](x1-x2)(M2b+a2);
D4=a2[x2+(a1+1)/b](x2-x1)(M2b+a2);
Tv=cvH2t; a1=E1E0;a2=K1K0;b=kvK1H2γw.
當(dāng)孔隙水壓力、固結(jié)度計算公式中H用H/2代替時,可得到雙面排水邊界條件下的孔隙水壓力、固結(jié)度計算計算式.
公式的退化,即σ0→ 0對式(17)化簡后結(jié)果與文獻(xiàn)[3, 9]結(jié)果相同.
結(jié)合式(13)孔隙水壓力可表示為:
u(t,Z)=∑
SymboleB@
n=1Tn(t)sin (MHZ)=
∑
SymboleB@
n=12M[(q0-σ0)C1+q0(D2eX2Tv+D1eX1Tv)+
σ0(D4eX2Tv+D3eX1Tv)]sin (MHZ).(18)
固結(jié)度U可表示為:
U(t)=1-1q0∑
SymboleB@
n=12M2[(q0-σ0)C1+
q0(D2eX2Tv+D1eX1Tv)+σ0(D4eX2Tv+
D3eX1Tv)].(19)
2.2 多級加載下控制方程的求解
2.2.1 軟土路基加載的受荷特點
目前,軟土路基的施工普遍采用等載或超載預(yù)壓并結(jié)合其他加固方法(如塑料排水板、砂樁、粉噴樁等)進(jìn)行軟基處理,堆載過程為分層加載、分層碾壓,如圖3所示.加載過程為圖中斜線段,斜率代表加載速度;碾壓過程為圖中的平線段,荷載不變.
圖3 m級階梯加載qt曲線示意圖
Fig.3Schematic diagram of m step loads qtcurve
t1>t≥t0:q(t)=q1-q0t1-t0(t-t0)+q0 ;(a)
t2>t≥t1:q(t)=q1; (b)
t3>t≥t2:q(t)=q1+q2-q1t3-t2(t-t2) ; (c)
t4>t≥t3:q(t)=q2; (d)
…
t2m-1>t≥t2m-2:q(t)=qm-1+qm-qm-1t2m-1-t2m-2(t-t2m-2);(e)
t2m>t≥t2m-1:q(t)=qm.(f) (20)
2.2.2 孔隙水壓力的求解
疊加原理基本思想是:把變荷載情況下固結(jié)過程看成若干個不變荷載(瞬時加載)疊加的固結(jié)過程,從已有的瞬時加載情況的固結(jié)解析解出發(fā),而不是從變荷載情況下的固結(jié)方程出發(fā)進(jìn)行求解[10].疊加原理示意如圖4所示.
圖4疊加原理示意圖
Fig.4 Schematic diagram of the principle of superposition
不計初始孔隙水壓力,當(dāng)t=0時,瞬時加載為q0條件下,孔隙水壓力方程為:
u(t,Z)=∑
SymboleB@
n=12q0Msin (MHZ)e-a1t. (21)
式(21)/q0簡化得到單位力作用下的孔隙水壓力公式:
u(t,Z)=∑
SymboleB@
n=12Msin (MHZ)e-a1t. (22)
在t=τi,Δq作用下瞬間加載孔隙水壓力表達(dá)式為:
ui(t,Z)=∑
SymboleB@
n=12Msin (MHZ)e-a1(t-τi)Δq=
∑
SymboleB@
n=12Msin (MHZ)e-a1(t-τi)ΔqΔτiΔτi.(23)
當(dāng)連續(xù)加載時,由疊加原理可知:
∑ki=1ui(t,Z)=∑ki=1∑
SymboleB@
n=12Msin (MHZ)e-a1(t-τi)ΔqΔτiΔτi=
∫t0∑
SymboleB@
n=12Msin (MHZ)e-a1(t-τ)dqdτdτ=
∑
SymboleB@
n=12Msin (MHZ)∫t0e-a1(t-τ)dqdτdτ.(24)
式中:a1=cvM2H2;M=2n-12π;dq(τ)dτ為加載速率.
同理,對本次研究的控制方程,由式(13)得,瞬時加載單位力對應(yīng)的孔隙水壓表達(dá)式為:
u(t,Z)=∑
SymboleB@
n=1Tn(t)sin (MHZ)=
∑
SymboleB@
n=12M[(1-σ0/q0)C1+(D2eX2Tv+D1eX1Tv)+
σ0/q0(D4eX2Tv+D3eX1Tv)]sin (MHZ).(25)
根據(jù)疊加原理可得任意荷載作用下的孔隙水壓表達(dá)式為:
u(t,Z)=∫t0(t-τ,Z)dq(τ)dτdτ. (26)
m級梯形加載q(t)分段函數(shù)如式(20),代入式(26)得各時間段孔隙水壓的解析解如下:
當(dāng)t2m-1>t≥t2m-2時,
q(t)=qm+qm-qm-1t2m-1-t2m-2(t-t2m-2)=
qm+Qm(t-t2m-2),m=1,2,3,…
u(t,Z)=∑m-1k=1(∑
SymboleB@
n=12(qk-qk-1)M(Tv2k-1-Tv2k-2)sin (MHZ)×
(C1(1-σ0/q0)(Tv2k-1-Tv2k-2)+
D1X1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1)) +
D2X2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1))+
σ0/q0(D3X1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1)) +
D4X2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1)))) +
∑
SymboleB@
k=12(qm-qm-1)M(T2m-1-Tv2m-2)sin (MHZ)(C1(1-σ0/q0)×
(Tv-Tv2m-2)+D1X1(-1+ex1(Tv-Tv2m-2))+
D2X2(-1+ex1(Tv-Tv2m-2))+
σ0/q0(D3X1(-1+ex1(Tv-Tv2m-2))+
D4X2(-1+ex1(Tv-Tv2m-2)))).(27)
當(dāng)t2m>t≥t2m-1時,q(t)=qm,m=1,2,3,…
u(t,Z)=∑(mk=1∑
SymboleB@
n=12(qk-qk-1)M(Tv2k-1-Tv2k-2)×
sin (MHZ)(C1(1-σ0/q0)(Tv2k-1-Tv2k-2)+
D1X1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1))+
D2X2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1))+
σ0/q0(D3X1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1))+
D4X2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1))))). (28)
其中Tvi表示t=ti時刻的Tv值.
2.2.3 固結(jié)度的求解
設(shè)最后荷載值為qu,則
U=q(t)-1H∫H0udZqu.(29)
當(dāng)t2m-1>t≥t2m-2時,
q(t)=qm+qm-qm-1t2m-1-t2m-2(t-t2m-2)=
qm+Qm(t-t2m-2),m=1,2,3,…
U(t)=1qu((qm-1+qm-qm-1t2m-1-t2m-2(t-t2m-2))-
∑m-1k=1∑
SymboleB@
n=12(qk-qk-1)M2(Tv2k-1-Tv2k-2)×
(C1(1-σ0/q0)(Tv2k-1-Tv2k-2)+
D1x1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1))+
D2x2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1))+
σ0/q0(D3X1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1))+
D4X2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1))))+
∑
SymboleB@
n=12(qm-qm-1)M2(T2m-1-Tv2m-2) ×(C1(1-σ0/q0)×
(Tv-Tv2m-2)+D1x1(-1+ex1(Tv-Tv2m-2))+
D2x2(-1+ex2(Tv-Tv2m-2))+
σ0/q0(D3X1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1))+
D4X2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1)))).(30)
當(dāng)t2m≥t≥t2m-1時,q(t)=qm,m=1,2,3,…
U(t)=qmqu-1qu(∑mk=1∑
SymboleB@
n=12(qk-qk-1)M2(Tv2k-1-Tv2k-2)
(C1(1-σ0/q0)(Tv2k-1-Tv2k-2)+
D1x1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1))+
D2x2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1))+
σ0/q0(D3X1(ex1(Tv-Tv2k-2)-ex1(Tv-Tv2k-1))+
D4X2(ex2(Tv-Tv2k-2)-ex2(Tv-Tv2k-1)))). (31)
3 計算實例
軟土沉降一維固結(jié)解析解主要用于軟土的沉降計算,在上節(jié)中已求解了分級加載情況下一維固結(jié)沉降的統(tǒng)一解,在本節(jié)中為驗證推導(dǎo)公式的適用性,將黏彈性模型計算結(jié)果與實測結(jié)果、彈性模型下的計算結(jié)果進(jìn)行比較.
岳-常高速公路是湖南省第一條大面積穿越洞庭湖區(qū)的高速公路,路線所經(jīng)洞庭湖地段為典型的湖相軟土沉積區(qū),軟土分布廣泛且不均勻,深度從幾米到幾十米不等.同為軟基,湖相軟基與其他類型軟基在沉積原因、組成物質(zhì)、應(yīng)力歷史等方面都有較大的區(qū)別,必須探索不同于其他軟基的處理方法[11-13].因此,設(shè)置軟基試驗段是一項必不可少的內(nèi)容,主要從以下兩方面考慮:一是通過沉降、位移的觀測檢驗施工圖設(shè)計的合理性,包括設(shè)計參數(shù)和計算成果的準(zhǔn)確性.二是通過試驗路施工,總結(jié)形成成套施工工藝、施工方法與質(zhì)量控制措施,高效指導(dǎo)工程的大規(guī)模施工.為此,針對洞庭湖區(qū)地質(zhì)狀況,結(jié)合業(yè)主、設(shè)計和科研單位等多方意見,在岳陽、常德兩地分別選取了相關(guān)試驗段進(jìn)行施工.
在本次試驗中,按填土的高度不同分別選取填土高度為2.5 m左右的低路堤與填土高度為5.0 m左右的高路堤進(jìn)行研究,為進(jìn)行對比,選取兩斷面軟土厚度均為10 m左右.為獲取試驗數(shù)據(jù),選取典型試驗斷面分左、中、右3個位置分別埋設(shè)沉降板進(jìn)行了相關(guān)的沉降觀測.因本次分析主要考慮側(cè)限條件下的路基沉降,故取中部沉降板的沉降觀測數(shù)據(jù)進(jìn)行對比分析較為合理.同時,對原狀土進(jìn)行了相關(guān)的室內(nèi)試驗,包括基本試驗與改進(jìn)西原模型下軟土的蠕變試驗.為考慮與理論推導(dǎo)下的側(cè)限條件相似,本次蠕變模型試驗采用全自動加載固結(jié)系統(tǒng)進(jìn)行,按分級加載的方式進(jìn)行加載.室內(nèi)試驗數(shù)據(jù)見表1,表2和表3.從表1可以看出,洞庭湖區(qū)軟土的天然含水量、孔隙比和液限的平均值與海灣相軟土較接近而與海相和三角洲相軟土的相關(guān)指標(biāo)相差較大,這主要因為湖相軟土的沉積主要在靜水中進(jìn)行,其孔隙比較低,含水量和液限也相對較低.同時從表2和表3中也可以看出,在不同應(yīng)力水平下,洞庭湖軟土的蠕變也呈現(xiàn)不同的性狀,具有顯著的長期蠕變的特征.
表1 土的主要物理性質(zhì)指標(biāo)
Tab.1 The main physical property of soil
編
號
含水量
/%
孔隙
比e
重度γ
/(kN?m-3)
飽和度
塑限
I(xiàn)P/%
液限
I(xiàn)L/%
A
39.70
0.988
19.21
98.5~100
26.90
42.08
B
40.1
1.031
19.28
98.3~100
27.10
41.93
表2 低應(yīng)力下模型參數(shù)擬合表
Tab.2 Fitting parameters of low stress level
σ
/kPa
E0
/MPa
E1
/MPa
K0
/(MPa?h)
K1
/(MPa?h)
R2
25
9.409
1.996
1 485.500
1.859
0.973 81
50
9.612
2.995
1 972.294
1.019
0.956 65
表3 高應(yīng)力下模型參數(shù)擬合表
Tab.3 Fitting parameters of high stress level
σ
/kPa
σ0
/kPa
E0
/MPa
E1
/MPa
K0
/(MPa?h)
K1
/(MPa?h)
R2
100
11.43
5.171
2 067.162
1.429
0.948 75
20050
15.25
9.803
4 812.453
2.382
0.950 28300
55.78
24.151
10 437.530
21.903
0.963 25
為了驗證本文理論公式的適用性,以表1,表2和表3數(shù)據(jù)為基礎(chǔ),根據(jù)本文所推導(dǎo)的公式對低路堤與高路堤在施工過程中的沉降進(jìn)行了計算,低路堤計算參數(shù)根據(jù)路堤高度選取表2中50 kPa壓力下的試驗值,高路堤計算參數(shù)根據(jù)路堤高度選取表3中100 kPa壓力下的試驗值,彈性模型計算參數(shù)選取表2和表3中相應(yīng)路堤高度下除去黏性常數(shù)的試驗值.
本文蠕變模型下的計算結(jié)果與彈性理論計算結(jié)果、實測結(jié)果如圖5和圖6所示.從中可以看出:1) 低路堤情況下路基的實測沉降速度與Schiffman模型計算值比較接近,高路堤情況下路基的實測沉降速度則與改進(jìn)的西原模型計算值比較接近;高路堤情況下,取相同計算參數(shù)時,Schiffman模型計算沉降速度比改進(jìn)的西原模型計算沉降速度慢.以上情況說明,不同應(yīng)力水平下軟土具有不同的蠕變規(guī)律,必須采用不同的計算方法.2) 彈性模型的計算沉降速度在路堤加載完成后明顯地大于實測沉降速度與蠕變模型的沉降速度,而后期沉降速度差別不大.說明在軟基的沉降計算中,必須考慮軟土蠕變特性對不同時期的沉降預(yù)測方法加以改進(jìn).
時間/d
圖5 低路堤下軟土路基沉降
Fig.5 Subgrade settlement under low
soft soil embankment
時間/d
圖6 高路堤下軟土路基沉降
Fig.6Subgrade settlement under high soft
soil embankment
4 結(jié) 論
1) 在傳統(tǒng)西原模型的基礎(chǔ)上,用Schiffman模型代替低應(yīng)力水平下的Merchant模型,使得西原模型在不同應(yīng)力水平下的公式通過應(yīng)力閾值σ0的不同取值而得到統(tǒng)一,公式中各物理量意義明確,簡單直觀,方便了固結(jié)解析解的推導(dǎo).
2) 利用改進(jìn)的西原模型推導(dǎo)了軟土流變一維固結(jié)的黏彈性解析解,通過實例計算表明,該公式能很好地預(yù)測軟土路基的長期沉降.低應(yīng)力水平下,軟土沉降速率較慢;高應(yīng)力水平下,軟土沉降速率較快.因此,在長期沉降預(yù)測中必須根據(jù)不同的荷載水平而選擇不同的計算方法.
3) 采用傳統(tǒng)的一維固結(jié)理論計算軟土沉降時沒有考慮軟土的蠕變或雖然考慮了蠕變但沒有考慮不同應(yīng)力水平對土體蠕變變形的影響,因此計算時過高地估計了施工期沉降,而對工后沉降則重視不足,采用本文所用方法能合理預(yù)估軟土路基施工后沉降,減少對地面已完工建筑物的影響.
參考文獻(xiàn)
[1] 孫鈞. 巖土材料流變及其工程應(yīng)用[M]. 北京: 中國建筑工業(yè)出版社, 1999:7.
SUN Jun. Rheological behavior of geomaterials and its engineering applications [M]. Beijing:China Architecture & Building Press, 1999: 7. (In Chinese)
[2] 王盛源. 變荷載下的黏彈性體一維固結(jié)問題[J]. 水利水運科學(xué)研究, 1981(2): 10-17.
WANG Shengyuan. One dimensional consolidation of viscoelastic material under variable load [J]. Irrigation and Water Carriage Scientific Research, 1981(2): 10—17. (In Chinese)
[3] 李西斌, 賈獻(xiàn)林, 謝康和. 變荷載下軟土一維流變固結(jié)解析理論[J]. 巖土力學(xué), 2006, 27(S): 140-146.
LI Xibin, JIA Xianlin, XIE Kanghe. Analytical solution of 1D viscoelastic consolidation of soft soils under time dependent loadings [J]. Rock and Soil Mechanics, 2006, 27(S) : 140-146. (In Chinese)
[4] XIE K H, XIE X Y, LI X B. Analytical theory for onedimensional consolidation of clayey soils exhibiting rheological characteristics under timedependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(14): 1833-1855.
[5] 王少媚, 夏森煒, 蔣軍. 循環(huán)荷載作用下黏彈性地基一維固結(jié)性狀研究[J]. 巖土力學(xué),2008, 29(2): 470-474.
WANG Shaomei, XIA Senwei, JIANG Jun. Study on onedimensional consolidation behavior of saturated clay under cyclic loading [J]. Rock and Soil Mechanics, 2008, 29(2): 470-474. (In Chinese)
[6] JIANG Quan, FENG Xiating. Intelligent stability design of large underground hydraulic caverns: Chinese Method and Practice [J]. Energies, 2011, 4(10): 1542-1562.
[7] JIANG Quan, FENG Xiating, CHEN Jing, et al. Estimating insitu rock stress from spalling veins: a case study [J]. Engineering Geology, 2013, 152(1): 38-47.
[8] 錢家歡,殷宗澤.土工原理與計算[M]. 北京: 中國水利水電出版社, 1999:240-241.
QIAN Jiahuan, YIN Zongze. Geotechnical principles and calculating [M]. Beijing: China Water Power Press, 1999:240-241. (In Chinese)
[9] 楊奇. 高速鐵路橋梁樁基礎(chǔ)變形性狀試驗與工后沉降研究[D]. 長沙: 中南大學(xué)土木工程學(xué)院, 2011:97-103.
YANG Qi. Study on deformation behavior test and settlement after acceptance of highspeed railway bridge pile foundation [D]. Changsha: College of Civil Engineering, Central South University , 2011:97-103. (In Chinese)
[10]藍(lán)柳和. 成層軟黏土地基非線性流變固結(jié)性狀研究[D]. 杭州: 浙江大學(xué)建筑工程學(xué)院, 2002:15-17.
LAN Liuhe. Studies on the nonlinear rheologic consolidation behavior of layered soft clayey soils [D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2002:15-17. (In Chinese)
[11]吳建寧. 洞庭湖地區(qū)軟土工程地質(zhì)性狀初探[J]. 中南公路工程, 2004, 29(2): 136-138.
WU Jianning. Discussion on geological properties of soft soil in Dongting lake area [J]. Central South Highway Engineering, 2004, 29(2): 136-138. (In Chinese)
[12]邵勇, 閻長虹, 許寶田, 等. 湖相軟土流變模型識別及其工程應(yīng)用分析[J]. 巖土力學(xué), 2012, 33(8): 2383-2387.
SHAO Yong, YAN Changhong, XU Baotian, et al. Identification on rheological model of lacustrine soft soil and its engineering application [J]. Rock and Soil Mechanics, 2012, 33(8): 2383-2387. (In Chinese)
[13]王元戰(zhàn), 王婷婷, 王軍. 濱海軟土非線性流變模型及其工程應(yīng)用研究[J]. 巖土力學(xué), 2009, 39(9): 2679-2683.
WANG Yuanzhan, WANG Tingting, WANG Jun. A nonlinear rheological model of soft clay and its application to Tianjin littoral area [J]. Rock and Soil Mechanics, 2009, 39(9): 2679-2683. (In Chinese)
[6] JIANG Quan, FENG Xiating. Intelligent stability design of large underground hydraulic caverns: Chinese Method and Practice [J]. Energies, 2011, 4(10): 1542-1562.
[7] JIANG Quan, FENG Xiating, CHEN Jing, et al. Estimating insitu rock stress from spalling veins: a case study [J]. Engineering Geology, 2013, 152(1): 38-47.
[8] 錢家歡,殷宗澤.土工原理與計算[M]. 北京: 中國水利水電出版社, 1999:240-241.
QIAN Jiahuan, YIN Zongze. Geotechnical principles and calculating [M]. Beijing: China Water Power Press, 1999:240-241. (In Chinese)
[9] 楊奇. 高速鐵路橋梁樁基礎(chǔ)變形性狀試驗與工后沉降研究[D]. 長沙: 中南大學(xué)土木工程學(xué)院, 2011:97-103.
YANG Qi. Study on deformation behavior test and settlement after acceptance of highspeed railway bridge pile foundation [D]. Changsha: College of Civil Engineering, Central South University , 2011:97-103. (In Chinese)
[10]藍(lán)柳和. 成層軟黏土地基非線性流變固結(jié)性狀研究[D]. 杭州: 浙江大學(xué)建筑工程學(xué)院, 2002:15-17.
LAN Liuhe. Studies on the nonlinear rheologic consolidation behavior of layered soft clayey soils [D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2002:15-17. (In Chinese)
[11]吳建寧. 洞庭湖地區(qū)軟土工程地質(zhì)性狀初探[J]. 中南公路工程, 2004, 29(2): 136-138.
WU Jianning. Discussion on geological properties of soft soil in Dongting lake area [J]. Central South Highway Engineering, 2004, 29(2): 136-138. (In Chinese)
[12]邵勇, 閻長虹, 許寶田, 等. 湖相軟土流變模型識別及其工程應(yīng)用分析[J]. 巖土力學(xué), 2012, 33(8): 2383-2387.
SHAO Yong, YAN Changhong, XU Baotian, et al. Identification on rheological model of lacustrine soft soil and its engineering application [J]. Rock and Soil Mechanics, 2012, 33(8): 2383-2387. (In Chinese)
[13]王元戰(zhàn), 王婷婷, 王軍. 濱海軟土非線性流變模型及其工程應(yīng)用研究[J]. 巖土力學(xué), 2009, 39(9): 2679-2683.
WANG Yuanzhan, WANG Tingting, WANG Jun. A nonlinear rheological model of soft clay and its application to Tianjin littoral area [J]. Rock and Soil Mechanics, 2009, 39(9): 2679-2683. (In Chinese)
[6] JIANG Quan, FENG Xiating. Intelligent stability design of large underground hydraulic caverns: Chinese Method and Practice [J]. Energies, 2011, 4(10): 1542-1562.
[7] JIANG Quan, FENG Xiating, CHEN Jing, et al. Estimating insitu rock stress from spalling veins: a case study [J]. Engineering Geology, 2013, 152(1): 38-47.
[8] 錢家歡,殷宗澤.土工原理與計算[M]. 北京: 中國水利水電出版社, 1999:240-241.
QIAN Jiahuan, YIN Zongze. Geotechnical principles and calculating [M]. Beijing: China Water Power Press, 1999:240-241. (In Chinese)
[9] 楊奇. 高速鐵路橋梁樁基礎(chǔ)變形性狀試驗與工后沉降研究[D]. 長沙: 中南大學(xué)土木工程學(xué)院, 2011:97-103.
YANG Qi. Study on deformation behavior test and settlement after acceptance of highspeed railway bridge pile foundation [D]. Changsha: College of Civil Engineering, Central South University , 2011:97-103. (In Chinese)
[10]藍(lán)柳和. 成層軟黏土地基非線性流變固結(jié)性狀研究[D]. 杭州: 浙江大學(xué)建筑工程學(xué)院, 2002:15-17.
LAN Liuhe. Studies on the nonlinear rheologic consolidation behavior of layered soft clayey soils [D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2002:15-17. (In Chinese)
[11]吳建寧. 洞庭湖地區(qū)軟土工程地質(zhì)性狀初探[J]. 中南公路工程, 2004, 29(2): 136-138.
WU Jianning. Discussion on geological properties of soft soil in Dongting lake area [J]. Central South Highway Engineering, 2004, 29(2): 136-138. (In Chinese)
[12]邵勇, 閻長虹, 許寶田, 等. 湖相軟土流變模型識別及其工程應(yīng)用分析[J]. 巖土力學(xué), 2012, 33(8): 2383-2387.
SHAO Yong, YAN Changhong, XU Baotian, et al. Identification on rheological model of lacustrine soft soil and its engineering application [J]. Rock and Soil Mechanics, 2012, 33(8): 2383-2387. (In Chinese)
[13]王元戰(zhàn), 王婷婷, 王軍. 濱海軟土非線性流變模型及其工程應(yīng)用研究[J]. 巖土力學(xué), 2009, 39(9): 2679-2683.
WANG Yuanzhan, WANG Tingting, WANG Jun. A nonlinear rheological model of soft clay and its application to Tianjin littoral area [J]. Rock and Soil Mechanics, 2009, 39(9): 2679-2683. (In Chinese)