• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      客貨共線大跨度簡支鋼桁梁橋梁軌相互作用

      2014-09-27 08:14于向東沙嵩閆斌
      湖南大學學報·自然科學版 2014年6期
      關鍵詞:鐵路橋梁

      于向東+沙嵩+閆斌

      文章編號:16742974(2014)06010606

      收稿日期:20130828

      基金項目:國家自然科學基金資助項目(51378503); 高速鐵路基礎研究聯(lián)合基金資助項目(U1334203)

      作者簡介:于向東(1970-),男,河南遂平人,中南大學副教授

      通訊聯(lián)系人,E-mail:xyd77@139.com

      摘 要:以黃韓侯鐵路上某156 m大跨度簡支鋼桁梁橋為背景,采用理想彈塑性道床阻力模型,建立了軌梁墩一體化空間有限元模型,對鋼桁梁橋上鋼軌伸縮力、撓曲力、制動力以及斷軌力分布規(guī)律進行了分析,探討了相鄰簡支梁支座布置、橋墩頂縱向剛度、小阻力扣件布置等設計參數(shù)對鋼軌縱向力的影響.研究表明:鋼軌伸縮力為主要控制性荷載;相鄰簡支梁宜采用與鋼桁梁相同方向的支座布置方式;隨墩頂剛度的增加,鋼桁梁橋上鋼軌伸縮力和撓曲力增大,制動力減??;在鋼桁梁橋上采用小阻力扣件即可以減小約36%的鋼軌伸縮力.

      關鍵詞:線路工程;鐵路橋梁;鋼梁橋;梁軌相互作用;鋼軌縱向力;設計參數(shù)

      中圖分類號:U213.912 文獻標識碼:A

      Trackbridge Interaction of Longspan Simply Supported Steel

      Truss Bridge in Mixed Passenger and Freight Railway

      

      YU Xiangdong, SHA Song, YAN Bin

      (College of Civil Engineering, Central South Univ, Changsha, Hunan 410075, China)

      Abstract:A beamrailpier 3D finite element model was built by adopting the mechanism of ideal elasticplastic ballast resistance under the background of a 156m longspan simply supported steel truss bridge on HuanglingHanchengHouma Railway line. The purpose was to study the distribution of longitudinal force due to temperature variations, bridge deflection, braking force and the breaking force of long rail in steel truss bridges. The influences of design parameters on longitudinal forces, such as the bearing arrangements of adjacent simply supported bridges, pier longitudinal stiffness and the arrangement of small resistance fasteners, were also discussed. It has been shown that the longitudinal force due to temperature variations plays a major role. Secondly, the bearing of adjacent simply supported bridge should be in the same direction as the steel truss bridge. Thirdly, the longitudinal force due to temperature variations and structural deflection increases and the braking force decreases as the pier longitudinal stiffness increases. Finally, the small resistance fasteners have a good effect on the longitudinal force due to temperature variations, which can reduce the force by 36% after being installed.

      Key words:railroad engineering;railroad bridges; steel truss bridges; trackbridge interaction; longitudinal force of rail; design parameters

      

      鐵路橋梁與軌道相互作用問題一方面影響軌道布置,另一方面影響橋跨布置和下部結構剛度[1],研究該課題具有重要意義.國內(nèi)外學者已對混凝土簡支梁橋、連續(xù)梁橋和斜拉橋的梁軌相互作用進行了廣泛研究[2-10],如卜一之提出了高速鐵路有砟線路與橋梁相互作用宜采用理想彈塑性阻力模型,并采用了非線性連桿模擬道砟層[5];徐慶元建立了能夠考慮單、雙線制動的三維實體單元有限元模型,探討了不同因素對混凝土簡支梁和連續(xù)梁橋線路縱向力傳遞的影響[6-7];閆斌采用帶剛臂的梁單元模擬斜拉橋主梁、非線性桿單元模擬線路阻力,分析了相鄰橋跨和鋼軌伸縮調(diào)節(jié)器對斜拉橋上無縫線路縱向力的影響[8-9];朱彬?qū)︿撓浠旌闲崩瓨驘o縫線路縱向力進行了分析,并討論了小阻力扣件和鋼軌伸縮調(diào)節(jié)器的布置方案[10].

      但對大跨度簡支鋼桁梁橋上無縫線路縱向力分布特點的相關研究較少,相鄰不等跨度橋梁對大跨度鋼桁梁橋上無縫線路縱向力的影響也不明確.簡支鋼桁梁橋具有跨度大、自重輕、受力明確、施工周期短等優(yōu)點,近年來使用日益廣泛.因此,有必要對大跨度簡支鋼桁梁橋與軌道相互作用進行研究.本文以黃韓侯鐵路線上某156 m簡支鋼桁梁橋為研究背景,建立了考慮軌道、相鄰橋跨、路基、墩臺的鋼桁梁橋與有砟軌道相互作用有限元模型,探討了大跨度鋼桁梁橋上無縫線路縱向力的分布規(guī)律,研究了相鄰簡支梁支座布置、橋墩頂縱向剛度、小阻力扣件布置方式等設計參數(shù)對于梁軌相互作用的影響.

      1 梁軌計算模型與參數(shù)

      本工程位于黃韓侯鐵路線(客貨共線鐵路)上,大橋孔跨布置為2×24 m簡支T梁+3×32 m簡支T梁+ (40+4×64+40)m混凝土連續(xù)梁+32 m簡支T梁+ 156 m鋼桁梁+24 m簡支T梁+32 m簡支T梁+24 m簡支T梁+32 m簡支T梁.其中鋼桁梁桁高17 m,桁寬8.6 m,縱梁設置2處斷開,橋上鋪設單線有砟軌道,軌道采用60 kg/m的鋼軌.

      本文在既有研究成果的基礎上,采用帶豎向剛臂的梁單元模擬橋梁,用非線性彈簧模擬梁軌之間縱向連接,建立的有限元模型如圖1所示.

      圖1有限元模型及橋跨布置(單位:m)

      Fig.1 Finite element model and arrangement of bridge spans (unit: m)

      

      橋墩頂縱向剛度取1 000 kN/cm,橋臺頂縱向剛度取1 500 kN/cm.為準確模擬邊界條件,在橋梁范圍外的路基上模擬(L+40 m)長度(L為橋孔平均長度)的鋼軌[11],此處取200 m.線路縱向阻力模型采用《鐵路無縫線路設計規(guī)范》[12]中的理想彈塑性模型,即認為梁軌相對縱向位移超過2 mm(0.5 mm)時,軌道將發(fā)生滑移.道床縱向阻力:

      r =11.6u (機車下),       u≤2 mm;   23.2 (機車下),       u>2 mm;   7.5 u (車輛下/無載),   u≤2 mm;   15.0 (車輛下/無載),   u>2 mm.   (1)

      小阻力扣件縱向阻力:

      r =24.8u (機車下),      u≤0.5 mm;  12.4 (機車下),       u>0.5 mm;  16.0 u (車輛下/無載),  u≤0.5 mm; 8.0 (車輛下/無載),   u>0.5 mm.  (2)

      式中:r為線路縱向阻力,(kN/m)/軌;u為梁軌縱向相對位移,mm.

      計算鋼軌伸縮力時,不考慮梁溫升降的交替變化,因此本文只計算鋼桁梁升溫25 ℃,混凝土梁升溫15 ℃的工況[12].

      計算鋼軌撓曲力時,采用中活載,分機車下和車輛下兩段等效均布加載于縱梁單元上(加載長度為200 m).簡支梁計算撓曲力時可簡化為在相鄰兩孔梁上布載,連續(xù)梁在固定支座至梁端的多跨梁上布載[12],針對本橋,將活載簡化為4種最不利方式進行加載(見圖2),計算時取4種工況下的包絡值.

      圖2 列車活載加載工況示意圖

      Fig.2 Train living load loading conditions

      計算鋼軌制動力時,輪軌黏著系數(shù)取0.164[12],等效均布加載于鋼軌單元上,加載位置同撓曲力,分為左側入橋和右側入橋2種情況計算[13].

      計算斷軌力時,最高軌溫為61 ℃,最低軌溫為-15 ℃,取鋼軌最大降溫45 ℃,在鋼軌受力較大的鋼桁梁右端(活動支座端)、連續(xù)梁左端、連續(xù)梁右端3處折斷[14].

      2 鋼桁梁橋上無縫線路縱向力

      橋上無縫線路縱向力包括伸縮力、撓曲力、制動力和斷軌力.

      2.1 鋼軌伸縮力

      將鋼桁梁整體升溫25 ℃,混凝土梁升溫15 ℃,計算鋼軌伸縮力,如圖3所示.

      由計算可知,鋼軌最大伸縮拉應力為47.0 MPa,出現(xiàn)在鋼桁梁橋跨中附近;壓應力最大值為73.7 MPa,出現(xiàn)在鋼桁梁右側活動支座端.鋼軌伸縮拉應力區(qū)段出現(xiàn)突變的原因是突變處縱梁設置了斷開,使得溫度作用下鋼軌的伸縮拉應力得到了一定程度的釋放.其余梁端處由于下部結構剛度改變,應力也出現(xiàn)不同程度的突變.另外由于相鄰連續(xù)梁溫度跨度較大,在連續(xù)梁兩邊跨端部產(chǎn)生了較大應力值.

      鋼桁梁右側活動支座端縱梁產(chǎn)生最大縱向位移36.4 mm;鋼軌的最大縱向位移為20.9 mm,位置在靠近鋼桁梁活動支座的節(jié)間內(nèi).另外縱梁和鋼軌的縱向位移在連續(xù)梁邊跨端均出現(xiàn)較大峰值.

      2.2 鋼軌撓曲力

      取圖2中4種最不利工況下鋼軌撓曲力,計算結果如圖4所示.

      坐標/m(a) 鋼軌伸縮應力圖

      坐標/m(b) 縱梁和鋼軌位移圖

      圖3 鋼軌伸縮力工況計算結果

      Fig.3 Calculation results of rail expansion stress

      坐標/m

      圖4 鋼軌撓曲應力包絡圖

      Fig.4The envelope diagram of bending rail stress

      

      由于應力得到了釋放,鋼軌撓曲拉應力在縱梁斷開處出現(xiàn)了兩處峰值,最大值為35.9 MPa;鋼桁梁活動支座端產(chǎn)生了最大壓應力,其值為25.6 MPa,僅為最大伸縮應力值的1/3.撓曲力峰值也出現(xiàn)在其他梁端處.

      2.3 鋼軌制動力

      制動力分為左側入橋和右側入橋(制動力大小相等、方向相反)進行計算,加載工況同撓曲力,計算結果如圖5所示.

      坐標/m

      圖5鋼軌制動應力包絡圖

      Fig.5 Envelope diagram of rail braking stress

      

      由圖5可以看出,鋼軌制動應力包絡值為上下對稱分布,在鋼桁梁左右兩端、連續(xù)梁兩邊跨末端,鋼軌制動應力均出現(xiàn)了峰值,最大值(鋼桁梁右端)為46.1 MPa,約為最大伸縮應力值的一半.在峰值兩側的位置處應力值降低較快.

      2.4 鋼軌斷軌力

      在鋼軌降溫45 ℃工況下,計算不同位置處折斷的鋼軌斷軌力和鋼軌位移(如圖6所示).

      坐標/m(a) 鋼軌斷軌應力圖

      坐標/m(b) 鋼軌斷軌位移圖

      圖6 鋼軌斷軌工況計算結果

      Fig.6 Calculation results of breaking stress

      在折斷處鋼軌應力均為0,并向兩側迅速增大.在遠離折斷處,鋼軌應力達到最大.鋼軌應力在其余梁端位置出現(xiàn)了不同程度的突變.

      對于本橋而言,在不同位置折斷時鋼軌位移的變化規(guī)律基本一致,雖然鋼軌在三處折斷處的位移值不同,但產(chǎn)生的斷縫寬度相差不大,斷縫寬度值分別為:48.7 mm(連續(xù)梁左端折斷)、50.0 mm(連續(xù)梁右端折斷)、50.8 mm(鋼桁梁右端折斷).

      3 設計參數(shù)分析

      影響大跨度鋼桁梁橋梁軌相互作用的主要參數(shù)包括相鄰簡支梁支座布置,橋墩頂縱向剛度,小阻力扣件的布置方式.

      3.1 相鄰簡支梁支座布置方式

      為比較相鄰橋跨(簡支梁)約束方式對鋼桁梁橋梁軌相互作用的影響,設置了如表1所示的4種支座布置形式進行分析.

      表1 相鄰簡支梁支座布置方案

      Tab.1 Bearing arrangement plans of adjacent

      simply supported bridges

      方案

      支座布置方式示意圖

      1

      2

      3

      4

      

      在4種支座布置方案下,計算鋼軌伸縮力與各橋墩水平力,結果見表2和圖7.

      對于本鋼桁梁橋而言,相鄰簡支梁支座布置方式對鋼軌伸縮力影響較小,其中方案1與方案4最大伸縮應力值相對其他方案偏小,且兩者比較接近.考慮到對于所受水平力最大的12號墩(鋼桁梁制動墩),方案1的橋墩水平力值較方案4減少了12%,是由于此跨簡支梁固定支座布置在11號墩上,分擔了水平受力.故本橋選用方案1的簡支梁支座布置方式.

      表2 不同支座布置方案下鋼軌伸縮應力

      Tab.2 Rail expansion stress with different bearing

      arrangement plans MPa 

      支座布置方案

      方案1

      方案2

      方案3

      方案4

      鋼軌最大拉應力

      47.0

      46.9

      46.1

      47.8

      鋼軌最大壓應力

      73.7

      77.8

      79.5

      72.0

      圖7 支座布置方案對橋墩水平力的影響

      Fig.7 Impact of bearing arrangement plans

      on pier horizontal force

      

      3.2 橋墩頂縱向剛度

      本文采用以下幾種不同的橋墩頂縱向剛度值:K=500 kN/cm, 1 000 kN/cm, 2 000 kN/cm, 5 000 kN/cm, 10 000 kN/cm,來探討其對鋼軌縱向力的影響規(guī)律.

      通過計算鋼軌伸縮力(圖8)可以看出,當墩頂縱向剛度值增大時,鋼桁梁左側固定支座端到跨中的節(jié)間,以及鋼桁梁右側活動支座端(壓應力最大值處)的鋼軌應力增大趨勢顯著.鋼軌縱向力最大值匯總于表3,由表3知,隨著墩頂縱向剛度的增加,鋼軌伸縮應力和撓曲應力的最值有增大趨勢,制動應力的最值有減小趨勢.

      坐標/m

      圖8 墩頂縱向剛度對鋼軌伸縮應力的影響

      Fig.8Impact of pier longitudinal stiffness 

      on rail expansion stress

      

      表3 鋼桁梁上無縫線路縱向力最大值

      Tab.3 Maximum longitudinal stress of CWR

      in steel truss bridgesMPa 

      墩頂剛度

      /(kN?cm-1)

      伸縮應力

      撓曲應力

      制動應力

      500

      47.4

      66.7

      28.6

      15.1

      43.0

      43.0

      1 000

      47.0

      73.7

      28.7

      20.5

      36.9

      36.9

      2 000

      46.8

      79.8

      29.0

      27.9

      31.2

      31.2

      5 000

      46.8

      85.0

      29.4

      36.7

      24.8

      24.8

      10 000

      46.7

      87.3

      29.7

      41.1

      21.4

      21.4

      3.3 小阻力扣件布置方式

      小阻力扣件可以改善鋼軌縱向力分布,減小應力幅值,本文考慮以下4種布置方案:

      方案1:僅在鋼桁梁橋上布置小阻力扣件;

      方案2:在鋼桁梁橋上和兩端相鄰1跨簡支梁上布置小阻力扣件;

      方案3:在鋼桁梁橋上和兩端相鄰2跨簡支梁上(以及連續(xù)梁兩端的邊跨上)布置小阻力扣件;

      方案4:在鋼桁梁橋上和兩端相鄰3跨簡支梁上(以及連續(xù)梁兩端的邊跨上)布置小阻力扣件.

      由鋼軌伸縮力計算圖(圖9)看出,在鋼桁梁上布置小阻力扣件后鋼軌最大伸縮壓應力(鋼桁梁活動支座端)與拉應力(鋼桁梁跨中附近)均顯著減小,大大降低了應力的峰值.與一般扣件方案相比,方案1的鋼軌最大伸縮拉、壓應力降幅明顯,分別為36.0%和33.5%.方案4相對于方案1的應力降幅僅為9.4%.由此得出,在相鄰橋跨上布置小阻力扣件對鋼桁梁上鋼軌應力影響不大.另外由方案3和方案4看出,連續(xù)梁的應力峰值顯著降低,因此在相鄰連續(xù)梁邊跨段應布置小阻力扣件.

      坐標/m

      圖9小阻力扣件布置方案對鋼軌伸縮應力的影響

      Fig.9 Impact of small resistance fasteners

      plans on rail expansion stress

      

      4 結 語

      由于溫度跨度大(鋼桁梁承受的日溫差也較大),本156 m簡支鋼桁梁橋的最大伸縮應力可達73.7 MPa,成為主要控制性荷載.由于其豎向剛度相對較小,其上無縫線路也承受了較大的撓曲力和制動力,分別為35.9 MPa和46.1 MPa,在檢算鋼軌強度和穩(wěn)定性時應予以考慮.各鋼軌縱向力均在梁端下部結構剛度發(fā)生突變處取得峰值.

      相鄰簡支梁與鋼桁梁宜采用相同方向的支座布置方式,可減小鋼桁梁上鋼軌伸縮力和鋼桁梁制動墩所受的水平力,并使其他墩所受水平力分布更為均衡.

      橋墩頂縱向剛度對鋼軌縱向力有較大影響,隨著墩頂縱向剛度的增加,鋼桁梁上鋼軌的伸縮力和撓曲力增大,制動力減小.

      在鋼桁梁范圍內(nèi)布置小阻力扣件可減小鋼軌伸縮力36%.

      參考文獻

      [1] 廣鐘巖,高慧安. 鐵路無縫線路 [M]. 北京:中國鐵道出版社,2005: 2-35.

      GUANG Zhongyan, GAO Huian. Railway CWR [M]. Beijing: China Railway Publishing House, 2005: 2-35. (In Chinese)

      [2] SONG M K, NOH H C, CHOI C K. A new threedimensional finite element analysis model of highspeed trainbridge interactions [J]. Engineering Structures, 2003, 25(13): 1611-1626.

      [3] RUGE P, BIRK C. Longitudinal forces in continuously welded rails on bridge decks due to nonlinear trackbridge interaction [J]. Computers & Structures, 2007, 85(7/8): 458-475.

      [4] READ D, LOPRESTI J. Management of rail neutral temperature and longitudinal rail forces [J]. Railway Track and Structure, 2005, 101(8): 18-19.

      [5] 卜一之. 高速鐵路橋梁縱向力傳遞機理研究[D]. 成都:西南交通大學土木工程學院,1998: 8-10.

      BU Yizhi. Research on the transmission mechanism of longitudinal force for highspeed railway bridges [D]. Chengdu: College of Civil Engineering, Southwest Jiaotong University, 1998:8-10. (In Chinese)

      [6] 徐慶元. 高速鐵路橋上無縫線路縱向附加力三維有限元靜力與動力分析研究 [D]. 長沙:中南大學土木工程學院,2005:19-20.

      XU Qingyuan. Static and dynamic 3D finite element analysis of additional longitudinal forces transmission between CWR and highspeed railway bridges [D].Changsha: College of Civil Engineering, Central South University, 2005:19-20. (In Chinese)

      [7] 徐慶元,陳秀方. 連續(xù)梁橋上無縫線路附加力研究 [J]. 中國鐵道科學,2003, 24(3): 58-62.

      XU Qingyuan, CHEN Xiufang. Study on additional longitudinal forces transmission between continuously welded rails and continuous beam bridge [J]. China Railway Science, 2003, 24(3): 58-62. (In Chinese)

      [8] YAN Bin, DAI Gonglian. Seismic pounding and protection measures of simplysupported beams considering interaction between continuously welded rail and bridge [J]. Structural Engineering International, 2013, 23(1):61-67. 

      [9] 閆斌,戴公連. 高速鐵路斜拉橋上無縫線路縱向力研究 [J]. 鐵道學報,2012, 34(3):83-87.

      YAN Bin, DAI Gonglian. CWR longitudinal force of cablestayed bridge on highspeed railway [J]. Journal of the China Railway Society, 2012,34(3): 83-87. (In Chinese)

      [10]朱彬. 大跨度鋼箱混合梁斜拉橋無縫線路設計研究[J]. 鐵道標準設計,2012 (2): 4-6.

      ZHU Bin. Design of continuous welded rail upon long span cablestayed bridge with steelconcrete composite box beam [J]. Railway Standard Design, 2012(2):4-6.

      (In Chinese)

      [11]DS899/59 Special procedures on railway Shinkansen bridge [S]. Berlin:Bridge Research Institute of Railway Bridge Authority, 1991.

      [12]TB 10015—2012 鐵路無縫線路設計規(guī)范[S]. 北京: 中國鐵道出版社, 2013: 8-17.

      TB 10015—2012 Code for design of railway continuously welded rail [S]. Beijing: China Railway Publishing House, 2013: 8-17.(In Chinese)

      [13]趙衛(wèi)華,王平,曹陽. 大跨度鋼桁梁橋上無縫線路制動力的計算[J]. 西南交通大學學報,2012,47(3): 361-366.

      ZHAO Weihua, WANG Ping, CAO Yang. Calculation of braking force of continuous welded rail on largespan steel truss cablestayed bridge [J]. Journal of Southwest Jiaotong University, 2012,47(3):361-366. (In Chinese)

      [14]戴公連,閆斌. 高速鐵路斜拉橋與無縫線路相互作用研究[J]. 土木工程學報,2013, 46(8): 90-97.

      DAI Gonglian, YAN Bin. Interaction between cablestayed bridge traveled by highspeed trains and continuously welded rail [J]. China Civil Engineering Journal, 2013, 46(8): 90-97. (In Chinese)

      [7] 徐慶元,陳秀方. 連續(xù)梁橋上無縫線路附加力研究 [J]. 中國鐵道科學,2003, 24(3): 58-62.

      XU Qingyuan, CHEN Xiufang. Study on additional longitudinal forces transmission between continuously welded rails and continuous beam bridge [J]. China Railway Science, 2003, 24(3): 58-62. (In Chinese)

      [8] YAN Bin, DAI Gonglian. Seismic pounding and protection measures of simplysupported beams considering interaction between continuously welded rail and bridge [J]. Structural Engineering International, 2013, 23(1):61-67. 

      [9] 閆斌,戴公連. 高速鐵路斜拉橋上無縫線路縱向力研究 [J]. 鐵道學報,2012, 34(3):83-87.

      YAN Bin, DAI Gonglian. CWR longitudinal force of cablestayed bridge on highspeed railway [J]. Journal of the China Railway Society, 2012,34(3): 83-87. (In Chinese)

      [10]朱彬. 大跨度鋼箱混合梁斜拉橋無縫線路設計研究[J]. 鐵道標準設計,2012 (2): 4-6.

      ZHU Bin. Design of continuous welded rail upon long span cablestayed bridge with steelconcrete composite box beam [J]. Railway Standard Design, 2012(2):4-6.

      (In Chinese)

      [11]DS899/59 Special procedures on railway Shinkansen bridge [S]. Berlin:Bridge Research Institute of Railway Bridge Authority, 1991.

      [12]TB 10015—2012 鐵路無縫線路設計規(guī)范[S]. 北京: 中國鐵道出版社, 2013: 8-17.

      TB 10015—2012 Code for design of railway continuously welded rail [S]. Beijing: China Railway Publishing House, 2013: 8-17.(In Chinese)

      [13]趙衛(wèi)華,王平,曹陽. 大跨度鋼桁梁橋上無縫線路制動力的計算[J]. 西南交通大學學報,2012,47(3): 361-366.

      ZHAO Weihua, WANG Ping, CAO Yang. Calculation of braking force of continuous welded rail on largespan steel truss cablestayed bridge [J]. Journal of Southwest Jiaotong University, 2012,47(3):361-366. (In Chinese)

      [14]戴公連,閆斌. 高速鐵路斜拉橋與無縫線路相互作用研究[J]. 土木工程學報,2013, 46(8): 90-97.

      DAI Gonglian, YAN Bin. Interaction between cablestayed bridge traveled by highspeed trains and continuously welded rail [J]. China Civil Engineering Journal, 2013, 46(8): 90-97. (In Chinese)

      [7] 徐慶元,陳秀方. 連續(xù)梁橋上無縫線路附加力研究 [J]. 中國鐵道科學,2003, 24(3): 58-62.

      XU Qingyuan, CHEN Xiufang. Study on additional longitudinal forces transmission between continuously welded rails and continuous beam bridge [J]. China Railway Science, 2003, 24(3): 58-62. (In Chinese)

      [8] YAN Bin, DAI Gonglian. Seismic pounding and protection measures of simplysupported beams considering interaction between continuously welded rail and bridge [J]. Structural Engineering International, 2013, 23(1):61-67. 

      [9] 閆斌,戴公連. 高速鐵路斜拉橋上無縫線路縱向力研究 [J]. 鐵道學報,2012, 34(3):83-87.

      YAN Bin, DAI Gonglian. CWR longitudinal force of cablestayed bridge on highspeed railway [J]. Journal of the China Railway Society, 2012,34(3): 83-87. (In Chinese)

      [10]朱彬. 大跨度鋼箱混合梁斜拉橋無縫線路設計研究[J]. 鐵道標準設計,2012 (2): 4-6.

      ZHU Bin. Design of continuous welded rail upon long span cablestayed bridge with steelconcrete composite box beam [J]. Railway Standard Design, 2012(2):4-6.

      (In Chinese)

      [11]DS899/59 Special procedures on railway Shinkansen bridge [S]. Berlin:Bridge Research Institute of Railway Bridge Authority, 1991.

      [12]TB 10015—2012 鐵路無縫線路設計規(guī)范[S]. 北京: 中國鐵道出版社, 2013: 8-17.

      TB 10015—2012 Code for design of railway continuously welded rail [S]. Beijing: China Railway Publishing House, 2013: 8-17.(In Chinese)

      [13]趙衛(wèi)華,王平,曹陽. 大跨度鋼桁梁橋上無縫線路制動力的計算[J]. 西南交通大學學報,2012,47(3): 361-366.

      ZHAO Weihua, WANG Ping, CAO Yang. Calculation of braking force of continuous welded rail on largespan steel truss cablestayed bridge [J]. Journal of Southwest Jiaotong University, 2012,47(3):361-366. (In Chinese)

      [14]戴公連,閆斌. 高速鐵路斜拉橋與無縫線路相互作用研究[J]. 土木工程學報,2013, 46(8): 90-97.

      DAI Gonglian, YAN Bin. Interaction between cablestayed bridge traveled by highspeed trains and continuously welded rail [J]. China Civil Engineering Journal, 2013, 46(8): 90-97. (In Chinese)

      猜你喜歡
      鐵路橋梁
      降低大斷面河道開挖工程對高速鐵路橋梁影響措施研究
      沿海地區(qū)高速鐵路橋梁 CRTS I 型雙塊式無砟軌道施工控制技術研究
      地鐵隧道下穿鐵路橋梁施工技術芻議
      鐵路橋梁混凝土施工質(zhì)量控制要點分析
      鐵路橋梁施工中混凝土施工質(zhì)量控制
      關于鐵路橋梁狀態(tài)診斷實驗技術的探討
      掛藍施工有限元模型驗算分析
      混凝土80h終張拉配合比設計與注意事項
      多線鐵路拱加勁連續(xù)梁橋上無縫線路梁格模型
      武平县| 七台河市| 揭西县| 息烽县| 运城市| 金昌市| 佳木斯市| 吴桥县| 德格县| 钟祥市| 婺源县| 徐闻县| 虞城县| 弥勒县| 安新县| 增城市| 襄城县| 报价| 上高县| 阳江市| 榆中县| 高陵县| 安宁市| 阿图什市| 宜君县| 友谊县| 湘乡市| 和平区| 子洲县| 曲靖市| 定襄县| 留坝县| 金溪县| 新晃| 原平市| 雷山县| 股票| 宝清县| 嘉善县| 德昌县| 安康市|