王 程,茍文隆,徐小龍,袁雪凌,彭 江,盧世璧
解放軍總醫(yī)院 骨科,北京 100853
人股骨頭壞死標本不同區(qū)域骨小梁的顯微結(jié)構(gòu)特征及病理學表現(xiàn)
王 程,茍文隆,徐小龍,袁雪凌,彭 江,盧世璧
解放軍總醫(yī)院 骨科,北京 100853
目的對股骨頭壞死標本不同區(qū)域的骨小梁進行量化分析。方法 收集我院2011 - 2013年非創(chuàng)傷性股骨頭壞死病人行全髖關節(jié)置換術后的股骨頭標本10個以及病人病歷和臨床影像學資料(男性6例,女性4例)。對標本進行顯微CT斷層掃描,根據(jù)圖像結(jié)果將標本分為健康區(qū)、硬化區(qū)和壞死區(qū),分別進行骨計量學分析。分析指標有骨礦密度(bone mineral density,BMD)、骨礦容量(bone mineral content,BMC)、骨表面積與骨骼體積比(bone surface to bone volume ratio,BS/BV);體積分數(shù)(bone volume fraction,BVF)、結(jié)構(gòu)模型指數(shù)(structure model index,SMI)、骨小梁數(shù)目(trabecular plate number,Tb.N)、骨小梁厚度(trabecular plate thickness,Tb.Th)、骨小梁間隙(trabecular spacing,Tb.Sp)。掃描后將標本作病理學處理。結(jié)果晚期股骨頭壞死區(qū)和硬化區(qū)的骨小梁空間結(jié)構(gòu)明顯改變。與健康區(qū)相比,硬化區(qū)骨小梁明顯增厚,BVF顯著增加,兩組間BMD、Tb.Th、BMC、BS/BV差異有統(tǒng)計學意義(P<0.05),而Tb.Sp差異無統(tǒng)計學意義(P>0.05);與健康區(qū)相比,壞死區(qū)的BMD、BMC、BVF、Tb.N明顯減少,Tb.Sp較硬化區(qū)顯著增寬,兩組差異有統(tǒng)計學意義(P<0.05),而Tb.Th、BS/BV差異無統(tǒng)計學意義(P>0.05)。結(jié)論晚期股骨頭壞死標本壞死區(qū)的骨小梁連續(xù)性破壞,結(jié)構(gòu)散亂;硬化區(qū)的骨小梁結(jié)構(gòu)增厚,數(shù)目增多,間隙變窄;正常區(qū)域骨小梁結(jié)構(gòu)完整,厚度分布均勻。
骨壞死;股骨頭;顯微CT
股骨頭壞死(osteonecrosis of the femoral head,ONFH)是骨科常見的一種難治性疾病,好發(fā)于中青年,而且自然進展快,致殘率高[1]。目前其病理機制不甚明了,一些學者認為股骨頭壞死是由于股骨頭血運受阻,導致股骨頭內(nèi)骨細胞壞死,修復模式啟動之后,股骨頭力學強度減低,最終導致股骨頭空間結(jié)構(gòu)改變,塌陷。但是股骨頭力學強度減低的程度與股骨頭修復的范圍和修復能力大小之間的關系尚不明確,因此有必要研究股骨頭內(nèi)部骨小梁的結(jié)構(gòu)改變和股骨頭塌陷的方式。本研究通過Micro-CT重現(xiàn)塌陷股骨頭骨小梁的三維空間結(jié)構(gòu),探討股骨頭壞死塌陷的可能方式。
1 標本及資料 收集我院2011 - 2013年非創(chuàng)傷性股骨頭骨壞死病人行全髖關節(jié)置換術后的股骨頭標本10個(男6例,女4例,F(xiàn)icatⅣ期)以及病人病歷和臨床影像學資料。
2 儀器設備 Micro-CT(Locus SP GE公司美國),硬組織切片機(IsoMet? 5000 BUEHLER公司美國),包埋機 (Cast n’ Vac 1000 BUEHLER 公司美國 ),磨片機(MetaServ? BUEHLER公司美國)
3 Micro-CT掃描 將10個股骨頭標本分別置于Micro-CT系統(tǒng)中進行掃描,掃描分辨率為45 μm×45 μm×45 μm,單次掃描時間為14 min。確定壞死區(qū)、硬化區(qū)、健康區(qū)的位置并且在每個區(qū)域分別選取3個長方體信息區(qū)進行重建(0.5 cm×0.5 cm×1 cm)。
4 不同區(qū)域骨微結(jié)構(gòu)及礦物含量評價 采用Micro-CT自帶軟件GE Microview進行圖像處理,對股骨頭壞死不同區(qū)域進行三維重建以及骨計量學分析;計算以下骨礦物質(zhì)參數(shù):骨礦密度(bone mineral density,BMD),骨礦容量(bone mineral content,BMC),骨表面積與骨骼體積比(bone surface to bone volume ratio,BS/BV),體積分數(shù)(bone volume fraction,BVF),骨礦化含量(bone mineral content,BMC),結(jié)構(gòu)模型指數(shù) (structure model index,SMI),骨小梁數(shù)目 (trabecular plate number,Tb.N),骨小梁厚度(trabecular plate thickness,Tb.Th),骨小梁間隙(trabecular spacing,Tb.Sp)。
5 病理學觀察 標本掃描之后,經(jīng)75%、85%、95%、100%的酒精逐級脫水,二甲苯透明,樹脂包埋切片,HE以及Masson染色后觀察。
6 統(tǒng)計學分析 使用SPSS17.0統(tǒng)計軟件,所有數(shù)據(jù)均以的形式表示。組間數(shù)據(jù)比較采用單因素方差分析,P<0.05為差異有統(tǒng)計學意義。
1 Micro-CT圖像特征 股骨頭壞死標本的三個區(qū)域(壞死區(qū)、硬化區(qū)和健康區(qū))的骨小梁排列特征明顯不同,壞死區(qū)的骨小梁斷裂破碎,連續(xù)性破壞,結(jié)構(gòu)較為散亂;硬化區(qū)的骨小梁結(jié)構(gòu)增厚,數(shù)目增多,間隙變窄;正常區(qū)域骨小梁結(jié)構(gòu)正常,厚度分布均勻。見圖1。
2 骨計量學 不同區(qū)域骨小梁的計量學參數(shù)明顯不同。與健康區(qū)域相比,硬化區(qū)骨小梁明顯增厚,BVF增加200%,小梁厚度和數(shù)目明顯增加,兩組間差異有統(tǒng)計學意義(P<0.05),而Tb.Sp兩組之間差異無統(tǒng)計學意義(P>0.05);與健康區(qū)相比,壞死區(qū)的BMD、BMC、BVF、Tb.N明顯減少,Tb.Sp顯著增寬,兩組間差異有統(tǒng)計學意義(P<0.05),Tb.Th、BS/BV差異無統(tǒng)計學意義(P>0.05)。見表1。
表1 股骨頭骨壞死樣本不同區(qū)域骨計量學分析Tab. 1 Histomorphometry for necrosis of the femoral head in different regions (, n=10)
表1 股骨頭骨壞死樣本不同區(qū)域骨計量學分析Tab. 1 Histomorphometry for necrosis of the femoral head in different regions (, n=10)
aP<0.05, bP<0.05, vs healthy region
Collapses region Sclerosis region Healthy region BMD(mg/cm3) 60.54±16.51b 265.63±38.12a102.720±25.28 BVF(%) 16.15±4.82b 53.76±5.61a 27.620±2.63 Tb.Th(μm) 111.57±12.85 293.34±31.41a144.970±39.72 Tb.N(mm) 0.76±0.54b 2.93±0.31a 1.548±0.17 Tb.Sp(μm) 1 539.32±752.31b 319.35±43.38 402.860±57.78 SMI 2.84±0.09 0.84±1.16 1.680±0.31 BMC(mg) 3.16±0.49b 10.56±3.06a 5.180±1.47 BS/BV(%) 19.57±3.89 10.49±1.93a 18.350±2.55
Fig. 1 Micro-CT image showing two-dimensional reconstruction(A) in necrosed region (B), sclerotic region (C), and healthy region (D) of femoral head
3 病理表現(xiàn) 壞死區(qū)可見股骨頭明顯塌陷變形,軟骨下骨結(jié)構(gòu)基本消失,甚至有關節(jié)軟骨分離等改變。壞死灶呈暗紅色、不規(guī)則、與周圍組織分界清楚,骨小梁壞死,骨組織被其他性質(zhì)的病理組織取代。硬化區(qū)可見骨小梁增生,排列規(guī)則致密,硬化區(qū)有大量炎性細胞(淋巴細胞、單核細胞、肥大細胞、漿細胞)浸潤。并伴有多種組織增生,包括結(jié)締組織、新生血管等,形成一個顯微組織修復區(qū)。見圖2。
圖 2 股骨頭壞死標本,根據(jù)骨密度的不同分為壞死區(qū)(a),硬化區(qū)(b),健康區(qū)(c) A: HE染色; B: Masson染色Fig. 2 HE staining (A) and Masson staining (B) showing bone mineral density in necrosed region (a), sclerotic region (b)and healthy region (c) of femoral head
股骨頭壞死主要表現(xiàn)為骨結(jié)構(gòu)的連續(xù)性破壞和骨小梁的斷裂,其原因是因為載荷壓力持續(xù)作用,導致缺血區(qū)骨無法及時修復,而股骨頭具有承載載荷壓力的作用,是承載人體負荷的重要部位[2-5]。股骨頭的塌陷是骨小梁結(jié)構(gòu)連續(xù)性變化的結(jié)果,股骨頭壞死的生物應力不僅降低了骨礦物質(zhì)密度,而且改變了骨小梁的空間排列以及立體結(jié)構(gòu),導致力學強度喪失,最終塌陷[6-7]。導致股骨頭壞死的病因有很多,包括酒精、激素、創(chuàng)傷等,其發(fā)病機制還不太明確,大量研究表明成骨、破骨細胞的活性變化在其發(fā)生發(fā)展過程中起到關鍵的作用[8-10]。Micro-CT是一種非侵入性的檢測方式,能以非常高的分辨率對活體或者離體標本進行檢測,同時不破壞檢測對象的內(nèi)部結(jié)構(gòu),其在檢測股骨頭壞死標本時對骨小梁有很強的敏感性[11-12]。Feldkamp等[13]早在20世紀80年代就應用Micro-CT對骨小梁的微觀結(jié)構(gòu)進行了檢測評價,并報道了相關研究結(jié)果。Marinozzi等[14]也認為Micro-CT是精確測量離體股骨頭標本骨形態(tài)計量學的方法。本實驗經(jīng)研究發(fā)現(xiàn),與健康區(qū)比較,壞死區(qū)股骨頭骨小梁厚度及密度改變,骨小梁厚度不均,排列紊亂,多處的骨小梁骨折,股骨頭高度變低,股骨頭內(nèi)骨密度分布不均,顯示存在骨修復重建過程。大量研究表明,在骨壞死發(fā)生前期,修復反應也隨之啟動,成骨及破骨活動均增強,但后者更為活躍,由于壞死骨的吸收作用,使骨小梁的三維支撐結(jié)構(gòu)破壞。新生的骨小梁排列紊亂,其力學支撐作用較差,在正常應力情況下就會出現(xiàn)微骨折,最終導致股骨頭塌陷[15-18]。在骨計量學方面,股骨頭壞死區(qū)骨小梁的BMD、BMC、BVF、Tb.N均降低,骨量顯著降低。硬化區(qū)骨小梁BVF明顯增加,Tb.Sp變窄,骨小梁增厚,結(jié)構(gòu)發(fā)生顯著變化。理想的桿狀骨小梁和板狀骨小梁的SMI數(shù)值分別為3和0,而本實驗中壞死區(qū)與健康區(qū)骨小梁的SMI分別為2.84和1.68,可以看出在發(fā)生骨壞死時,SMI數(shù)值增加,骨小梁從板狀向桿狀的狀態(tài)轉(zhuǎn)變,硬化區(qū)骨小梁SMI出現(xiàn)負值,表示骨體積分數(shù)過大,骨小梁數(shù)目增多。另外,本實驗僅從不同區(qū)域骨小梁的結(jié)構(gòu)與骨密度改變推測股骨頭的力學狀態(tài)改變,下一步我們將結(jié)合生物力學測試檢驗我們的觀點,通過分析骨小梁微觀結(jié)構(gòu)和應力分布的關系,探索股骨頭壞死塌陷機制,為股骨頭壞死的治療及康復提供新的指導思想和研究方向。
1 Gagala J, Buraczynska M, Mazurkiewicz T, et al. Prevalence of genetic risk factors related with thrombophilia and hypofibrinolysis in patients with osteonecrosis of the femoral head in Poland[J]. BMC Musculoskelet Disord, 2013, 14 : 264.
2 Séguin C, Kassis J, Busque L, et al. Non-traumatic necrosis of bone (osteonecrosis) is associated with endothelial cell activation but not thrombophilia[J]. Rheumatology, 2008, 47(8): 1151-1155.
3 Kaushik AP, Das A, Cui Q. Osteonecrosis of the femoral head : An update in year 2012[J]. World J Orthop, 2012, 3(5): 49-57.
4 Amanatullah DF, Strauss EJ, Di Cesare PE. Current management options for osteonecrosis of the femoral head : part 1, diagnosis and nonoperative management[J]. Am J Orthop (Belle Mead NJ),2011, 40(9): E186-E192.
5 Amanatullah DF, Strauss EJ, Di Cesare PE. Current management options for osteonecrosis of the femoral head : part II, operative management[J]. Am J Orthop (Belle Mead NJ), 2011, 40(10):E216-E225.
6 Sakai T, Sugano N, Nishii T, et al. Extent of osteonecrosis on MRI predicts humeral head collapse[J]. Clin Orthop Relat Res, 2008,466(5): 1074-1080.
7 Schmitt-Sody M, Kirchhoff C, Mayer W, et al. Avascular necrosis of the femoral head: inter- and intraobserver variations of Ficat and ARCO classifications[J]. Int Orthop, 2008, 32(3): 283-287.
8 Fan M, Jiang WX, Wang AY, et al. Effect and mechanism of zoledronate on prevention of collapse in osteonecrosis of the femoral head[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2012, 34(4):330-336.
9 Tortelli F, Pujic N, Liu Y, et al. Osteoblast and osteoclast differentiation in an in vitro three-dimensional model of bone[J].Tissue Eng Part A, 2009, 15(9): 2373-2383.
10 Shabtai L, Drexler M, Blummberg N. Biphosphonate in the treatment of avascular necrosis of the femoral head[J]. Harefuah, 2012, 151(4):242-245.
11 Hambli R. Micro-CT finite element model and experimental validation of trabecular bone damage and fracture[J]. Bone, 2013, 56(2):363-374.
12 Hsu JT, Wang SP, Huang HL, et al. The assessment of trabecular bone parameters and cortical bone strength: a comparison of micro-CT and dental cone-beam CT[J]. J Biomech, 2013, 46(15):2611-2618.
13 Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography[J]. J Bone Miner Res, 1989, 4(1): 3-11.
14 Marinozzi F, Bini F, Marinozzi A, et al. Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms [J] . Ann Ist Super Sanita, 2013, 49(3): 300-305.
15 Qin L, Zhang G, Sheng H, et al. Multiple bioimaging modalities in evaluation of an experimental osteonecrosis induced by a combination of lipopolysaccharide and methylprednisolone[J]. Bone, 2006, 39(4): 863-871.
16 Zhang G, Sheng H, He YX, et al. Continuous occurrence of both insufficient neovascularization and elevated vascular permeability in rabbit proximal femur during inadequate repair of steroid-associated osteonecrotic lesions[J]. Arthritis Rheum, 2009, 60(10):2966-2977.
17 Hasan SS, Romeo AA. Nontraumatic osteonecrosis of the humeral head[J]. J Shoulder Elbow Surg, 2002, 11(3): 281-298.
18 Ha YC, Kim HJ, Kim SY, et al. Effects of age and body mass index on the results of transtrochanteric rotational osteotomy for femoral head osteonecrosis: surgical technique[J]. J Bone Joint Surg Am,2011, 93(Suppl 1): 75-84.
Microstructure features and pathology of trabecula in different regions of femoral head necrosis
WANG Cheng, GOU Wen-long, XU Xiao-long, YUAN Xue-ling, PENG Jiang, LU Shi-bi
Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
Corresponding author: PENG Jiang. Email: pengjiang301@126.com
ObjectiveTo analyze the microstructure of trabecula in different regions of femoral head necrosis.MethodsClinical and imaging data about 10 patients (6 males and 4 females) with non-traumatic femoral head necrosis who underwent total hip arthroplasty in our hospital from 2011 to 2013 were retrospectively analyzed. Samples were taken from the healthy, sclerotic and necrosed regions of the patients. The following parameters were analyzed, including the bone mineral density (BMD), bone mineral content (BMC), bone surface/ bone volume (BS/BV) ratio, bone volume fraction(BVF), structure model index (SMI), number of trabecular plates, thickness of trabecular plate, and trabecular space. Results The spatial structure of trabecula was signi fi cantly changed in necrosed and sclerotic regions of femoral head. The trabecula was signi fi cantly thicker and the BVF was signi fi cantly higher in necrosed region than in healthy region (P<0.05). No significant difference was found in the BMD, the number of trabecular plates, the thickness of trabecular plate, and the BS/BV ratio between the two groups (P>0.05). The BMD and BMC,the BVF, and the thickness of trabecular plate were signi fi cantly lower while the trabecular space was signi fi cantly wider in necrosed region than in healthy region (P<0.05). No signi fi cant difference was found in the thickness of trabecular plate and the BS/BV ratio between the two groups (P>0.05).ConclusionThe spatial structure and pathological features of trabecula are different in different necrosis regions of femoral head. The continuity of trabecula in necrosed region is disrupted, with its structure disarranged and thickened, the number of trabecular plates increased, and the trabecular space narrowed. However, the structure of trabecula is intact and its thickness is even in the healthy region.
osteonecrosis; femur head; Micro-CT
R 681.22
A
2095-5227(2014)05-0463-04
10.3969/j.issn.2095-5227.2014.05.018
時間:2014-03-07 11:05
http://www.cnki.net/kcms/detail/11.3275.R.20140307.1105.002.html
2013-11-04
國家自然科學基金項目(30930092);國家“863”計劃項目(2012AA020502)
Supported by the National Natural Science Foundation of China(30930092);"863" Program of China(2012AA020502)
王程,男,在讀碩士。研究方向:骨壞死。Email: wang chengchina301@163.com
彭江,男,副主任醫(yī)師,教授,碩士生導師。Email: pe ngjiang301@126.com