• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Substituents on the Optical Properties of 3(5)-(9-Anthryl)Pyrazole

    2014-10-14 03:45:12WANGKunPengWANGChangSheng
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:激發(fā)態(tài)吡唑國家自然科學(xué)基金

    WANG Kun-Peng WANG Chang-Sheng

    (School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Effect of Substituents on the Optical Properties of 3(5)-(9-Anthryl)Pyrazole

    WANG Kun-Peng WANG Chang-Sheng*

    (School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Abstract: The ground state(S0)structures of 3(5)-(9-anthryl)pyrazole and its derivatives were obtained using the density functional theory(DFT)B3LYP/6-31G(d)method.The first singlet excited state(S1)structures were optimized using the singlet-excitation configuration interaction(CIS)/6-31G(d)method.The absorption and emission spectra were then evaluated using the time-dependent density functional theory(TD-DFT)B3LYP method with the 6-311++G(d,p)basis set.Our calculation results reveal that for all the derivatives(electron-withdrawing groups or electron-donating groups)the calculated absorption and fluorescence emission wavelength values all show red shifts compared with the parent 3(5)-(9-anthryl)pyrazole.We also find that compared with the parent 3(5)-(9-anthryl)pyrazole,the derivatives with―R=―BH2,―CCl3,―CHO,―NH2are good candidates for longer absorption wavelength materials and for longer fluorescence emission wavelength materials.

    Key Words:Absorption spectrum;Fluorescence emission spectrum;3(5)-(9-Anthryl)pyrazole;Excited state

    1 Introduction

    The design and synthesis of organic optical materials have attracted intensive attention because of their potential applications in organic light-emitting diodes(OLEDs).Much effort has been made on the multicolor patterning of organic luminescent molecules with ordered micro-and nano-scopic features as a result of their applications in full-color display and other related areas.1-19Mizukamiet al.1found that a helical 3,3′-di-tert-butylsalen-zinc(II)complex,[Zn2],has a red-shifted fluorescence as compared to that of[Zn],a half-structured mononuclear complex of[Zn2].Baderet al.2reported the syntheses and electrochemical properties of four oligothiophene derivativeswith the tricyanovinyl group and suggested that these materials might be suitable for n-type,and possibly for ambipolar,transport.Yamaguchi et al.3designed and synthesized a series of B,B′,B″-trianthryl-N,N′,N″-triarylborazine derivatives bearing various p-substituted phenyl groups and observed significant bundle effects in the photophysical and electrochemical properties of these compounds.Murata et al.4reported efficient molecular organic light-emitting diodes composed of novel silols derivatives as an electron transporting layer and an emissive layer.Tang et al.5prepared a series of 2,3,4,5-tetraphenylsiloles with different 1,1-substituents and observed that with an increase in the electronegativity of 1,1-substituents of the silols,the absorption and emission wavelengths of the silols bathochromically shifted.Sapochak et al.6carried out theoretical and experimental investigations on the molecular and electronic structure of the 8-hydroxyquinoline chelate of zinc(II)and related the results to OLED performance.Brinkmann et al.7investigated the structures and the correlation between intermolecular interactions and optical properties in various metaloquinolate tris(8-hydroxyquinoline)aluminum(Alq3)systems,including solution,amorphous thin films,and different crystalline forms,and showed that the length of interligand contacts between neighboring Alq3molecules as well as the molecular density of the packing plays an important role in influencing the spectral position of fluorescence.The molecular orbital study of the first excited state of the OLED material Alq3was carried out by Schlegel et al.8Based on the structure of the excited state,they predicted an emission wavelength of 538 nm,which is comparable to 514 nm observed experimentally for solution phase photoluminescence.Geng et al.9investigated the electronic structure and transport properties of a p-stacking molecular chain using the first-principles density functional theory approach combined with Green′s function method.Su et al.10carried out a DFT/TD-DFT study on the electronic structures and optoelectronic properties of several blue-emitting iridium(III)complexes and found that the properties of the ligands had great influence on the photophysical properties,such as energy gap,absorption spectra,emission spectra,etc.Zhang et al.11investigated the optical properties of the phosphorescent trinuclear copper(I)complexes of pyrazolates theoretically and found that the short intermolecular Cu…Cu distance played an important role in the emission spectra of the verticaland tilting-movement dimers.An theoretical study on symmetric and asymmetric spirosilabifluorene derivatives was also carried out and an excellent agreement with the experiment data on their optical properties was obtained.12Wang et al.13-14reported the emission properties of the polymorphs and pseudopolymorphs of N,N-di(n-butyl)quinacridone and N,N-di(n-cetyl)quinacridone and found that the crystal phases with stronger π-π interactions showed the emission maximum at a longer wavelength region while that with relatively weaker π-π interactions exhibited an emission maximum at a shorter wavelength region.Although considerable progress has been made in organic luminescent materials with different structures,it is still essential to achieve a molecular-level understanding of the relationship between the electronic structures and the resulting optical properties.

    The organic molecule 3(5)-(9-anthryl)pyrazole has been used as building blocks to construct different luminescent single crystal.20-22In order to understand the optical properties of 3(5)-(9-anthryl)pyrazole,we here reported our research on the geometrical structure,the gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO),and the absorption/emission spectra of 3(5)-(9-anthryl)pyrazole at the ground and excited states with the DFT and CIS methods.We displayed the relationship between the optical properties and electronic structures of the frontier molecular orbitals(FMOs),explored the influence of the substitutions on the absorption and emission wavelengths.We hope that the result obtained would be helpful for understanding connection between the fluorescence characters and electronic structures and helpful for the find of new fluorescence materials.

    2 Calculation methods

    ANP possesses two possible structures ANP-1 and ANP-2(Fig.1).The ground state S0structures of ANP-1 and ANP-2 were obtained by using the density functional theory23B3LYP/6-31G(d)method.B3LYP/6-311++G(d,p)//B3LYP/6-31G(d)calculation showed that ANP-1 was a little more stable than ANP-2.The singlet excited state S1structures of ANP-1 and ANP-2 were optimized by using the CIS method24with 6-31G(d)basis set.Based on the structures obtained,their absorption and emission spectra were calculated by the TD-DFT B3LYP method with 6-311++G(d,p)basis sets.In order to examine the effect of substituents on the absorption and emission spectra,several derivatives of ANP-1 were designed by replacing the hydrogen atom on the C7 of ANP-1 with several electron-withdrawing or electron-donating groups.The ground state S0structures and the singlet excited state S1structures of these derivatives were optimized by using B3LYP/6-31G(d)and CIS/6-31G(d)methods,respectively.Based on the structures obtained,the absorption and emission spectra of these derivatives were then obtained by using TD-DFT B3LYP method with 6-311++G(d,p)basis sets.The solvent affect was considered by using PCM model25in TD-DFT B3LYP calculations.

    3 Results and discussion

    3.1 Geometric structures and electronic structures of ANP-1 and ANP-2

    The selected structure parameters of ANP-1 and ANP-2 are listed in Table 1.Compared with the ground state S0,some bond lengths in the excited state S1are lengthened,some others are shortened.The bond lengths of C1―C6,C2―C3,and C4―C5 are all shortened from the ground state S0to the excited state S1for both ANP-1 and ANP-2,while the bond lengthsof C1―C2,C5―C6,C3―C7,and C4―C11 are all lengthened.The bond lengths between the adjacent atoms except H in the pyrazole ring of ANP-1 and ANP-2 are all shortened with the exception of the bond length C12―C19 in ANP-2 which is lengthened slightly from 0.1423 to 0.1424 nm.The dihedral anglesDN15C12C11C10become smaller for both ANP-1 and ANP-2 from the ground stateS0to the excited stateS1,indicating a better planar nature of the excited stateS1.What is more,their bond lengths C11―C12 are within the range from 0.1485 to 0.1472 nm,which are longer than the standard double bond(C=C,0.134 nm)and shorter than the standard single bond(C―C,0.154 nm),indicating a certain double bond nature.Thus conclusion could be drawn that a larger conjugation system has formed fromS0toS1,which will facilitate the free movement of electron cloud and electron transfer from the pyrazole fragment to the anthracene fragment.

    The electron density contours of HOMO-1,HOMO,LUMO,LUMO+1 of ANP-1 and ANP-2(Fig.2)show that HOMO is mainly distributed on the anthracene ring part with a small quantity of distribution on the pyrazole fragment,LUMO is mainly distributed on the anthracene ring part and much less distributed on the pyrazole fragment.Based on the fact that the lowest lying excited state usually corresponds to an excitation from HOMO to LUMO,we can make a good explanation of the ANP bond length variation by analyzing the FMOs.The bonds C1―C6,C2―C3,and C4―C5 are antibonding on the HOMO for both ANP-1 and ANP-2,while on the LUMO,they are bonding in these regions.Therefore,these bonds are shortened on the excited stateS1.The bonds C1―C2,C5―C6,C3―C7,and C4―C11 are antibonding on the LUMO,while they are bonding on the HOMO.These bonds hence become longer on the excited stateS1.

    Table 1 Optimized structural parameters ofANP-1 andANP-2

    3.2 Effect of substituents on the optical properties

    3.2.1 The frontier molecular orbital(FMO)analysis

    The HOMO and LUMO energies of ANP-1 and its derivatives are listed in Table 2.As seen from Table 2,both HOMO and LUMO energies are obviously changed by replacing the hydrogen atom on the C7 of ANP-1 with an electron-withdrawing or electron-donating group.Table 2 shows that compared with the parent molecule ANP-1(―R=―H),replacing the hydrogen atom with an electron-withdrawing group(―R=―BH2,―CHO,―SO3H,―COMe,―COOH,―CONH2,―CCl3,―CF3,―CN)lowers both the HOMO energy(EHOMO)and the LUMO energy(ELUMO),andELUMOis lowered more thanEHOMO,resulting in a smaller energy gapsEgcompared with the energy gap(3.472 eV)of ANP-1,suggesting a red-shift absorption wavelength.However,substituting the hydrogen atom with an electron-donating group(―R=―Me,―OH,―OMe,―NH2,―NHMe)raises bothEHOMOandELUMO,butEHOMOis raised more,resulting in a smaller energy gap compared with that of ANP-1,also suggesting a red-shift absorption wavelength.

    3.2.2 Absorption spectra

    Table 3 displays the calculated absorption wavelength(λ),the oscillator strength(f),transition assignment,and the main CI expansion coefficients of ANP-1 and its derivatives.It has been known that a large oscillator strengthfusually corresponds to a large experimental absorption coefficient or a strong fluorescence.It can be seen from Table 3 that,for all thederivatives,whatever the substituent is an electron-withdrawing group or an electron-donating group,the calculated absorption wavelength values all show a red shift as compared with ANP-1,consistent with the FMO analysis above.Table 3 shows that the derivative with―R=―NH2possesses a relatively longer absorption wavelength(442 nm)than the derivative with―R=―NHMe(428 nm),the derivative with―R=―OH possesses a relatively longer absorption wavelength(424 nm)than the derivative with―R=―OMe(413 nm),the derivative with―R=―CHO possesses a relatively longer absorption wavelength(447 nm)than the derivative with―R=―COMe(410 nm),showing that the methyl group is not a good candidate for designing an optical material possessing a longer absorption wavelength.Table 3 also shows that among the derivatives with―R=―F,―Cl,―Br,the derivative with―R=―Br exists the longest absorption wavelength(415 nm)whereas the derivative with―R=―F shows the shortest absorption wavelength(409 nm),suggesting that the electronegativity may play a role:a more electronegative group may result in a shorter absorption wavelength,or,in another word,a more electropositive group may result in a longer absorption wavelength.This conclusion is further confirmed by the fact that the derivative with―R=―CCl3has a longer absorption wavelength than the one with―R=―CF3.Among the substituents considered,we find that the derivatives with―R=―BH2,―CCl3,―CHO,and―NH2have relatively long absorption wavelength,three of them belong to the electron-withdrawing group,suggesting that if one want to design and synthesize an optical material possessing a longer wavelength,one can substitute the hydrogen atom of the parent molecule with electron-withdrawing group,especially with ―BH2,―CCl3,―CHO.

    The data in the third column of Table 3 are the absorption wavelength in CHCl3solvent.The data in the fifth column of Table 3 are the oscillator strengths in CHCl3solvent.These data show that the solvent CHCl3leads to a further red shift for the absorption wavelength values with the red-shifted extent 3-13 nm except the derivative with―R=―O-.Moreover,oscillator strengthsfin CHCl3solvent are all larger than the counterparts in gas phase.

    Table 2 Frontier molecular orbital energies(in eV)and their differences(Egin eV)obtained at the B3LYP/6-31G(d)level

    3.2.3 Emission spectra

    The calculated emission parameters are listed in Table 4.It can be seen from Table 4 that the fluorescence emission spectra of the derivatives are all red shifted compared with the parent molecule ANP-1,whatever the substituent is an electronwithdrawing group or an electron-donating group,consistent again with the FMO analysis above.Furthermore,the redshifted wavelength is predicted in the increasing order―Me<― OMe<― OH<― NHMe<—NH2for the electron-donating group,and ―CONH2<―COOH≈—CF3≈―CN≈―COMe<―SO3H<―CHO<―BH2<―CCl3for the electron-withdrawing group.Table 4 shows that the derivative with―R=―NH2possesses a relatively longer fluorescence emission wavelength(514 nm)than the derivative with―R=―NHMe(490 nm),the derivative with―R=―OH possesses a relatively longer emission wavelength(486 nm)than the derivative with―R=―OMe(472 nm),the derivative with―R=―CHO possesses a relatively longer emission wavelength(498 nm)than the derivative with―R=―COMe(478 nm),showing that the methyl group is not a good candidate for designing an optical material possessing a longer fluorescence emission wavelength.Table 4 also shows that among the derivatives with―R=―F,―Cl,―Br,the derivative with―R=―Br shows the longest fluores-cence emission wavelength(471 nm)whereas the derivative with―R=―F shows a shortest fluorescence emission wavelength(468 nm),suggesting that the electronegativity may play a role:a more electronegative group may result in a shorter emission wavelength,or,in another word,a more electropositive group may result in a longer emission wavelength.This is further confirmed by the fact that the derivative with―R=―CCl3has a longer fluorescence emission wavelength(531 nm)than the one with―R=―CF3(475 nm).Among the substituents considered in this work,we find that the derivatives with ―R=―O-,―BH2,―CCl3,―CHO,―NH2have relatively the longest fluorescence emission wavelength,suggesting that if one wants to design and synthesize an optical material possessing a longer fluorescence emission wavelength,one can substitute the hydrogen atom of the parent molecule with these groups.

    Table 3 Absorption wavelengths(λin nm),oscillator strengths(f),transition assignment and main CI expansion coefficients ofANP-1 and its derivatives

    The data in the third column of Table 4 are the fluorescence emission wavelength in CHCl3solvent.These data show that the solvent leads to a further red shift for the fluorescence emission wavelengths with the red-shifted extent 4-17 nm.Moreover,oscillator strengthsfin CHCl3solvent are all larger than the counterpart ones in gas phase,displaying that the fluores-cent emitting spectrum is strengthened in CHCl3solvent.

    Table 4 Fluorescence emission wavelengths(λin nm),oscillator strengths(f),transition assignment and main CI expansion coefficients ofANP-1 and its derivatives

    4 Conclusions

    Based on the theoretical calculations we have demonstrated that,for all the derivatives of ANP considered in this paper,whatever the substituent is an electron-withdrawing group or an electron-donating group,the absorption and fluorescence emission wavelength values all show red shifts as compared with ANP.We have also shown that,compared with ANP,the derivatives of ANP-1 with ―R=―BH2,―CCl3,―CHO,and―NH2are good candidates both for the optical materials possessing longer absorption wavelength and for the optical materials possessing longer fluorescence emission wavelength.Furthermore,we found that the derivative with―R=―Br has both a longer absorption wavelength and a longer fluorescence emission wavelength than the derivative with―R=―F,and the derivative with―R=―CCl3has a longer wavelength than the one with―R=―CF3,showing that a more electropositive group may result in a longer absorption or emission wavelength.

    (1)Mizukami,S.;Houjou,H.;Sugaya,K.;Koyama,E.;Tokuhisa,H.;Sasaki,T.;Kanesato,M.Chem.Mater.2005,17,50.

    (2)Bader,M.M.;Custelcean,R.;Ward,M.D.Chem.Mater.2003,15,616.

    (3)Wakamiya,A.;Ide,T.;Yamaguchi,S.J.Am.Chem.Soc.2005,127,14859.

    (4) Murata,H.;Kafafi,Z.H.;Uchida,M.Appl.Phys.Lett.2002,80,189.

    (5)Chen,J.;Law,C.C.W.;Lam,J.W.Y.;Dong,Y.;Lo,S.M.F.;Williams,I.D.;Zhu,D.;Tang,B.Z.Chem.Mater.2003,15,1535.

    (6) Sapochak,L.S.;Benincasa,F.E.;Schofield,R.S.;Baker,J.L.;Riccio,K.K.C.;Fogarty,D.;Kohlmann,H.;Ferris,K.F.;Burrows,P.E.J.Am.Chem.Soc.2002,124,6119.

    (7) Brinkmann,M.;Gadret,G.;Muccini,M.;Taliani,C.;Masciocchi,N.;Sironi.A.J.Am.Chem.Soc.2000,122,5147.

    (8) Halls,M.D.;Schlegel,H.B.Chem.Mater.2001,13,2632.

    (9)Geng,W.T.;Oda,M.;Nara,J.;Kondo,H.;Ohno,T.J.Phys.Chem.B 2008,112,2795.

    (10)Shi,L.;Hong,B.;Guan,W.;Wu,Z.;Su,Z.J.Phys.Chem.A 2010,114,6559.

    (11) Hu,B.;Gahungu,G.;Zhang,J.J.Phys.Chem.A 2007,111,4965.

    (12) Sun,M.;Niu,B.;Zhang,J.Theor.Chem.Acc.2008,119,489.

    (13)Fan,Y.;Zhao,Y.;Ye,L.;Li,B.;Yang,G.;Wang,Y.Crystal Growth&Design 2009,9,1421.

    (14)Fan,Y.;Song,W.;Yu,D.;Ye,K.;Zhang,J.;Wang,Y.CrystEngComm 2009,11,1716.

    (15) Gaal,M.;Gadermaier,C.;Plank,H.;Moderegger,E.;Pogantsch,A.;Leising,G.;List,E.J.W.Adv.Mater.2003,15,1165.

    (16)Zhao,Y.;Gao,H.;Fan,Y.;Zhuo,T.;Su,Z.;Liu,Y.;Wang,Y.Adv.Mater.2009,21,3165.

    (17) Gustafsson,G.;Cao,Y.;Treacy,G.M.;Klavetter,F.;Colaneri,N.;Heeger,A.J.Nature 1992,357,477.

    (18) Chen,Y.;Au,J.;Kazlas,P.;Ritenour,A.;Gates,H.;McCreary,M.Nature 2003,423,136.

    (19)Rakow,N.A;Suslick,K.S.Nature 2000,406,710.

    (20) Zhang,H.;Zhang,Z.;Ye,K.;Zhang,J.;Wang,Y.Adv.Mater.2006,18,2369.

    (21)Gao,L.;Lu,N.;Hao,J.;Hu,W.;Wang,W.;Wu,Y.;Wang,Y.;Chi,L.Langmuir 2008,24,12745.

    (22)Gao,L.;Lu,N.;Hao,J.;Hu,W.;Shi,G.;Wang,Y.;Chi,L.Langmuir 2009,25,3894.

    (23) Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.J.Phys.Chem.1994,98,11623.

    (24) Foresman,J.B.;Head-Gordon,M.;Pople,J.A.;Frisch,M.J.J.Phys.Chem.1992,96,135.

    (25)Cancès,E.;Mennucci,B.;Tomasi,J.J.Chem.Phys.1997,107,3032.

    取代基對3(5)-(9-蒽基)吡唑光學(xué)性質(zhì)的影響

    王昆鵬 王長生*

    (遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    使用密度泛函理論(DFT)B3LYP/6-31G(d)方法優(yōu)化得到了3(5)-(9-蒽基)吡唑及其衍生物的基態(tài)(S0)分子結(jié)構(gòu),使用單激發(fā)組態(tài)相互作用(CIS)/6-31G(d)方法優(yōu)化得到這些分子的第一單重激發(fā)態(tài)(S1)的幾何結(jié)構(gòu),并使用含時密度泛函理論(TD-DFT)B3LYP/6-311++G(d,p)方法計算了它們的吸收和發(fā)射光譜.計算結(jié)果表明,與3(5)-(9-蒽基)吡唑相比,無論取代基是吸電子基團(tuán)還是供電子基團(tuán),衍生物的吸收和發(fā)射峰均發(fā)生紅移,并且當(dāng)取代基―R=―BH2,―CCl3,―CHO,―NH2時衍生物有較長的吸收波長和發(fā)射波長.

    吸收光譜; 熒光發(fā)射光譜;3(5)-(9-蒽基)吡唑; 激發(fā)態(tài)

    O641

    Received:October 29,2010;Revised:December 27,2010;Published on Web:January 18,2011.

    ?Corresponding author.Email:chwangcs@lnnu.edu.cn;Tel:+86-411-82159391.

    The project was supported by the National Natural Science Foundation of China(20973088)and Research Fund of the Educational Department of Liaoning Province,China(2007T091,2008T106).

    國家自然科學(xué)基金(20973088)和遼寧省高校創(chuàng)新團(tuán)隊基金(2007T091,2008T106)資助項目

    猜你喜歡
    激發(fā)態(tài)吡唑國家自然科學(xué)基金
    常見基金項目的英文名稱(一)
    蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
    蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    國家自然科學(xué)基金項目簡介
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    法律面前人人平等表现在哪些方面| 1024视频免费在线观看| 亚洲国产高清在线一区二区三 | 男女午夜视频在线观看| 看黄色毛片网站| 麻豆av在线久日| 91麻豆精品激情在线观看国产| 国产一级毛片七仙女欲春2 | 精品人妻1区二区| 美国免费a级毛片| 夜夜夜夜夜久久久久| 欧美日韩一级在线毛片| www.www免费av| 久久亚洲真实| 国产三级黄色录像| 欧美黄色片欧美黄色片| 国内少妇人妻偷人精品xxx网站 | 国产精品av久久久久免费| 免费人成视频x8x8入口观看| 国产一卡二卡三卡精品| 国产不卡一卡二| av中文乱码字幕在线| 夜夜看夜夜爽夜夜摸| 亚洲三区欧美一区| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美网| 50天的宝宝边吃奶边哭怎么回事| 成年免费大片在线观看| 后天国语完整版免费观看| 搡老妇女老女人老熟妇| 亚洲九九香蕉| 精品久久久久久久毛片微露脸| 男女床上黄色一级片免费看| 88av欧美| 少妇被粗大的猛进出69影院| 久热这里只有精品99| 亚洲精品久久成人aⅴ小说| 99国产极品粉嫩在线观看| 欧美绝顶高潮抽搐喷水| 亚洲中文日韩欧美视频| 热re99久久国产66热| 中文字幕av电影在线播放| 国产成人av激情在线播放| 老司机福利观看| 国产日本99.免费观看| 亚洲欧美激情综合另类| 在线看三级毛片| 很黄的视频免费| 久久精品成人免费网站| av超薄肉色丝袜交足视频| 亚洲五月天丁香| 黄色成人免费大全| 亚洲av熟女| av在线天堂中文字幕| 精品卡一卡二卡四卡免费| 国产成人欧美在线观看| 国产私拍福利视频在线观看| 亚洲国产中文字幕在线视频| 村上凉子中文字幕在线| av免费在线观看网站| 黑人操中国人逼视频| 亚洲天堂国产精品一区在线| 一卡2卡三卡四卡精品乱码亚洲| 夜夜夜夜夜久久久久| 两性夫妻黄色片| 国产成人精品久久二区二区91| 一个人免费在线观看的高清视频| 亚洲精品色激情综合| 日韩欧美一区视频在线观看| 久久国产乱子伦精品免费另类| 好男人电影高清在线观看| 久久久久久九九精品二区国产 | 精品久久久久久久人妻蜜臀av| 午夜成年电影在线免费观看| www国产在线视频色| 日本一区二区免费在线视频| 一区二区三区精品91| 欧美成人一区二区免费高清观看 | 侵犯人妻中文字幕一二三四区| 99久久99久久久精品蜜桃| 日韩大尺度精品在线看网址| 夜夜躁狠狠躁天天躁| 91麻豆av在线| 久久草成人影院| svipshipincom国产片| www.精华液| 国产精品亚洲av一区麻豆| 高清毛片免费观看视频网站| 又大又爽又粗| 欧美日韩福利视频一区二区| 一本久久中文字幕| 给我免费播放毛片高清在线观看| 国产精品久久视频播放| 人成视频在线观看免费观看| 搡老妇女老女人老熟妇| 色播亚洲综合网| 视频在线观看一区二区三区| a级毛片在线看网站| 高清毛片免费观看视频网站| 最近在线观看免费完整版| 久久久精品国产亚洲av高清涩受| 久久精品国产99精品国产亚洲性色| 97超级碰碰碰精品色视频在线观看| 后天国语完整版免费观看| 午夜免费激情av| 国产精华一区二区三区| 给我免费播放毛片高清在线观看| 1024视频免费在线观看| a级毛片在线看网站| 嫁个100分男人电影在线观看| 在线观看免费日韩欧美大片| 好男人在线观看高清免费视频 | 脱女人内裤的视频| 99精品在免费线老司机午夜| 9191精品国产免费久久| 亚洲国产精品合色在线| www日本在线高清视频| 国产黄片美女视频| 777久久人妻少妇嫩草av网站| 亚洲人成网站在线播放欧美日韩| 欧美亚洲日本最大视频资源| 国产视频一区二区在线看| 黄网站色视频无遮挡免费观看| 欧美亚洲日本最大视频资源| 99国产极品粉嫩在线观看| 午夜a级毛片| 深夜精品福利| 国产精品日韩av在线免费观看| 黑丝袜美女国产一区| 日韩av在线大香蕉| 99riav亚洲国产免费| 欧美日韩一级在线毛片| 91麻豆av在线| 91大片在线观看| 黑人欧美特级aaaaaa片| 亚洲av片天天在线观看| 又黄又粗又硬又大视频| 又黄又粗又硬又大视频| 一二三四在线观看免费中文在| 亚洲精品一区av在线观看| 日日干狠狠操夜夜爽| 视频区欧美日本亚洲| 90打野战视频偷拍视频| 欧美成人性av电影在线观看| 高清毛片免费观看视频网站| 日本一区二区免费在线视频| 久久久久久亚洲精品国产蜜桃av| 校园春色视频在线观看| 黑人欧美特级aaaaaa片| 黑人操中国人逼视频| av免费在线观看网站| 欧美亚洲日本最大视频资源| 丁香欧美五月| 亚洲av成人av| 丝袜美腿诱惑在线| 午夜福利在线观看吧| 后天国语完整版免费观看| 久久久久久亚洲精品国产蜜桃av| 午夜久久久久精精品| 国产激情欧美一区二区| 美女国产高潮福利片在线看| 黄色 视频免费看| 丁香欧美五月| 哪里可以看免费的av片| 亚洲欧美一区二区三区黑人| 青草久久国产| 国产视频内射| 亚洲天堂国产精品一区在线| 热re99久久国产66热| 激情在线观看视频在线高清| 国产99白浆流出| 男人舔奶头视频| 免费在线观看完整版高清| 深夜精品福利| 91成年电影在线观看| 欧美zozozo另类| 99在线视频只有这里精品首页| 在线av久久热| 精品久久久久久久久久免费视频| 精品国产国语对白av| 熟女电影av网| 免费看a级黄色片| 亚洲精品色激情综合| 午夜福利免费观看在线| 亚洲七黄色美女视频| 日韩高清综合在线| 精品熟女少妇八av免费久了| 成熟少妇高潮喷水视频| 精品久久久久久久久久免费视频| 看黄色毛片网站| 色婷婷久久久亚洲欧美| 久久久久久免费高清国产稀缺| 日韩欧美 国产精品| 人人妻人人澡欧美一区二区| 亚洲,欧美精品.| 天天添夜夜摸| 男女床上黄色一级片免费看| 丰满的人妻完整版| 亚洲av日韩精品久久久久久密| 最近最新中文字幕大全免费视频| 麻豆国产av国片精品| 久久久久九九精品影院| bbb黄色大片| 99热这里只有精品一区 | 中国美女看黄片| tocl精华| 欧美色欧美亚洲另类二区| 国产又黄又爽又无遮挡在线| 色综合婷婷激情| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区精品视频观看| 男人舔女人的私密视频| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久精品电影 | 性欧美人与动物交配| 国产精品一区二区免费欧美| 国产精品国产高清国产av| 日韩免费av在线播放| 国产高清激情床上av| 亚洲无线在线观看| 欧美日韩乱码在线| 青草久久国产| 欧美中文综合在线视频| 欧美一级a爱片免费观看看 | 久久这里只有精品19| 欧美丝袜亚洲另类 | 99热6这里只有精品| 久久伊人香网站| 无限看片的www在线观看| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| 欧美日韩中文字幕国产精品一区二区三区| 精品免费久久久久久久清纯| 亚洲成av人片免费观看| 日韩欧美在线二视频| 人人妻人人看人人澡| 久久婷婷成人综合色麻豆| 1024香蕉在线观看| 99国产精品一区二区蜜桃av| 女警被强在线播放| 夜夜躁狠狠躁天天躁| 亚洲av五月六月丁香网| 国产男靠女视频免费网站| videosex国产| 午夜精品久久久久久毛片777| 夜夜躁狠狠躁天天躁| 国产1区2区3区精品| 精品一区二区三区视频在线观看免费| 一区福利在线观看| 淫秽高清视频在线观看| 国产色视频综合| 日本在线视频免费播放| 亚洲精品av麻豆狂野| 日韩中文字幕欧美一区二区| 亚洲自拍偷在线| 在线天堂中文资源库| 免费人成视频x8x8入口观看| 午夜精品久久久久久毛片777| 成人三级做爰电影| 日韩大尺度精品在线看网址| www日本在线高清视频| 婷婷精品国产亚洲av在线| 日本精品一区二区三区蜜桃| 成人免费观看视频高清| 少妇裸体淫交视频免费看高清 | 亚洲精品在线观看二区| 亚洲片人在线观看| 一个人免费在线观看的高清视频| 午夜免费激情av| 国产激情久久老熟女| 亚洲av成人一区二区三| 国产精品98久久久久久宅男小说| 波多野结衣av一区二区av| 亚洲av成人av| 欧美zozozo另类| 国产日本99.免费观看| 脱女人内裤的视频| 久久香蕉精品热| 欧美日本亚洲视频在线播放| 在线天堂中文资源库| 18美女黄网站色大片免费观看| 国产视频内射| 啦啦啦韩国在线观看视频| 成年版毛片免费区| 91字幕亚洲| 精品国产美女av久久久久小说| 欧美zozozo另类| 亚洲一区高清亚洲精品| 日日夜夜操网爽| 亚洲专区国产一区二区| 亚洲国产精品999在线| 亚洲av成人av| www.www免费av| 97超级碰碰碰精品色视频在线观看| 亚洲精品av麻豆狂野| 在线观看www视频免费| 久久精品夜夜夜夜夜久久蜜豆 | 又紧又爽又黄一区二区| 村上凉子中文字幕在线| 黄色视频,在线免费观看| 欧美日韩福利视频一区二区| 中文字幕久久专区| 动漫黄色视频在线观看| 精品人妻1区二区| 亚洲精品美女久久av网站| 俺也久久电影网| 亚洲天堂国产精品一区在线| 日本成人三级电影网站| 久久人人精品亚洲av| 听说在线观看完整版免费高清| 99在线视频只有这里精品首页| 最近最新中文字幕大全电影3 | 午夜视频精品福利| 欧美黑人欧美精品刺激| 1024视频免费在线观看| 欧美大码av| 国产乱人伦免费视频| 日本 av在线| 黄频高清免费视频| 老司机午夜福利在线观看视频| 在线观看舔阴道视频| 好男人电影高清在线观看| av有码第一页| 一进一出抽搐动态| 真人做人爱边吃奶动态| 此物有八面人人有两片| 欧美黑人欧美精品刺激| 亚洲五月婷婷丁香| 亚洲在线自拍视频| 日韩免费av在线播放| 99精品欧美一区二区三区四区| 日韩高清综合在线| 正在播放国产对白刺激| 麻豆成人av在线观看| 一区二区日韩欧美中文字幕| av视频在线观看入口| 亚洲avbb在线观看| 一二三四在线观看免费中文在| 亚洲,欧美精品.| 真人一进一出gif抽搐免费| 成人欧美大片| 午夜福利18| 人成视频在线观看免费观看| 日韩欧美国产在线观看| 999久久久精品免费观看国产| 欧美激情 高清一区二区三区| 两性夫妻黄色片| 久久 成人 亚洲| 国内少妇人妻偷人精品xxx网站 | 一级毛片精品| 久久精品人妻少妇| 亚洲精品色激情综合| 欧美人与性动交α欧美精品济南到| 一级毛片精品| 色在线成人网| 亚洲国产欧美一区二区综合| 日韩有码中文字幕| 久久精品国产综合久久久| 欧美黑人精品巨大| 亚洲精品久久国产高清桃花| 久久久久久久久免费视频了| 身体一侧抽搐| 日韩视频一区二区在线观看| aaaaa片日本免费| 国产精品99久久99久久久不卡| 淫妇啪啪啪对白视频| 热re99久久国产66热| 这个男人来自地球电影免费观看| 欧美日韩一级在线毛片| 午夜福利欧美成人| 制服人妻中文乱码| 久久性视频一级片| 黄片小视频在线播放| 身体一侧抽搐| 99热6这里只有精品| 中文字幕人妻熟女乱码| 在线观看免费午夜福利视频| 黄色片一级片一级黄色片| 久久亚洲真实| 黄色视频不卡| 丁香欧美五月| 日韩成人在线观看一区二区三区| 精品国产一区二区三区四区第35| 久久国产精品男人的天堂亚洲| 国产男靠女视频免费网站| 国产av在哪里看| 麻豆成人av在线观看| 国产av一区在线观看免费| 午夜老司机福利片| a级毛片在线看网站| 18美女黄网站色大片免费观看| 69av精品久久久久久| 国内毛片毛片毛片毛片毛片| 露出奶头的视频| 久久精品国产亚洲av高清一级| 18禁美女被吸乳视频| 好男人在线观看高清免费视频 | 手机成人av网站| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影| 国产亚洲精品久久久久5区| 韩国av一区二区三区四区| 精品久久久久久久毛片微露脸| 怎么达到女性高潮| 国产三级黄色录像| 中文资源天堂在线| 免费观看人在逋| 久久精品亚洲精品国产色婷小说| 久久中文字幕人妻熟女| 757午夜福利合集在线观看| 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| а√天堂www在线а√下载| 成人永久免费在线观看视频| 欧美日韩乱码在线| 亚洲国产日韩欧美精品在线观看 | 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀| 这个男人来自地球电影免费观看| 午夜久久久在线观看| 婷婷亚洲欧美| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品av麻豆狂野| 国产三级黄色录像| 美国免费a级毛片| 久久中文字幕人妻熟女| 成人国产综合亚洲| 欧美成人一区二区免费高清观看 | 9191精品国产免费久久| 香蕉丝袜av| 又黄又粗又硬又大视频| 国产成人精品久久二区二区91| 午夜激情av网站| 日本 欧美在线| 国产精品一区二区精品视频观看| 日韩高清综合在线| 999精品在线视频| 久久久国产成人免费| 久久久久久九九精品二区国产 | 久久久久久久久中文| or卡值多少钱| 色婷婷久久久亚洲欧美| a在线观看视频网站| 欧美亚洲日本最大视频资源| 女警被强在线播放| 国产野战对白在线观看| 成人三级做爰电影| 日韩欧美一区二区三区在线观看| 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 男人舔奶头视频| 亚洲成a人片在线一区二区| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 国产精品香港三级国产av潘金莲| 亚洲欧洲精品一区二区精品久久久| 国产精品,欧美在线| 国产精品一区二区免费欧美| 欧美激情极品国产一区二区三区| 国产伦一二天堂av在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产清高在天天线| 啦啦啦观看免费观看视频高清| 变态另类丝袜制服| 一本综合久久免费| 一级片免费观看大全| 欧美成人午夜精品| 国产成年人精品一区二区| 亚洲无线在线观看| 中文字幕另类日韩欧美亚洲嫩草| 在线观看日韩欧美| 精品久久久久久久久久久久久 | 国内久久婷婷六月综合欲色啪| 日本成人三级电影网站| 国产私拍福利视频在线观看| 久久性视频一级片| 国产一级毛片七仙女欲春2 | 精品国产一区二区三区四区第35| 九色国产91popny在线| 变态另类丝袜制服| 两性午夜刺激爽爽歪歪视频在线观看 | 精华霜和精华液先用哪个| 亚洲国产中文字幕在线视频| 国产av不卡久久| 欧美最黄视频在线播放免费| 亚洲av美国av| xxx96com| 欧美性猛交╳xxx乱大交人| 国产亚洲精品av在线| 亚洲熟妇熟女久久| 啦啦啦韩国在线观看视频| 天天添夜夜摸| 一级a爱视频在线免费观看| 亚洲成av人片免费观看| 精品人妻1区二区| 成人亚洲精品av一区二区| 亚洲精品色激情综合| 久久久久久久久中文| 亚洲aⅴ乱码一区二区在线播放 | 黄色视频不卡| 天天一区二区日本电影三级| 十八禁人妻一区二区| 精品电影一区二区在线| 国产欧美日韩一区二区精品| 免费看a级黄色片| 日本三级黄在线观看| 十八禁网站免费在线| 国产免费男女视频| 嫁个100分男人电影在线观看| 韩国精品一区二区三区| 精品久久久久久成人av| 哪里可以看免费的av片| 免费在线观看视频国产中文字幕亚洲| 国产色视频综合| 精品人妻1区二区| 伦理电影免费视频| 日韩视频一区二区在线观看| 成年版毛片免费区| 一级作爱视频免费观看| 搡老岳熟女国产| 精品久久久久久久久久免费视频| 亚洲性夜色夜夜综合| 国产精品1区2区在线观看.| 欧美日韩福利视频一区二区| 国产一区在线观看成人免费| 午夜免费鲁丝| 最近最新中文字幕大全免费视频| 少妇粗大呻吟视频| 精品日产1卡2卡| 亚洲国产欧洲综合997久久, | 丝袜人妻中文字幕| 亚洲av成人不卡在线观看播放网| 法律面前人人平等表现在哪些方面| АⅤ资源中文在线天堂| 亚洲自偷自拍图片 自拍| 午夜免费激情av| 男女午夜视频在线观看| 国产真人三级小视频在线观看| 欧美大码av| 国内毛片毛片毛片毛片毛片| 妹子高潮喷水视频| 成年女人毛片免费观看观看9| 亚洲精品色激情综合| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩一级在线毛片| 亚洲精品久久成人aⅴ小说| 麻豆一二三区av精品| 亚洲国产精品成人综合色| 国产爱豆传媒在线观看 | 少妇 在线观看| 日韩一卡2卡3卡4卡2021年| 国产蜜桃级精品一区二区三区| 麻豆一二三区av精品| 免费看十八禁软件| 村上凉子中文字幕在线| 亚洲人成网站高清观看| 天天添夜夜摸| 国产一级毛片七仙女欲春2 | 十八禁网站免费在线| 岛国在线观看网站| 无人区码免费观看不卡| 久久婷婷人人爽人人干人人爱| 久久国产亚洲av麻豆专区| 色精品久久人妻99蜜桃| 午夜影院日韩av| 人妻丰满熟妇av一区二区三区| 69av精品久久久久久| 国产爱豆传媒在线观看 | 熟女电影av网| 免费在线观看黄色视频的| 亚洲片人在线观看| 欧美日本视频| tocl精华| www日本黄色视频网| 日日夜夜操网爽| 啪啪无遮挡十八禁网站| www.自偷自拍.com| 九色国产91popny在线| 日日干狠狠操夜夜爽| 99久久久亚洲精品蜜臀av| 亚洲avbb在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品亚洲一级av第二区| 最新在线观看一区二区三区| 男女床上黄色一级片免费看| 国产精品国产高清国产av| 国产精品美女特级片免费视频播放器 | 亚洲精品一卡2卡三卡4卡5卡| 国产视频内射| 国产av不卡久久| 亚洲专区国产一区二区| 最新在线观看一区二区三区| 99在线人妻在线中文字幕| 老司机在亚洲福利影院| 99久久精品国产亚洲精品| 亚洲精品美女久久久久99蜜臀| 婷婷精品国产亚洲av| e午夜精品久久久久久久| 男女床上黄色一级片免费看| 国产乱人伦免费视频| 老司机午夜十八禁免费视频| 久久中文看片网| 欧美性长视频在线观看| 操出白浆在线播放| 一进一出好大好爽视频| 熟妇人妻久久中文字幕3abv| 国产熟女午夜一区二区三区| 一区二区日韩欧美中文字幕| netflix在线观看网站| 欧美乱妇无乱码| 国产精品香港三级国产av潘金莲| 韩国av一区二区三区四区|