• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    浸漬法制備的Pd-MnO x/γ-Al2O3催化劑及不同載體對(duì)地表O3降解的影響

    2014-10-18 05:28:08任成軍周麗娜尚鴻燕陳耀強(qiáng)
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:學(xué)報(bào)化學(xué)

    任成軍 周麗娜 尚鴻燕 陳耀強(qiáng)

    (四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)重點(diǎn)實(shí)驗(yàn)室,成都 610064)

    1 Introduction

    The researchers have found that ground-level ozone would increase cardiovascular mortality and respiratory disease,decrease lung function.1Ozone is a powerful oxidant.The woody plants including arbor and shrubs had already suffered the harm of ambient ozone.2Karlsson et al.3investigated the negative impacts of ozone on crop yields and forest production.Moreover,ozone can deteriorate valuable materials.4According to OSHA(Occupational Safety and Health Administration)regulations,the threshold level for allowable exposure during an 8 h time period is 1.0×10-7(volume fraction,the same below).5The allowable concentration in the working environment is also 1.0×10-7in Japan.6In March 2012,State Environmental Protection Administration of China promulgated“ambient air quality standard”regulation(GB3095-2012)that ozone average concentration must be lower than 100-160 μg·m-3(4.6×10-8-7.5×10-8)in 8 h and it will be carried out in January 2016.Therefore,the catalytic decomposition of ozone is an important area of research from the point of view of environmental protection and health.7-11

    Ground-level ozone was formed from nonlinear reactions between volatile organic compounds(VOCs)and nitrogen oxides(NOx)under ultraviolet light,12-14which are released from power plants and automobile exhaust gases.The numbers of vehicle are dramatically increased with rapid development of economy in recent years.Ozone gradually becomes one of the major air pollutions.Our group8-11focused on improving the activity of catalysts in early work.If the as-prepared catalysts were coated on vehicle radiators,where temperature ranged from 20 to 90°C,ozone would be completely decomposed.However,automobiles often run at high speed,and may jolt and rattle on the rough ground.The washcoat of catalysts could be fallen away.Therefore,it is necessary that the catalysts have not only excellent activity but also better viscosity.

    The Al2O3is used as both support and binder due to its large surface area and better viscosity in this paper.MnOxis acted as active species owing to its highly activity.5,11,15,16Moreover,there is high relative humidity on the surface of water tank in automobiles.H2O molecules would compete with ozone for adsorption leading to decrease of MnOxactivity.Therefore,Pd is employed both as a resistant to water vapor and active species.11,16,17The γ-Al2O3support was prepared by peptizing method,and Mn(NO3)2and Pd(NO3)2were impregnated on the γ-Al2O3support,and then,the Pd-MnOx/γ-Al2O3was coated on the cordierite substrate to obtain Pd-MnOx/γ-Al2O3monolith catalysts.In addition,Mn(NO3)2and Pd(NO3)2were impregnated on SiO2,La-Al2O3,and Zr-Al2O3supports,respectively.The performance of catalysts for O3decomposition was investigated under high space velocities(380000,450000,510000,and 580000 h-1)and high relative humidity(RH=85%-90%).The prepared catalysts were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),X-ray photoelectron spectroscopy(XPS),and temperature-programmed reduction(TPR)technologies.And the significant results were obtained.

    2 Experimental

    2.1 Preparation of catalysts

    2.1.1 Supports

    A support of γ-Al2O3was prepared by peptizing method.Firstly,concentrated nitric acid(A.R.)and water were added into an appropriate amount of boehmite(A.R.).Subsequently,a clear sol was formed after high-energy ball milling,and aged at 90°C for 6 h in water bath.Then,the precipitates were filtered via vacuum filtration,washed with distilled water,and dried at 110°C overnight.The dried precipitates were calcined at 600°C for 3 h.

    La-Al2O3support calcined at 900°C was purchased from Rhodia Corporation.

    SiO2support was prepared,for which the SiO2aqueous sol(A.R.)was heated in water bath until vapor was removed,and then,dried at 110°C overnight.The dried powders were calcined at 600°C for 3 h.

    Zr-Al2O3support was prepared by co-precipitation method.ZrOCO3·6H2O(A.R.)was dissolved into concentrated nitric acid.Then,the aqueous solutions of ZrOCO3and Al(NO3)3(A.R.)were mixed in a mass ratio of 1:9(ZrO2to Al2O3),and adjusted to pH 8.8 by NH3·H2O(A.R.).The precipitates were filtered off,washed with distilled water,and dried at 110°C overnight.The dried precipitates were calcined at 600°C for 3 h.

    2.1.2 Pd-MnOx/γ-Al2O3catalyst powders

    MnOx/γ-Al2O3catalyst powders were prepared,for which Mn(NO3)2(A.R.)was impregnated on the γ-Al2O3support,and then,was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.The amount of MnOxwas 8%(mass fraction).

    Pd/γ-Al2O3catalyst powders were prepared,for which Pd(NO3)2(ChengDu Guangming Equipment Company,A.R.)was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.The amount of Pd was 2%(mass fraction).

    Catalyst(MP)was prepared.Firstly,Mn(NO3)2was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.Subsequently,Pd(NO3)2was impregnated on the MnOx/γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    Catalyst(PM)was prepared.At first,Pd(NO3)2was impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and dried at 110°C overnight.The dried powders were calcined at 400°C for 3 h.Subsequently,Mn(NO3)2was impregnated on the Pd/γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110 °C overnight.The dried powders were calcined at 400 °C for 6 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    Catalyst(CPM)was prepared,which Mn(NO3)2and Pd(NO3)2were co-impregnated on the γ-Al2O3support,then was heated in water bath until vapor was removed,and then dried at 110°C overnight.The dried powders were calcined at 400°C for 6 h.The amount of Pd was 2%(mass fraction),and the amount of MnOxwas 8%(mass fraction).

    2.1.3 Pd-MnOx/γ-Al2O3monolith catalyst

    The above mentioned powders were ball-milled with distilled water to form slurry.The slurry was coated on cordierite substrate of 0.28 cm3(Coring Corporation in American,400 pore·inch-2,diameter(Φ)=5 mm,length(L)=14 mm)and the excess slurry was blown off.The catalyst was dried at 110°C overnight and calcined in air at 200°C for 3 h to prepare the Pd-MnOx/γ-Al2O3monolith catalyst.The loading of catalyst washcoat was 350 mg·mL-1.

    When the support was SiO2,La-Al2O3,or Zr-Al2O3,the monolith catalysts were prepared by the above-mentioned methods,respectively.

    2.2 Catalyst characterization

    The XRD analysis was conducted on DX-1000 X-ray diffractometer,using Cu Kαradiation(λ=0.15406 nm)at 40 kV and 25 mA.The XRD data were recorded for 2θ values from 10°to 80°at an interval of 0.05(°)·s-1.The specific surface area and pore size of the catalysts were determined by N2adsorption-desorption at-196°C on a QUADRASORB SI,an automated surface area and pore size analyzer(Uuantachrome Instruments).Before the measurements,the samples were degassed in vacuum at 350°C for 1 h.X-ray photoelectron spectra of samples were acquired at room temperature using a Vacuum Generator Scientific XSAM800 system from Kratos Co.in U.K.The spectra were recorded with the Mg Kα(hν=1253.6 eV).X-ray radiation by setting the electron energy analyzer was operated at 180 W(12 kV,15 mA).Temperature programmed reduction of H2was carried out using an automated instrument.In a typical experiment,100 mg of sample was loaded in a U-shaped quartz micro-reactor.The sample was heated from room temperature to 550°C at a heating rate of 10 °C·min-1in a flowing hydrogen mixed gas of 5%(volume fraction)H2and 95%(volume fraction)N2at 30 cm3·min-1.Hydrogen consumption was monitored using a thermal conductivity detector.

    2.3 Catalytic tests

    The catalyst tests were carried out in a continuous flow tubular quartz reactor(inner diameter:10 mm)placed in a temperature-programmed furnace.The catalyst temperature was controlled by a thermocouple mounted internally.Ozone gases were generated from ozone generator(JY-3 type,Chengdu Qiangui Purification Equipment Company)and were fed from independent mass-flow controller.Air was come into being from air compressor,and then was separated by an oil-water separator and dried by a silica gel,its flow rate was controlled by a rotameter.Measurements over the samples were performed at a RH of 85%-90%using a gas hourly space velocity(GHSV)of 380000,450000,510000,and 580000 h-1,respectively.The feed consists of 6.0×10-7O3,and balance air.The outlet flow of the reactor was analyzed using an ozone analyzer(Nanjing 8Shang Technology Co.,Ltd.).The activity of the catalyst was calculated on the basis of the following equation:

    where Cinletand Coutletare inlet concentration of O3and outlet concentration of O3,respectively.

    3 Results and discussion

    3.1 Activity of catalysts and synergetic effect between Pd and MnO x

    As shown in Fig.1,initial O3conversions at 12°C are 53.3%,73.3%,and 30.0%,O3complete conversion temperatures are 56,38,and 70 °C,corresponding to MnOx/γ-Al2O3,Pd-MnOx/γ-Al2O3,and Pd/γ-Al2O3catalysts,respectively.The activity of the Pd/γ-Al2O3catalyst for decomposition of O3is poor,and the activity of MnOx/γ-Al2O3catalyst is better than Pd based catalyst.The performance of the Pd-MnOx/γ-Al2O3catalyst is the best,where both Pd and MnOxspecies are involved.Namely,there was some synergetic effect between Pd and MnOx.For the Pd-MnOx/γ-Al2O3catalyst,Pd is functionalized both as active spe-cies and resistant to humidity,which would suppress deactivation aroused by the adsorption of H2O molecules.16,17It benefits to O3molecules interacting with more MnOxactive species.Therefore,the Pd-MnOx/γ-Al2O3catalyst has an excellent activity under high relative humidity.

    Fig.1 O3conversion as a function of reaction temperature on Pd/γ-Al2O3,MnO x/γ-Al2O3,and Pd-MnO x/γ-Al2O3catalysts

    Fig.2 H2-TPR profiles of Pd/γ-Al2O3,MnO x/γ-Al2O3,and Pd-MnO x/γ-Al2O3catalysts

    Fig.2 shows H2-TPR profiles of Pd/γ-Al2O3,MnOx/γ-Al2O3,and Pd-MnOx/γ-Al2O3catalysts.It is seen that a weak peak at 121 °C was present in the Pd/γ-Al2O3catalyst,it is attributed to the reduction of PdO species.18,19For the MnOx/γ-Al2O3catalyst,the broad peaks around 150-370 °C and 420-610 °C are observed.The broad peak around 150-370°C can be divided into two peaks at 181 and 258°C,which are ascribed as MnO2and Mn2O3reduction to Mn3O4.19The broad peak around 420-610 °C can be divided into two peaks at 475 and 538 °C,which represent Mn3O4reducing to MnO.19For the Pd-MnOx/γ-Al2O3catalyst,a peak at 155°C is attributed to the reduction of PdO species,18and a peak around 210°C is due to MnO2and Mn2O3reduction to Mn3O4,19and a peak at 430°C is ascribed to Mn3O4reduction to MnO.19The reduction temperature of MnOxis lowered in the presence of Pd,implying that there is an obvious interaction between Pd and MnOx.Xu et al.20reported that the presence of Pd lowered the reduction temperature of MnO2due to hydrogen spillover from Pd to the oxides.This phenomenon can be explained as follows:PdO is easily reduced to Pd by H2.Namely,PdO has changed to Pd before MnO2reduction.The Pd adsorbs H2and dissociates it into H,and then,H spills over onto MnO2to promote its reduction.The interaction of Pd and MnOximproves the reducibility of MnOx.Dhandapani and Oyama5thought that the activity of MnOxis relevant to its reducibility.Therefore,the activity of the Pd-MnOx/γ-Al2O3catalyst is enhanced for decomposition of O3.

    3.2 Effect of impregnation orders of Pd and MnO xon performance of catalysts

    3.2.1 TPR results of catalysts

    Fig.3 H2-TPR profiles of the samples prepared by different impregnation orders of Pd and MnO x

    Fig.3 displays the TPR profiles of the catalysts prepared by different impregnation orders of Pd and MnOx.For the catalyst co-impregnated Pd and MnOx,as mentioned in Fig.2,there are three reduction peaks around 155,210,and 430°C.A broad peak arround 60-330 °C and a peak at 426°C were observed in the catalyst impregnated MnOxand then impregnated Pd.The broad peak can be divided into two peaks at 153 and 218°C.For the catalyst impregnated Pd and then MnOx,three peaks at about 151,260,and 437°C were present,the peak at 260 °C shifted towards high temperature.Although there are slight difference of the reduction temperatures of Pd and MnOx,the reduction peak areas of Pd and MnOxare obviously different from the other two samples.The reduction peak area is the largest in the catalyst co-impregnated Pd and MnOx,indicating that the catalyst has the best reducibility.

    3.2.2 Textural property of catalysts

    As shown in Table 1,the surface areas are similar in three samples.However,the pore volume and average pore diameter of the catalyst co-impregnated Pd and MnOxare slightly larger than those of the catalysts impregnated Pd and MnOxsequentially.Large pore volume is favorable of more O3molecules activated by the active species on the surface of catalyst.Large pore diameter is in favor of O3coming into pores rapidly under high space velocity.Therefore,better textural property of the co-impregnated catalyst is beneficial to decomposition of O3.

    3.2.3 Activity of catalysts

    Fig.4 indicates the activity of catalysts impregnated Pd and MnOxby different impregnation orders.It is seen that initial O3conversions at 12°C are 73.3%,69.7%,and 66.7%,complete conversion temperatures of O3are 38,46,and 48°C,corresponding to the catalyst co-impregnated Pd and MnOx,the catalyst impregnated MnOxand then Pd,and the catalyst impregnated Pd and then MnOx,respectively.The impregnation order has some impacts on the activity of catalysts,the activity of the co-impregnated catalyst is the highest in the three samples.For the co-impregnated catalyst,Mn4+and Pd2+were uniformly mixed in ionic form before impregnation,in favorable of MnOxand Pd dispersion evenly onto the surface of γ-Al2O3support.It is possible that more active species were exposed on the surface of the co-impregnated catalyst.In general,the more the active species exposed(such as Pd or MnOx),the better the activity of the catalyst.Moreover,when Pd or MnOxwas loaded on the surface of γ-Al2O3support,the negative charges of Al2O3would be transferred into PdO or MnOxdue to strong interaction of metal and support.For the co-impregnated catalyst,the interaction could be more obvious,resulting in better reducibility of PdO and MnOx,which is helpful to O3decomposition.In addition,the activity of the catalyst impregnated MnOxand then Pd is slightly better than that of the catalyst impregnated Pd and then MnOx.It can be ascribed to good reducibility of MnOxin the catalyst(see Fig.3,H2-TPR).Furtherover,a little Pd was possibly covered by MnOxon the surface of the catalyst impregnated Pd and then MnOx,the amount of Pd exposed decreased more or less.

    Table 1 Textural property of the samples prepared by different impregnation orders of Pd and MnO x

    Fig.4 O3catalytic performance of samples prepared by different impregnation orders of Pd and MnO x

    3.3 Effect of supports on the performance of the catalyst co-impregnated Pd and MnO x

    3.3.1 Activity of catalysts

    Fig.5 reveals the activity of the catalyst co-impregnated Pd and MnOxon various supports under different space velocities,respectively.For space velocity of 380000 h-1,O3conversions,at 14°C are 82%,82%,77%,and 68%,O3complete conversion temperatures are 36,36,38,and 48°C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 450000 h-1,O3conversions at 14°C are 72%,68%,64%,and 58%,O3complete conversion temperatures are 50,56,59,and 65 °C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 510000 h-1,O3conversions at 14°C are 60%,52%,50%,and 40%,O3complete conversion temperatures are 66,78,80,and 88 °C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.For space velocity of 580000 h-1,O3conversions at 14°C are 43%,34%,36%,and 28%,O3complete conversion temperatures are 86,100,94,and 112°C corresponding to La-Al2O3,SiO2,γ-Al2O3,and Zr-Al2O3supports,respectively.It can be seen that the Pd-MnOx/La-Al2O3catalyst has the best activity;the Pd-MnOx/SiO2catalyst has better activity when the space velocity varied from 380000 to 510000 h-1,however,its activity is slightly weaker than that of the Pd-MnOx/γ-Al2O3catalyst at the space velocity of 580000 h-1;the activity of the Pd-MnOx/Zr-Al2O3catalyst is the worst in all the catalysts.

    Fig.5 Effect of supports on the catalytic performance of samples co-impregnated Pd and MnO xunder different space velocities

    3.3.2 XRD characterization of catalysts

    Fig.6 shows XRD patterns of samples co-impregnated Pd and MnOxon different supports.The diffraction peaks of supports were observed in XRD patterns for all of the samples.For example,SiO2was observed in the Pd-MnOx/SiO2catalyst.The γ-Al2O3was present in the Al2O3-based catalysts.The weak diffraction peaks of MnO2were appeared,indicating that MnO2was in the presence of microcrystalline due to low MnO2content and high dispersion on the surface of supports.In addition,a weak diffraction peak of PdO was also emerged,implying that PdO was evenly dispersed on the surface of supports,and was a microcrystalline.

    3.3.3 Textural property of catalysts

    Fig.6 XRD patterns of samples co-impregnated Pd and MnO xon different supports

    Table 2 Textural properties of the samples co-impregnated Pd and MnO xon different supports

    As shown in Table 2,the surface areas of the Pd-MnO2/SiO2,Pd-MnO2/γ-Al2O3,and Pd-MnO2/Zr-Al2O3are large,whereas the surface area of the Pd-MnO2/La-Al2O3is the least.Total pore volume is almost the same for the Pd-MnO2/γ-Al2O3,Pd-MnO2/La-Al2O3,and Pd-MnO2/Zr-Al2O3,while pore volume of the Pd-MnO2/SiO2is the least.The average pore diameter of the Pd-MnO2/La-Al2O3is the largest,in favor of O3mass transfer under high space velocity.The average pore diameter of the Pd-MnO2/SiO2catalyst is the least.The textural property of the Pd-MnO2/SiO2catalyst is related to its support,which has large surface area and small average pore diameter.21,22Large surface area is in favor of O3adsorption on the SiO2support.However,its small pore volume and small average pore diameter make against the mass transfer of O3molecules,especially,under high space velocity.Therefore,the activity of the Pd-MnO2/SiO2catalyst sharply declined with the increase of space velocity.

    3.3.4 XPS of catalysts

    Fig.7 Mn 2p3/2XPS spectra for the samples co-impregnated Pd and MnO xon different supports

    Table 3 XPS results of Mn 2p3/2for the samples co-impregnated Pd and MnO xon different supports

    Fig.7 shows Mn 2p3/2XPS spectra for the samples co-impregnated Pd and MnOxon different supports.According to literature,23,24the binding energies of Mn 2p3/2were 640.8,641.8,and 642.6 eV for Mn(II),Mn(III),and Mn(IV),respectively.24,25As shown in Fig.7,valence state of Mn is+3 on the surface of the Pd-MnOx/SiO2catalyst.Although XRD pattern(Fig.6)shows MnO2microcrystalline,it is possible that negative charge in SiO2support was transferred into Mn4+due to strong interaction between MnOxand SiO2support,resulting in the formation of Mn2O3on the surface of the catalyst.Valence states of Mn are+2 and+3 on the surface of the Pd-MnOx/La-Al2O3catalyst.It indicates that MnOxis in the presence of MnO and Mn2O3on the surface of the catalyst,and there is a strong interaction between MnOxand La-Al2O3support.Valence states of Mn are+2 and+4 on the surfaces of the Pd-MnOx/γ-Al2O3catalyst and the Pd-MnOx/Zr-Al2O3catalyst.Namely,MnO,Mn3O4,or Mn5O8formed by Mn4+got electrons from the support(γ-Al2O3or Zr-Al2O3)on the surface of the catalysts.The relative amount of Mn2+,Mn3+,and Mn4+species on the surface of samples is listed in Table 3.

    3.3.5 TPR of catalysts

    Fig.8 exhibits H2-TPR profiles of samples co-impregnated Pd and MnOxon different supports.It can be seen that support obviously affects the reducibility of PdO and MnOx.For the Pd-MnOx/SiO2catalyst,a large reduction peak around 66-160°C can be divided into two peaks at 102 and 132°C,which represent the reduction of PdO and MnOx,respectively.The reduction peak of MnOxobviously shifted towards low temperature due to strong interaction between MnOxand SiO2support,in agreement with the result of XPS analysis.Namely,MnOxspecies is highly active and is easily reduced for the Pd-MnOx/SiO2catalyst.For the Pd-MnOx/La-Al2O3catalyst,a large reduction peak around 58-200°C can be divided into two peaks at 116 and 145°C,which are ascribed to the reduction of PdO and MnOx,respectively.18The reduction temperatures of PdO and MnOxare low for Pd-MnOx/SiO2and Pd-MnOx/La-Al2O3,implying high reducibility and better activity of PdO and MnOx.The peak at 155°C is due to the reduction of PdO,18the peak at 210°C is ascribed as MnO2reduction to Mn3O4,the peak at 430°C belongs to Mn3O4reducing to MnO.19The reduction peak areas of PdO and MnOxare large for the Pd-MnOx/γ-Al2O3catalyst,leading to better catalytic performance for O3decomposition.A peak at 120°C is attributed to the reduction of PdO,small peaks around 180 and 260°C are ascribed to the reduction of MnOxfor the Pd-MnOx/Zr-Al2O3catalyst.The catalyst has less activity,which is related to poor reducibility of MnOx.

    Fig.8 H2-TPR profiles of samples co-impregnated Pd and MnO xon different supports

    Lin et al.26supposed an interaction of metal with catalyst support,and adsorption ability of support affected the activity of catalyst.According to the result of H2-TPR,MnOxhas high reducibility due to strong interaction between MnOxand SiO2support,in favor of Mnn+participating in O3decomposition.27SiO2is a good adsorbent for O3,and H2O molecules were weakly adsorbed on the surface of SiO2,hardly compete with O3for adsorption under high humidity.26Moreover,mild acidic SiO2support promotes the formation of oxygen species intermediates(e.g.,O3-and O-),which would enhance the adsorption and decomposition of O3.28These factors are in favor of O3decomposition.Therefore,the Pd-MnOx/SiO2catalyst has excellent catalytic activity.However,when the space velocity increased a lot,the activity of the Pd-MnOx/SiO2catalyst was drastically declined due to small pore diameter going against mass transfer of O3molecules and its products.For the Pd-MnOx/La-Al2O3catalyst,both high reducibility of PdO and MnOxand large average pore diameter are in favor of O3decomposition under high space velocity.Therefore,the catalyst shows the best catalytic performance.

    3.4 Durability of catalyst

    O3(6.0 ×10-7)was continuously decomposed at 90°C for 10 days on the Pd-MnOx/γ-Al2O3catalyst under space velocity of 580000 h-1and RH of 85%-90%.The activity of the catalyst hold steady,and the washcoat of catalyst did not desquamate,which are related to stable physicochemical properties of the γ-Al2O3support,active species of Pd and MnOx,and better viscidity of the support.

    4 Conclusions

    When active Pd and MnOxcoexist in the Pd-MnOx/γ-Al2O3catalyst,its activity is higher than that of the Pd or MnOxcatalyst(e.g.,Pd/γ-Al2O3or MnOx/γ-Al2O3).The catalyst co-impregnated Pd and MnOxhas better activity than the catalyst impregnated Pd or MnOxsequentially.The supports have significant impacts on catalytic activity for O3decomposition.The Pd-MnOx/La-Al2O3catalyst has the best activity.Next is the catalyst using SiO2as a support.Again is the catalyst using γ-Al2O3as a support.Finally,the Pd-MnOx/Zr-Al2O3sample has the worst catalytic performance in all of the catalysts.The activity of catalysts prepared on different supports is nearly in agreement with the reducibility of Pd and MnOx.Ground-level ozone would be completely decomposed if the Pd-MnOx/La-Al2O3catalyst was coated on vehicle radiators,in which their temperature ranged from 20 to 90°C.Therefore,the as-prepared catalyst has a potential applicable value.

    (1)Gryparis,A.;Forsberg,B.;Katsouyanni,K.;Analitis,A.;Touloumi,G.;Schwartz,J.;Samoli,E.;Medina,S.;Anderson,H.R.;Niciu,E.M.American Journal of Respiratory and Critical Care Medicine 2004,170,1080.doi:10.1164/rccm.200403-333OC

    (2)Wan,W.X.;Xia,Y.J.;Zhang,H.X.;Wang,J.;Wang,X.K.Acta Ecologica Sinica 2013,33(4),1098. [萬(wàn)五星,夏亞軍,張紅星,王 嬌,王效科.生態(tài)學(xué)報(bào),2013,33(4),1098.]doi:10.5846/stxb

    (3)Karlsson,P.E.;Pleijel,H.;Belhaj,M.;Danielsson,H.;Dahlin,B.;Andersson,M.;Haneeon,M.;Munthe,J.;Grennfelt,P.AMBIO 2005,34,32.

    (5)Dhandapani,B.;Oyama,S.T.Appl.Catal.B 1997,11,129.doi:10.1016/S0926-3373(96)00044-6

    (6)Japan Air Cleaning Association.Air Cleaning Handbook;Ohm Press:Tokyo,1981;p178

    (7)Zhang,B.;Shi,R.;Zhang,P.Y.;Xu,J.H.Rare Metal Mat.Eng.2010,39(4),692.[張 博,史 蕊,張彭義,徐九華. 稀有金屬材料與工程,2010,39(4),692.]

    (8)Zhang,B.;Zhang,P.Y.;Shi,R.;Wang,H.J.Chin.J.Catal.2009,30(3),235.[張 博,張彭義,史 蕊,王化軍.催化學(xué)報(bào),2009,30(3),235.]

    (9)Yu,Q.W.;Zhao,M.;Liu,Z.M.;Zhang,X.Y.;Zheng,L.M.;Chen,Y.Q.;Gong,M.C.Chin.J.Catal.2009,30(1),1.[余全偉,趙 明,劉志敏,張曉玉,鄭靈敏,陳耀強(qiáng),龔茂初.催化學(xué)報(bào),2009,30(1),1.]doi:10.1016/S1872-2067(08)60082-0

    (10)Pan,H.;Zhou,L.N.;Zhu,Y.;Peng,N.;Gong,M.C.;Chen,Y.Q.Chin.J.Catal.2011,32(6),1040.[潘 浩,周麗娜,朱藝,彭 娜,龔茂初,陳耀強(qiáng).催化學(xué)報(bào),2011,32(6),1040.]

    (11)Zhou,L.N.;Chen,Y.Q.;Ren,C.J.;Gong,M.C.Chin.J.Inorg.Chem.2013,29(11),2363.[周麗娜,陳耀強(qiáng),任成軍,龔茂初.無(wú)機(jī)化學(xué)學(xué)報(bào),2013,29(11),2363.]

    (12)Thompson,A.M.Science 1992,256,1157.doi:10.1126/science.256.5060.1157

    (13)Russell,A.;Milford.J.;Bergin,M.S.;McBride,S.;McNair,L.;Yang,Y.;Stockwell,W.R.;Croes,B.Science 1995,269,491.doi:10.1126/science.269.5223.491

    (14)Yu,L.P.;Jia,J.J.J.Shandong Univ.Sci.Technol.Nat.Sci.2001,20(4),111.[于林平,賈建軍.山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,20(4),111.]

    (15)Sadao Terui,H.;Yoshiyuki Yokota,S.Catalyst and Method of Preparing the Catalyst.US Patent,5187137,1993-02-16.

    (16)Kameya,T.;Urano,K.J.Environ.Eng.2002,128,286.doi:10.1061/(ASCE)0733-9372(2002)128:3(286)

    (17)Wu,M.C.;Kelly,N.A.Appl.Catal.B 1998,18,93.doi:10.1016/S0926-3373(98)00028-9

    (18)Yao,Y.L.;Fang,R.M.;Shi,Z.H.;Gong,M.C.;Chen,Y.Q.Chin.J.Catal.2011,32(4),589.[姚艷玲,方瑞梅,史忠華,龔茂初,陳耀強(qiáng).催化學(xué)報(bào),2011,32(4),589.]

    (19)Rezaei,E.;Soltan,J.;Chen,N.;Lin,J.R.Chem.Eng.J.2013,214,219.doi:10.1016/j.cej.2012.10.044

    (20)Xu,G.P.;Zhu,Y.X.;Ma,J.;Yan,H.J.;Xie,Y.C.Stud.Surf.Sci.Catal.1997,11,333.

    (21)Ren,C.J.;Qiu,W.;Chen,Y.Q.Sep.Purif.Technol.2013,107,264.doi:10.1016/j.seppur.2013.01.037

    (22)Qiu,W.;Ren,C.J.;Gong,M.C.;Hou,Y.Z.;Chen,Y.Q.Acta Phys.-Chim.Sin.2011,27,1487.[仇 偉,任成軍,龔茂初,侯云澤,陳耀強(qiáng).物理化學(xué)學(xué)報(bào),2011,27,1487.]doi:10.3866/PKU.WHXB20110621

    (23)Santos,V.P.;Pereira,M.F.R.;órfaˇo,J.J.M.;Figueiredo,J.L.Appl.Catal.B 2010,99,353.doi:10.1016/j.apcatb.2010.07.007

    (24)Wei,Y.J.;Yan,L.Y.;Wang,C.Z.;Xu,X.G.;Wu,F.;Chen,G.J.Phys.Chem.B 2004,108,18547.doi:10.1021/jp0479522

    (25)O′Shea,V.A.D.P.;álvarez-Galván,M.C.;Fierro,J.L.G.;Arias,P.L.Appl.Catal.B 2005,57,191.doi:10.1016/j.apcatb.2004.11.001

    (26)Lin,J.J.;Kawai,A.;Nakajima,T.Appl.Catal.B 2002,39,157.doi:10.1016/S0926-3373(02)00081-4

    (27)Einaga,H.;Harada,M.;Futamura,S.Chem.Phys.Lett.2005,408,377.doi:10.1016/j.cplett.2005.04.061

    (28)Kumar,N.;Konova,P.;Naydenov,A.;Salmi,T.;Murzin,D.Y.;Heikill?,T.;Lehto,V.P.Catal.Today 2007,119,342.doi:10.1016/j.cattod.2006.08.048

    猜你喜歡
    學(xué)報(bào)化學(xué)
    致敬學(xué)報(bào)40年
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    《深空探測(cè)學(xué)報(bào)》
    Effects of Experimental Conditions on The Morphology and Photocurrent Density of TiO2 Nanorods
    老熟女久久久| 精品少妇内射三级| 免费大片18禁| 热re99久久国产66热| 一区二区三区乱码不卡18| 久久 成人 亚洲| 日日摸夜夜添夜夜爱| 亚洲精品久久午夜乱码| 日日爽夜夜爽网站| 精品卡一卡二卡四卡免费| 亚洲精品国产av成人精品| 2021少妇久久久久久久久久久| 国产精品熟女久久久久浪| 9色porny在线观看| 精品第一国产精品| 男女国产视频网站| 黄片播放在线免费| 青春草亚洲视频在线观看| 欧美另类一区| 成人18禁高潮啪啪吃奶动态图| 久久久久人妻精品一区果冻| 最近中文字幕高清免费大全6| 免费观看无遮挡的男女| 青春草国产在线视频| 日韩精品免费视频一区二区三区 | 日韩三级伦理在线观看| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 亚洲第一区二区三区不卡| 亚洲天堂av无毛| 亚洲欧洲国产日韩| 成人国产av品久久久| 免费黄频网站在线观看国产| av在线播放精品| av天堂久久9| 国产亚洲午夜精品一区二区久久| 一级a做视频免费观看| 午夜老司机福利剧场| av女优亚洲男人天堂| 18禁观看日本| 色网站视频免费| 亚洲国产精品专区欧美| 一本大道久久a久久精品| 十八禁高潮呻吟视频| 夫妻性生交免费视频一级片| 桃花免费在线播放| 精品一区二区三区视频在线| 久热这里只有精品99| 中文天堂在线官网| 免费久久久久久久精品成人欧美视频 | a级毛片黄视频| 夜夜爽夜夜爽视频| 亚洲精品视频女| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产av成人精品| av黄色大香蕉| 国产免费现黄频在线看| 日韩伦理黄色片| 校园人妻丝袜中文字幕| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 成人黄色视频免费在线看| 人人澡人人妻人| 建设人人有责人人尽责人人享有的| 亚洲精华国产精华液的使用体验| 国产一区二区三区av在线| 久久99热这里只频精品6学生| 欧美丝袜亚洲另类| 大香蕉久久网| 亚洲精品色激情综合| 欧美人与性动交α欧美软件 | 久久人人爽人人爽人人片va| 成年人午夜在线观看视频| 免费少妇av软件| 永久网站在线| 黑人欧美特级aaaaaa片| 激情视频va一区二区三区| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 久久青草综合色| 欧美丝袜亚洲另类| 国产成人精品在线电影| 久久久久视频综合| 久久精品夜色国产| 蜜桃在线观看..| 大香蕉久久成人网| 午夜福利视频精品| 久久久a久久爽久久v久久| 国产在线免费精品| 99久久中文字幕三级久久日本| 最近手机中文字幕大全| 80岁老熟妇乱子伦牲交| 国产精品一国产av| 午夜91福利影院| 国产亚洲精品第一综合不卡 | 麻豆乱淫一区二区| 国产精品一区二区在线观看99| 一区二区三区四区激情视频| 国产精品久久久久久av不卡| 免费观看无遮挡的男女| 2021少妇久久久久久久久久久| 韩国高清视频一区二区三区| tube8黄色片| 男人添女人高潮全过程视频| 日本欧美视频一区| 人妻一区二区av| 成人毛片60女人毛片免费| 一区二区av电影网| 曰老女人黄片| 国产探花极品一区二区| 最新中文字幕久久久久| 国产av国产精品国产| 97人妻天天添夜夜摸| 久久久精品区二区三区| 新久久久久国产一级毛片| 18禁国产床啪视频网站| 国产成人精品在线电影| 亚洲激情五月婷婷啪啪| 亚洲国产av新网站| 欧美精品av麻豆av| a级毛片黄视频| 日韩精品免费视频一区二区三区 | 综合色丁香网| 一区二区三区乱码不卡18| 亚洲精品国产av成人精品| 91精品国产国语对白视频| 国产在视频线精品| 国产乱来视频区| videos熟女内射| 日本黄色日本黄色录像| 一级,二级,三级黄色视频| 国产成人免费观看mmmm| 人人澡人人妻人| 国产精品久久久久久久久免| 国产成人精品久久久久久| 国产精品三级大全| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站| 一级毛片电影观看| 久久人人97超碰香蕉20202| 久久人妻熟女aⅴ| 日本猛色少妇xxxxx猛交久久| 一二三四在线观看免费中文在 | 22中文网久久字幕| 黄片无遮挡物在线观看| 一本色道久久久久久精品综合| 免费大片18禁| 最后的刺客免费高清国语| 欧美3d第一页| 免费人成在线观看视频色| 人人妻人人澡人人爽人人夜夜| 日韩伦理黄色片| 一区二区三区四区激情视频| 免费人成在线观看视频色| 日本与韩国留学比较| 热re99久久国产66热| 久久国产精品男人的天堂亚洲 | 韩国精品一区二区三区 | 婷婷色av中文字幕| 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 国产黄色视频一区二区在线观看| 女人久久www免费人成看片| 桃花免费在线播放| a级毛色黄片| 国产一区二区激情短视频 | 校园人妻丝袜中文字幕| 国产精品一区www在线观看| 国产精品蜜桃在线观看| 人妻 亚洲 视频| 99精国产麻豆久久婷婷| 免费人妻精品一区二区三区视频| 日韩三级伦理在线观看| 美女福利国产在线| 午夜激情av网站| 精品一品国产午夜福利视频| 大香蕉久久成人网| 亚洲综合精品二区| 亚洲精品美女久久久久99蜜臀 | 久久久国产欧美日韩av| av播播在线观看一区| 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 狠狠婷婷综合久久久久久88av| 日韩伦理黄色片| √禁漫天堂资源中文www| 免费观看性生交大片5| 国产免费一区二区三区四区乱码| 久久久久久人人人人人| 亚洲性久久影院| 波多野结衣一区麻豆| 亚洲婷婷狠狠爱综合网| 亚洲丝袜综合中文字幕| 国产极品粉嫩免费观看在线| 欧美日韩av久久| 国产一区二区三区综合在线观看 | 一区二区日韩欧美中文字幕 | 亚洲av免费高清在线观看| 人妻 亚洲 视频| 久久精品国产自在天天线| 国内精品宾馆在线| 日本黄色日本黄色录像| 18禁裸乳无遮挡动漫免费视频| 国产精品一区www在线观看| 在线精品无人区一区二区三| 亚洲成国产人片在线观看| 欧美成人午夜精品| 精品熟女少妇av免费看| 高清不卡的av网站| 赤兔流量卡办理| 国产国语露脸激情在线看| 国产精品一区www在线观看| 日本黄色日本黄色录像| 欧美少妇被猛烈插入视频| 18禁动态无遮挡网站| 大话2 男鬼变身卡| 丝袜美足系列| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久| 国产精品嫩草影院av在线观看| 高清视频免费观看一区二区| 亚洲av男天堂| 精品第一国产精品| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 日韩一区二区三区影片| 精品国产一区二区三区久久久樱花| 男女边吃奶边做爰视频| av黄色大香蕉| 亚洲熟女精品中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 久久久久人妻精品一区果冻| 男女午夜视频在线观看 | 亚洲伊人色综图| 你懂的网址亚洲精品在线观看| 狂野欧美激情性xxxx在线观看| 丁香六月天网| 日本午夜av视频| 免费日韩欧美在线观看| 午夜福利视频在线观看免费| 国产精品人妻久久久久久| 日韩av在线免费看完整版不卡| 亚洲国产欧美在线一区| 我要看黄色一级片免费的| 亚洲欧美色中文字幕在线| 久久99一区二区三区| 啦啦啦在线观看免费高清www| 国产片特级美女逼逼视频| h视频一区二区三区| 汤姆久久久久久久影院中文字幕| 两个人看的免费小视频| 午夜影院在线不卡| 日本午夜av视频| 大香蕉97超碰在线| 国产精品一区二区在线观看99| 国产日韩一区二区三区精品不卡| 男女无遮挡免费网站观看| 免费大片黄手机在线观看| 亚洲精品一二三| 日本与韩国留学比较| 美女xxoo啪啪120秒动态图| 婷婷色av中文字幕| 久久99精品国语久久久| 久久国内精品自在自线图片| 国产免费现黄频在线看| 在线观看美女被高潮喷水网站| 巨乳人妻的诱惑在线观看| 男人操女人黄网站| 曰老女人黄片| 欧美日本中文国产一区发布| 国产麻豆69| 久久97久久精品| 秋霞在线观看毛片| 考比视频在线观看| 免费高清在线观看视频在线观看| 男女高潮啪啪啪动态图| 日韩 亚洲 欧美在线| 亚洲成av片中文字幕在线观看 | 久久av网站| 久久精品久久久久久噜噜老黄| 最后的刺客免费高清国语| 国产一区二区三区综合在线观看 | 国产欧美亚洲国产| 国产综合精华液| 国产淫语在线视频| 精品久久久久久电影网| 人妻系列 视频| 国产免费福利视频在线观看| av电影中文网址| 女性生殖器流出的白浆| 日本av手机在线免费观看| av视频免费观看在线观看| www.色视频.com| 激情视频va一区二区三区| 成人毛片60女人毛片免费| 精品久久久精品久久久| 国产精品一区二区在线观看99| 久久久久久久精品精品| 国产精品人妻久久久久久| 一边亲一边摸免费视频| 久久久a久久爽久久v久久| 一区二区av电影网| 亚洲av综合色区一区| 这个男人来自地球电影免费观看 | 国精品久久久久久国模美| 18+在线观看网站| 日韩大片免费观看网站| 丁香六月天网| 精品久久久久久电影网| 九九爱精品视频在线观看| 成人手机av| 99热6这里只有精品| 久久99一区二区三区| av电影中文网址| 国产一区二区激情短视频 | 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 国产免费视频播放在线视频| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧洲精品一区二区精品久久久 | 一级片'在线观看视频| videossex国产| 九草在线视频观看| av国产精品久久久久影院| 日韩在线高清观看一区二区三区| 国产成人免费观看mmmm| 女人被躁到高潮嗷嗷叫费观| 国产精品一国产av| 亚洲av综合色区一区| 国产精品偷伦视频观看了| 在线 av 中文字幕| 在线天堂最新版资源| av卡一久久| 亚洲性久久影院| 色哟哟·www| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 久热久热在线精品观看| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影小说| 色网站视频免费| 久久韩国三级中文字幕| 久久久久久久久久久免费av| 久久99热这里只频精品6学生| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费av中文字幕在线| 亚洲第一av免费看| 在线观看三级黄色| 秋霞伦理黄片| 国产男女内射视频| 亚洲精品久久成人aⅴ小说| 久久久久视频综合| 亚洲第一av免费看| 色哟哟·www| 丝袜喷水一区| 成人毛片a级毛片在线播放| 日本猛色少妇xxxxx猛交久久| 亚洲成人一二三区av| 女人久久www免费人成看片| 18禁裸乳无遮挡动漫免费视频| 超碰97精品在线观看| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 成年人午夜在线观看视频| 精品酒店卫生间| 欧美精品国产亚洲| 国产欧美日韩一区二区三区在线| 日本-黄色视频高清免费观看| 两个人看的免费小视频| 97在线视频观看| 女的被弄到高潮叫床怎么办| 国产成人精品无人区| av在线播放精品| 人妻 亚洲 视频| 极品人妻少妇av视频| 天堂俺去俺来也www色官网| 日本-黄色视频高清免费观看| 久久99热这里只频精品6学生| 国产一级毛片在线| 欧美日韩综合久久久久久| 国产成人a∨麻豆精品| 国产成人精品在线电影| 卡戴珊不雅视频在线播放| 色94色欧美一区二区| xxxhd国产人妻xxx| 亚洲成色77777| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 欧美人与性动交α欧美软件 | 亚洲精品第二区| 日韩av在线免费看完整版不卡| 国产精品99久久99久久久不卡 | 全区人妻精品视频| 女性被躁到高潮视频| 中文天堂在线官网| 最近2019中文字幕mv第一页| 久久99蜜桃精品久久| 在线免费观看不下载黄p国产| 日产精品乱码卡一卡2卡三| a级毛色黄片| 日本与韩国留学比较| 国产乱来视频区| 国产一区二区三区av在线| 丰满饥渴人妻一区二区三| 日本与韩国留学比较| 51国产日韩欧美| 超色免费av| 国产69精品久久久久777片| 国产精品一国产av| 18禁动态无遮挡网站| 69精品国产乱码久久久| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| 高清在线视频一区二区三区| 在线观看三级黄色| 天天影视国产精品| 免费av中文字幕在线| 亚洲精品久久成人aⅴ小说| 中文字幕最新亚洲高清| 亚洲精品美女久久久久99蜜臀 | 久久99一区二区三区| 欧美日韩av久久| 蜜臀久久99精品久久宅男| 国产乱来视频区| 日本午夜av视频| 中文字幕制服av| 国产成人91sexporn| 国产乱人偷精品视频| 精品午夜福利在线看| 欧美97在线视频| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频| 男男h啪啪无遮挡| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 少妇的逼水好多| 亚洲情色 制服丝袜| 亚洲欧美成人精品一区二区| 亚洲 欧美一区二区三区| 国产免费现黄频在线看| 女性被躁到高潮视频| 国产黄色免费在线视频| 丝袜在线中文字幕| 日韩大片免费观看网站| 久久精品aⅴ一区二区三区四区 | 欧美人与性动交α欧美软件 | 丰满饥渴人妻一区二区三| 美女主播在线视频| 丁香六月天网| 伦理电影免费视频| 91精品三级在线观看| 午夜福利视频精品| 在线天堂最新版资源| a 毛片基地| 街头女战士在线观看网站| 18禁动态无遮挡网站| 我的女老师完整版在线观看| 日韩一区二区视频免费看| 久久人人爽av亚洲精品天堂| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 免费人妻精品一区二区三区视频| 中文字幕免费在线视频6| 成人国产av品久久久| 国产日韩欧美视频二区| 亚洲天堂av无毛| 亚洲精品国产av蜜桃| 爱豆传媒免费全集在线观看| 日韩一区二区视频免费看| 综合色丁香网| 欧美日韩综合久久久久久| 国产 精品1| 国产精品成人在线| 老熟女久久久| 国国产精品蜜臀av免费| 亚洲,欧美,日韩| 成人无遮挡网站| 日本黄大片高清| 99热6这里只有精品| 美女主播在线视频| 巨乳人妻的诱惑在线观看| 欧美另类一区| 国产成人精品福利久久| 成年人午夜在线观看视频| 国产精品国产三级专区第一集| 亚洲成人一二三区av| 精品久久久久久电影网| 一区二区日韩欧美中文字幕 | 考比视频在线观看| 亚洲 欧美一区二区三区| 亚洲第一区二区三区不卡| 少妇 在线观看| 最新中文字幕久久久久| 成年女人在线观看亚洲视频| 色视频在线一区二区三区| 人体艺术视频欧美日本| 黄色视频在线播放观看不卡| 如日韩欧美国产精品一区二区三区| 国产欧美日韩一区二区三区在线| 啦啦啦在线观看免费高清www| 日韩成人伦理影院| 丰满少妇做爰视频| 午夜日本视频在线| 女人被躁到高潮嗷嗷叫费观| 又粗又硬又长又爽又黄的视频| 亚洲国产精品999| 咕卡用的链子| 国产免费一级a男人的天堂| 99热这里只有是精品在线观看| 日本vs欧美在线观看视频| 久久婷婷青草| 国产1区2区3区精品| 成年美女黄网站色视频大全免费| 麻豆乱淫一区二区| 少妇人妻久久综合中文| kizo精华| 亚洲综合精品二区| 日产精品乱码卡一卡2卡三| 高清在线视频一区二区三区| www.熟女人妻精品国产 | 亚洲欧美一区二区三区国产| 欧美bdsm另类| 日韩一区二区视频免费看| 免费观看性生交大片5| 寂寞人妻少妇视频99o| 一级黄片播放器| 国产成人91sexporn| 97超碰精品成人国产| 美女内射精品一级片tv| freevideosex欧美| 伊人久久国产一区二区| 97在线视频观看| 国产精品.久久久| 亚洲欧美一区二区三区国产| 街头女战士在线观看网站| 女人被躁到高潮嗷嗷叫费观| 亚洲精品aⅴ在线观看| 欧美精品人与动牲交sv欧美| 卡戴珊不雅视频在线播放| 午夜福利,免费看| 黑人高潮一二区| av在线老鸭窝| 啦啦啦在线观看免费高清www| 黑人巨大精品欧美一区二区蜜桃 | 人妻人人澡人人爽人人| 色5月婷婷丁香| 中国美白少妇内射xxxbb| av免费在线看不卡| 男人舔女人的私密视频| 国产精品成人在线| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 美女国产高潮福利片在线看| 夫妻性生交免费视频一级片| 日韩一区二区三区影片| 美女大奶头黄色视频| 欧美国产精品va在线观看不卡| 久久久久久久久久久免费av| 青青草视频在线视频观看| 少妇的逼水好多| 精品少妇久久久久久888优播| 国产精品不卡视频一区二区| 一边亲一边摸免费视频| 亚洲精品久久成人aⅴ小说| 五月玫瑰六月丁香| 天天影视国产精品| av免费在线看不卡| 国产色爽女视频免费观看| 日韩大片免费观看网站| 97在线人人人人妻| 亚洲av男天堂| 精品亚洲成国产av| 国产男女内射视频| 中国美白少妇内射xxxbb| 午夜福利视频精品| 国产精品久久久久久久电影| 色婷婷久久久亚洲欧美| 精品人妻偷拍中文字幕| 欧美丝袜亚洲另类| 久久这里只有精品19| 亚洲欧美色中文字幕在线| 亚洲精品国产色婷婷电影| 99re6热这里在线精品视频| 国产av国产精品国产| 国产精品.久久久| 又黄又粗又硬又大视频| 香蕉丝袜av| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 久久久久精品性色| 天天躁夜夜躁狠狠久久av| 一边摸一边做爽爽视频免费| 99香蕉大伊视频| 久久精品国产亚洲av天美| 中文精品一卡2卡3卡4更新| 80岁老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 国产成人精品福利久久| 亚洲欧美清纯卡通| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 日本欧美视频一区| 精品第一国产精品| 国产精品一区二区在线观看99| 丝袜脚勾引网站| 午夜日本视频在线| 男人舔女人的私密视频| 黑人高潮一二区| 欧美老熟妇乱子伦牲交| 亚洲,一卡二卡三卡| 日本-黄色视频高清免费观看| 最近的中文字幕免费完整|