• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      小麥GDH1基因克隆及其功能標記開發(fā)

      2014-11-22 11:04:29李冰張照貴王佳佳
      山東農(nóng)業(yè)科學 2014年10期
      關(guān)鍵詞:小麥

      李冰 張照貴 王佳佳 等

      摘要:谷氨酸脫氫酶(glutamate dehydrogenase, GDH)在植物體內(nèi)催化合成谷氨酸的可逆反應(yīng),通過GDH固氮比谷氨酸合成酶途徑更節(jié)省能量。在植物大多數(shù)組織中,GDH1是該基因家族中表達最高的基因,比其他GDH成員具有更為重要的作用。本研究從普通小麥基因組中分離了TaGDH1基因在A、B、D染色體組的序列。針對TaGDH1a基因在基因組DNA序列1 900~1 983 bp位置存在的核苷酸差異設(shè)計了一個插入/缺失標記,同時將該標記定位在5A染色體上。

      關(guān)鍵詞:小麥;TaGDH1;同源克?。还δ軜擞?/p>

      中圖分類號:S512.103.3文獻標識號:A文章編號:1001-4942(2014)10-0006-06

      3討論

      普通小麥為異源六倍體(2n=6x=42),具有六個染色體組,在二倍體物種中為單拷貝的基因在普通小麥中可能有3個拷貝,分別由A、B和D三個亞基因組編碼,因此區(qū)分基因所在的染色體組比較困難[20]。郝麗芳等[21]在對小麥NOA基因所屬染色體組區(qū)分時,設(shè)計兩對保守的跨內(nèi)含子的引物,通過基因組PCR、克隆和測序后的序列多態(tài)性分析,確定了小麥基因組中至少存在3個NOA成員,結(jié)合基于毛細管電泳的片段分析將3個成員定位在6A、6B和6D染色體上。李亞青[22]等以中國春缺體-四體系為材料,用Southern雜交的方法將TaGSK1基因定位于第一同源群的1A、1B和1D染色體。張磊等[23]利用特異引物在中國春缺體-四體中擴增產(chǎn)物的長度差異,將TaCKX5基因定位在小麥的3A、3B和3D染色體上。本研究利用二倍體、四倍體中各染色體組與六倍體小麥中的相對應(yīng)染色體組基因相似度高的特點,將通過基因克隆獲得的二倍體、四倍體GDH1基因與六倍體小麥中的TaGDH1基因序列進行對比,以區(qū)分三條TaGDH1基因所屬的染色體組。同時結(jié)合中國春缺體-四體染色體定位和RIL群體連鎖分析的方法將TaGDH1a-InDel標記定位在5A染色體上。

      Andersen等[24]首先提出基因功能標記概念,功能標記的多態(tài)性來源于造成等位基因功能差異的DNA序列差異,可以進行基因型鑒定和基因型選擇。因此,開發(fā)功能標記對于提高小麥育種效率具有重要意義。本研究中TaGDH1a基因功能標記的開發(fā)有助于GDH1在小麥中功能的研究以及TaGDH1基因型的鑒別。碳、氮代謝直接影響作物經(jīng)濟產(chǎn)量。已有研究表明,小麥中大部分與馴化和產(chǎn)量形成有關(guān)的QTL位點都聚集在第一和第五同源群染色體上[25, 26]。其中5A染色體上已發(fā)現(xiàn)存在控制穗長、穗粒數(shù)、穗粒重等小麥產(chǎn)量性狀的主效QTL位點區(qū)域[27, 28]。本研究通過中國春缺體-四體系統(tǒng),結(jié)合連鎖分析的方法,成功將TaGDH1a基因定位到了小麥5A染色體上,為今后結(jié)合5A上已知產(chǎn)量性狀相關(guān)QTL研究TaGDH1基因功能奠定了基礎(chǔ)。

      參考文獻:

      [1]

      Windass J D, Worsey M J, Pioli E M, et al. Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus[J]. Nature, 1980, 287: 396-401.

      [2]Helling R B. Pathway choice in glutamate synthesis in Escherichia coli [J]. Journal of Bacteriology, 1998, 180: 4571-4575.

      [3]Fontaine J X, Tercé-Laforgue T, Bouton S, et al. Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana [J]. Plant Signaling and Behavior, 2013, 8:e23329.

      [4]沈成國, 余松烈. 一次結(jié)實植物的衰老與氮再分配[J]. 植物生理學通訊, 1998, 34(4): 288-296.

      [5]Kumar R G, Shah K, Dubey R S. Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance [J]. Plant Science, 2000, 156: 23-34.

      [6]Osuji G O, Braithwaite C. Signaling by glutamate dehydrogenase in response to pesticide treatment and nitrogen fertilization of peanut (Arachis hypogaea L.) [J]. Journal of Agricultural and Food Chemistry, 1999, 47: 3332-3344.

      [7]林清華, 李常健, 彭進, 等. NaCl 對水稻谷氨酸合酶和谷氨酸脫氫酶的脅迫作用[J]. 武漢植物學研究, 2000,18(3):206-210.

      [8]馬敬坤, 袁永澤, 歐吉權(quán), 等. 外源水楊酸對水稻(Oryza sativa L.) 幼苗根的 NaCl 脅迫緩解效應(yīng)[J]. 武漢大學學報: 理學版, 2006, 52(4):471-474.

      [9]Lu B, Yuan Y, Zhang C, et al. Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots [J]. Plant Science, 2005, 169:295-302.

      [10]Qiu X, Xie W, Lian X, et al. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation [J]. Plant Cell Reports, 2009, 28: 1115-1126.

      [11]Tercé-Laforgue T, Bedu M, Dargel-Grafin C, et al. Resolving the role of plant glutamate dehydrogenase: II. physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously [J]. Plant and Cell Physiology, 2013, 54: 1635-1647.

      [12]Hirel B, Bertin P, Quilleré I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize [J]. Plant Physiology, 2001, 125: 1258-1270.

      [13]Limami A M, Rouillon C, Glevarec G, et al. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase [J]. Plant Physiology, 2002, 130: 1860-1870.

      [14]Obara M, Kajiura M, Fukuta Y, et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2001, 52: 1209-1217.

      [15]Bagge M, Xia X, Lübberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10: 211-216.

      [16]喬麟軼, 張磊, 張文萍, 等. 小麥生長素結(jié)合基因TaABP1-D的克隆、功能標記開發(fā)及其與株高的關(guān)聯(lián)[J]. 作物學報, 2012, 38(11): 2034-2041.

      [17]劉亞男. 普通小麥細胞壁轉(zhuǎn)化酶基因TaCwi-Al的表達和直立密穗(DEP1)基因克隆與功能標記開發(fā)[D].北京:中國農(nóng)業(yè)科學院, 2012.

      [18]Devos K M, Gale M D. The use of random amplified polymorphic DNA markers in wheat [J]. Theoretical and Applied Genetics, 1992, 84: 567-572.

      [19]Haudry A, Cenci A, Ravel C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication[J]. Mol. Biol. Evol., 2007, 24: 1506-1517.

      [20]Lazo G R, Chao S, Hummel D D, et al. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.) EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map [J]. Genetics, 2004, 168: 585-593.

      [21]郝麗芳, 余春梅, 李斌, 等. 普通小麥中一氧化氮相關(guān)因子 (TaNOA) 編碼基因的克隆和分子生物學分析[J]. 生物工程學報, 2010, 26: 48-56.

      [22]李亞青,毛新國,趙寶存,等. 小麥糖原合成酶激酶基因(TaGSK1)的染色體定位[J]. 華北農(nóng)學報,2006,21(5):39-41.

      [23]張磊, 張寶石, 周榮華, 等. 小麥細胞分裂素氧化/脫氫酶基因(TaCKX5)的克隆及其染色體定位[J]. 中國農(nóng)業(yè)科學, 2008, 41(3):636-642.

      [24]Andersen J R, Lbberstedt T. Functional marks in plants [J]. Trends in Plant Science, 2003, 8:554-560.

      [25]Peng J, Ronin Y, Fahima T, et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat [J]. Proceedings of the National Academy of Sciences, 2003, 100: 2489-2494.

      [26]Brner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2002, 105: 921-936.

      [27]Jantasuriyarat C, Vales M I, Watson C J W, et al. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 108: 261-273.

      [28]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat [J]. Theoretical and Applied Genetics, 2000, 101: 1114-1121.

      [9]Lu B, Yuan Y, Zhang C, et al. Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots [J]. Plant Science, 2005, 169:295-302.

      [10]Qiu X, Xie W, Lian X, et al. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation [J]. Plant Cell Reports, 2009, 28: 1115-1126.

      [11]Tercé-Laforgue T, Bedu M, Dargel-Grafin C, et al. Resolving the role of plant glutamate dehydrogenase: II. physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously [J]. Plant and Cell Physiology, 2013, 54: 1635-1647.

      [12]Hirel B, Bertin P, Quilleré I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize [J]. Plant Physiology, 2001, 125: 1258-1270.

      [13]Limami A M, Rouillon C, Glevarec G, et al. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase [J]. Plant Physiology, 2002, 130: 1860-1870.

      [14]Obara M, Kajiura M, Fukuta Y, et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2001, 52: 1209-1217.

      [15]Bagge M, Xia X, Lübberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10: 211-216.

      [16]喬麟軼, 張磊, 張文萍, 等. 小麥生長素結(jié)合基因TaABP1-D的克隆、功能標記開發(fā)及其與株高的關(guān)聯(lián)[J]. 作物學報, 2012, 38(11): 2034-2041.

      [17]劉亞男. 普通小麥細胞壁轉(zhuǎn)化酶基因TaCwi-Al的表達和直立密穗(DEP1)基因克隆與功能標記開發(fā)[D].北京:中國農(nóng)業(yè)科學院, 2012.

      [18]Devos K M, Gale M D. The use of random amplified polymorphic DNA markers in wheat [J]. Theoretical and Applied Genetics, 1992, 84: 567-572.

      [19]Haudry A, Cenci A, Ravel C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication[J]. Mol. Biol. Evol., 2007, 24: 1506-1517.

      [20]Lazo G R, Chao S, Hummel D D, et al. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.) EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map [J]. Genetics, 2004, 168: 585-593.

      [21]郝麗芳, 余春梅, 李斌, 等. 普通小麥中一氧化氮相關(guān)因子 (TaNOA) 編碼基因的克隆和分子生物學分析[J]. 生物工程學報, 2010, 26: 48-56.

      [22]李亞青,毛新國,趙寶存,等. 小麥糖原合成酶激酶基因(TaGSK1)的染色體定位[J]. 華北農(nóng)學報,2006,21(5):39-41.

      [23]張磊, 張寶石, 周榮華, 等. 小麥細胞分裂素氧化/脫氫酶基因(TaCKX5)的克隆及其染色體定位[J]. 中國農(nóng)業(yè)科學, 2008, 41(3):636-642.

      [24]Andersen J R, Lbberstedt T. Functional marks in plants [J]. Trends in Plant Science, 2003, 8:554-560.

      [25]Peng J, Ronin Y, Fahima T, et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat [J]. Proceedings of the National Academy of Sciences, 2003, 100: 2489-2494.

      [26]Brner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2002, 105: 921-936.

      [27]Jantasuriyarat C, Vales M I, Watson C J W, et al. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 108: 261-273.

      [28]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat [J]. Theoretical and Applied Genetics, 2000, 101: 1114-1121.

      [9]Lu B, Yuan Y, Zhang C, et al. Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots [J]. Plant Science, 2005, 169:295-302.

      [10]Qiu X, Xie W, Lian X, et al. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation [J]. Plant Cell Reports, 2009, 28: 1115-1126.

      [11]Tercé-Laforgue T, Bedu M, Dargel-Grafin C, et al. Resolving the role of plant glutamate dehydrogenase: II. physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously [J]. Plant and Cell Physiology, 2013, 54: 1635-1647.

      [12]Hirel B, Bertin P, Quilleré I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize [J]. Plant Physiology, 2001, 125: 1258-1270.

      [13]Limami A M, Rouillon C, Glevarec G, et al. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase [J]. Plant Physiology, 2002, 130: 1860-1870.

      [14]Obara M, Kajiura M, Fukuta Y, et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2001, 52: 1209-1217.

      [15]Bagge M, Xia X, Lübberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10: 211-216.

      [16]喬麟軼, 張磊, 張文萍, 等. 小麥生長素結(jié)合基因TaABP1-D的克隆、功能標記開發(fā)及其與株高的關(guān)聯(lián)[J]. 作物學報, 2012, 38(11): 2034-2041.

      [17]劉亞男. 普通小麥細胞壁轉(zhuǎn)化酶基因TaCwi-Al的表達和直立密穗(DEP1)基因克隆與功能標記開發(fā)[D].北京:中國農(nóng)業(yè)科學院, 2012.

      [18]Devos K M, Gale M D. The use of random amplified polymorphic DNA markers in wheat [J]. Theoretical and Applied Genetics, 1992, 84: 567-572.

      [19]Haudry A, Cenci A, Ravel C, et al. Grinding up wheat: a massive loss of nucleotide diversity since domestication[J]. Mol. Biol. Evol., 2007, 24: 1506-1517.

      [20]Lazo G R, Chao S, Hummel D D, et al. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.) EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map [J]. Genetics, 2004, 168: 585-593.

      [21]郝麗芳, 余春梅, 李斌, 等. 普通小麥中一氧化氮相關(guān)因子 (TaNOA) 編碼基因的克隆和分子生物學分析[J]. 生物工程學報, 2010, 26: 48-56.

      [22]李亞青,毛新國,趙寶存,等. 小麥糖原合成酶激酶基因(TaGSK1)的染色體定位[J]. 華北農(nóng)學報,2006,21(5):39-41.

      [23]張磊, 張寶石, 周榮華, 等. 小麥細胞分裂素氧化/脫氫酶基因(TaCKX5)的克隆及其染色體定位[J]. 中國農(nóng)業(yè)科學, 2008, 41(3):636-642.

      [24]Andersen J R, Lbberstedt T. Functional marks in plants [J]. Trends in Plant Science, 2003, 8:554-560.

      [25]Peng J, Ronin Y, Fahima T, et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat [J]. Proceedings of the National Academy of Sciences, 2003, 100: 2489-2494.

      [26]Brner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2002, 105: 921-936.

      [27]Jantasuriyarat C, Vales M I, Watson C J W, et al. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 108: 261-273.

      [28]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat [J]. Theoretical and Applied Genetics, 2000, 101: 1114-1121.

      猜你喜歡
      小麥
      主產(chǎn)區(qū)小麥收購進度過七成
      小麥測產(chǎn)迎豐收
      小麥春季化控要掌握關(guān)鍵技術(shù)
      小麥常見三種病害咋防治
      孔令讓的“小麥育種夢”
      金橋(2021年10期)2021-11-05 07:23:28
      葉面施肥實現(xiàn)小麥畝增產(chǎn)83.8千克
      小麥高產(chǎn)栽培技術(shù)探討
      種植流翔高鈣小麥 促進農(nóng)民增收致富
      哭娃小麥
      新季小麥市場運行的變與不變
      赤城县| 突泉县| 温宿县| 额尔古纳市| 梧州市| 哈密市| 交城县| 浦城县| 互助| 囊谦县| 永靖县| 长武县| 德庆县| 正安县| 榕江县| 昭平县| 凤庆县| 海丰县| 水富县| 兴宁市| 宣化县| 禄丰县| 渑池县| 舒城县| 石楼县| 郸城县| 贵溪市| 阿克陶县| 天等县| 南部县| 固镇县| 卢龙县| 饶平县| 兖州市| 伊金霍洛旗| 康马县| 金山区| 眉山市| 威信县| 布尔津县| 朔州市|