王睿凱,桂志國(guó),張 權(quán),劉 祎
(中北大學(xué) 電子測(cè)試技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山西 太原 030051)
圖像增強(qiáng)是根據(jù)人類(lèi)視覺(jué)系統(tǒng)的物理特征來(lái)對(duì)圖像進(jìn)行變換[1].在遠(yuǎn)程遙感、醫(yī)學(xué)圖像分析等領(lǐng)域,圖像對(duì)比度和細(xì)節(jié)的增強(qiáng)具有重要的實(shí)際意義[2].但往往在增強(qiáng)對(duì)比度的同時(shí)會(huì)出現(xiàn)過(guò)度增強(qiáng)或增強(qiáng)不足,細(xì)節(jié)信息丟失等問(wèn)題,導(dǎo)致圖像質(zhì)量不好.然而,傳統(tǒng)的對(duì)比度增強(qiáng)算法并不能很好地解決這些問(wèn)題.傳統(tǒng)的方法主要有間接法和直接法[3],間接法主要指的是直方圖修正法.另一方面,在對(duì)比度增強(qiáng)的直接法中,需要定義一個(gè)對(duì)比度測(cè)度,通過(guò)調(diào)節(jié)對(duì)比度測(cè)度來(lái)實(shí)現(xiàn)對(duì)比度增強(qiáng)[4-6].目前常見(jiàn)的圖像對(duì)比度增強(qiáng)方法有直方圖均衡化[7-8],基于模糊集合理論的圖像增強(qiáng)[9]以及基于小波變換的圖像增強(qiáng)等.基于模糊集合理論的圖像增強(qiáng)與基于小波變換的圖像增強(qiáng)由于執(zhí)行速度較慢,限制了其應(yīng)用.直方圖均衡化圖像增強(qiáng)算法只考慮了圖像的整體信息,忽略了圖像的局部信息,它所改變的是圖像灰度的整體分布,容易出現(xiàn)圖像過(guò)增強(qiáng),還會(huì)因?yàn)榛叶燃?jí)過(guò)度合并產(chǎn)生細(xì)節(jié)信息丟失的現(xiàn)象.
近年來(lái),H.D.Cheng等人提出了基于同質(zhì)性測(cè)度的圖像對(duì)比度增強(qiáng)方法[10-11],該方法是通過(guò)同質(zhì)性定義圖像局部對(duì)比度,通過(guò)改變圖像局部的對(duì)比度來(lái)增強(qiáng)圖像.但是,H.D.Cheng等提出的方法僅僅是考慮到圖像的灰度信息,并沒(méi)有考慮圖像的其他特征,會(huì)造成細(xì)節(jié)信息不明顯.因此,結(jié)合文獻(xiàn)[12-13]中的思想,可以通過(guò)引入圖像邊緣信息測(cè)度的概念并組成特征向量來(lái)定量描述邊緣點(diǎn)所具有的一些本質(zhì)特征.由于圖像所具有的不確定性往往是由模糊性引起的,因此本文會(huì)在上述的基礎(chǔ)上通過(guò)模糊熵構(gòu)造圖像邊緣信息測(cè)度來(lái)定量描述邊緣點(diǎn)的三個(gè)本質(zhì)特征:領(lǐng)域內(nèi)灰度的分布具有有序性、方向性,灰度突變具有的結(jié)構(gòu)性[14],然后根據(jù)這三個(gè)特征測(cè)度來(lái)定義同質(zhì)性,進(jìn)而利用同質(zhì)性增強(qiáng)算法進(jìn)行增強(qiáng),同時(shí)在對(duì)比度增強(qiáng)的過(guò)程中引入非線(xiàn)性變換,來(lái)改進(jìn)指數(shù)系數(shù)的影響.這樣定義同質(zhì)性并且引入非線(xiàn)性變換可以有效地突出細(xì)節(jié)信息,并且對(duì)比度增強(qiáng)效果明顯.
同質(zhì)性對(duì)比度增強(qiáng)的關(guān)鍵是找到相關(guān)的信息測(cè)度來(lái)定義同質(zhì)性,本文將采用王保平等人的研究結(jié)果[15-17].由于模糊集理論在圖像的處理領(lǐng)域得到了很好的應(yīng)用,并且表現(xiàn)出優(yōu)于傳統(tǒng)方法的處理效果,因此文獻(xiàn)[14]在圖像模糊熵信息的基礎(chǔ)上,利用模糊熵構(gòu)造出了邊緣檢測(cè)性能更好的圖像信息測(cè)度,并用其來(lái)定量描述邊緣點(diǎn)的三個(gè)本質(zhì)特征:領(lǐng)域內(nèi)灰度分布是有序的,有方向性的,灰度突變具有結(jié)構(gòu)性.隸屬度函數(shù)定義如下:
式(1)表示圖中像素與其所屬于區(qū)域的隸屬程度,其差異越小隸屬度越大,反之越小.式中C為常數(shù),以保證0.5≤um(x(i,j))≤1;m為特征值.
可以將模糊熵定義如下:
為了度量圖像上的模糊集合的模糊屬性,將模糊熵測(cè)度定義為
由于圖像在邊緣點(diǎn)和非邊緣點(diǎn)鄰域內(nèi)的灰度分布不同(非邊緣點(diǎn)處比較平滑,邊緣點(diǎn)處差異較大),因此可以定義一種模糊熵測(cè)度來(lái)表示這種灰度分布的有序性.從圖像灰度矩陣中取一個(gè)中心在(i,j)的窗口,通過(guò)該窗口來(lái)定義領(lǐng)域一致性信息測(cè)度R(i,j)[13].
由式(4)可以看出,當(dāng)中心點(diǎn)處于邊緣點(diǎn)時(shí),窗口灰度差異比較大,因此R(i,j)較大;當(dāng)中心點(diǎn)處于非邊緣點(diǎn)時(shí)則較小.因此該值反應(yīng)了區(qū)域灰度的有序性特征,稱(chēng)其為有序性測(cè)度.
圖像灰度在邊緣處變化比較劇烈,而灰度梯度可用來(lái)描述其變化.在以(i,j)為中心的領(lǐng)域R={(k,l)‖k-i|≤L,|l-j|≤L}中,L是鄰域長(zhǎng)度的一半,lk是過(guò)中點(diǎn)角度為Ψk的一條直線(xiàn),將該鄰域分為兩半,其中0°≤um(x(i,j))≤180°(k=1,2…),則結(jié)構(gòu)性信息測(cè)度Q(i,j)定義為[13]
式中:g(p,q)表示點(diǎn)(p,q)處的梯度幅值.
若當(dāng)前鄰域內(nèi)存在過(guò)中心點(diǎn)的邊緣,當(dāng)lk方向和邊緣軌跡方向重合時(shí),Q(i,j)取得極大值,由于邊緣具有結(jié)構(gòu)性,處于軌跡上各點(diǎn)的梯度值比較接近且取得極大值,因此沿邊緣軌跡的梯度幅值的平均值Q(i,j)近似等于當(dāng)前像素點(diǎn)(i,j)處的梯度幅值;若是處在平滑區(qū),則無(wú)論lk取什么方向,Q(i,j)的值都比較接近且比較小,也近似等于當(dāng)前像素點(diǎn)(i,j)處的梯度值.根據(jù)梯度值的特征可以更好地確定邊緣信息.
方向性信息測(cè)度M(i,j)為[13]
若當(dāng)前鄰域內(nèi)存在過(guò)中心點(diǎn)的邊緣,當(dāng)lk方向沿邊緣軌跡時(shí)M(i,j)值較大,若處于平滑區(qū)則其值較小,因此反映了邊緣點(diǎn)內(nèi)灰度分布的方向性.
綜上所述,構(gòu)造的邊緣信息測(cè)度對(duì)圖像在灰度空間中所體現(xiàn)出的特征起到了放大作用,這樣更有利于對(duì)比度的增強(qiáng).因此本文將利用三個(gè)測(cè)度分量來(lái)定義同質(zhì)性(同質(zhì)性表示在鄰域里的一致性),采用三種信息測(cè)度可以更有效地突出細(xì)節(jié)信息.
本文將引進(jìn)上述的三個(gè)邊緣信息測(cè)度,然后采用H.D.Cheng等提出的同質(zhì)性定義模型來(lái)對(duì)同質(zhì)性定義.首先將三個(gè)測(cè)度歸一化,經(jīng)過(guò)歸一化后每個(gè)分量都處于[0,1]之間,分別用R,Q,M與各自鄰域內(nèi)所取到的最大值即Rmax,Qmax,Mmax相除,得到的R,Q,M便是歸一化后的結(jié)果.
由上述得到的三個(gè)測(cè)度分量可以看出,若是在鄰域里的灰度值完全一樣的話(huà),則R,Q,M這三個(gè)值都為0;若在相反的情況下時(shí),則近似于1.所以本文可得到由三個(gè)測(cè)度分量構(gòu)成的函數(shù)來(lái)表示同質(zhì)性,由此可以將同質(zhì)性定義如下:
式中:0≤i≤M-1;0≤j≤N-1;gij表示像素灰度值;wij指的是中心點(diǎn)為(i,j)的窗口.
在這里,為了方便,本文要將HO(gij,wij)歸一化,令HOij=HO(gij,wij).歸一化如下所示:
式中:HOmax=max{HOij}.
由于考慮到要增強(qiáng)圖像對(duì)比度,因此本文需要定義非同質(zhì)性
2.2.1 算法步驟
1)根據(jù)式(12)計(jì)算得出ψij.ψij的值越大,則表示在區(qū)域內(nèi)分布越不均勻.
2)計(jì)算窗口中非同質(zhì)灰度值的平均值.
式中:0≤i≤M-1;0≤j≤N-1;gpq是指像素點(diǎn)(p,q)的灰度值.這里獲取非同質(zhì)灰度值的均值是為了定義對(duì)比度.
3)計(jì)算對(duì)比度.
4)針對(duì)在H.D.Cheng等提出的同質(zhì)性對(duì)比度增強(qiáng)算法中,出現(xiàn)指數(shù)系數(shù)經(jīng)過(guò)多次試驗(yàn)后效果不理想,在選取系數(shù)時(shí)圖像對(duì)比度增強(qiáng)會(huì)出現(xiàn)噪聲影響的情況,本文根據(jù)選取適合的非線(xiàn)性變換能使對(duì)比度增強(qiáng)的效果加強(qiáng),并可以有效地突出細(xì)節(jié),提出了在非線(xiàn)性變換的基礎(chǔ)上進(jìn)行指數(shù)運(yùn)算.
在非線(xiàn)性函數(shù)f(x)的選取上考慮到非線(xiàn)性變換函數(shù)會(huì)直接影響處理效果,若|f(x)-x|比較小時(shí),圖像細(xì)節(jié)無(wú)法很明顯地突出;若|f(x)-x|比較大時(shí),則會(huì)使噪聲顯現(xiàn)出來(lái).本文采用多項(xiàng)式函數(shù)f(x)=4x-6x2+4x3-x4,則這個(gè)函數(shù)滿(mǎn)足凸變換,且f(0)=0,f(1)=1,f(x)≥x.綜上所述,本文采用的對(duì)比度變換的方法是:先對(duì)對(duì)比度進(jìn)行非線(xiàn)性變換,然后再做指數(shù)變換,具體式子如式(15)和式(16)所示.
式中:ξij為對(duì)比度放大系數(shù),它表示了對(duì)比度增強(qiáng)的程度,0≤t≤1.
5)通過(guò)對(duì)比度變換獲取修正的像素灰度值,其計(jì)算式為
由式(17)可以看到,當(dāng)灰度值高于非同質(zhì)灰度值均值時(shí)會(huì)對(duì)其進(jìn)行增強(qiáng),而當(dāng)灰度值低于均值時(shí)會(huì)對(duì)其進(jìn)行減弱,從而獲得的修正圖像達(dá)到了增強(qiáng)的效果.
6)對(duì)整個(gè)區(qū)域重復(fù)以上步驟.
2.2.2 對(duì)比度放大系數(shù)的確定
在上面算法中提出了對(duì)比度放大系數(shù),它與圖像的直方圖密切相關(guān).如果直方圖比較狹窄,所做的增強(qiáng)就應(yīng)使增強(qiáng)后的圖像的直方圖變的寬一些.假設(shè)所給定的圖像的灰度級(jí)別從gmin到gmax,那么ξij的確定方法如下[11]:
1)先獲取直方圖并找到直方圖局部最大值Hmax(g1),Hmax(g2),…,Hmax(gk).
2)算出局部最大值的平均值.
3)找出那些高于平均值的極點(diǎn).
4)選擇直方圖中的第一個(gè)極點(diǎn)P(g1)和最后一個(gè)極點(diǎn)P(gk),然后得到其相應(yīng)的灰度級(jí)g1,gk.
5)計(jì)算最小放大系數(shù).
6)計(jì)算放大常數(shù).
式中:ξmax=1;0≤i≤M-1;0≤j≤N-1.
確定放大系數(shù)有兩方面要求:根據(jù)源圖像的性質(zhì)來(lái)確定,得到的放大系數(shù)是自適應(yīng)的.放大系數(shù)的目的是:當(dāng)βij較大時(shí),ξij的值也較大,的值就較小.也就是說(shuō),βij比較大說(shuō)明該區(qū)域的亮度變化不大,所做的增強(qiáng)也就相應(yīng)地要小一些;反之亦然.
為了驗(yàn)證模糊熵邊緣信息測(cè)度同質(zhì)性算法對(duì)于圖像對(duì)比度增強(qiáng)的效果,本文對(duì)Lena,Man圖像進(jìn)行了仿真實(shí)驗(yàn).分別采用了H.D.Cheng等提出的同質(zhì)性對(duì)比度增強(qiáng)算法[11]和李久賢等提出的新模糊增強(qiáng)算法[18]與本文方法做比較.圖1,圖2分別給出了Lena圖像的仿真結(jié)果和局部放大圖,圖3 為Man圖像的仿真結(jié)果.
圖1 Lena全局圖像增強(qiáng)效果對(duì)比Fig.1 Comparison of entire Lena image enhancements
圖2 Lena局部圖像增強(qiáng)效果對(duì)比Fig.2 Comparison of locality Lena image enhancements
圖3 Man 圖像增強(qiáng)效果對(duì)比Fig.3 Comparison of Man image enhancements
通過(guò)觀(guān)察比較圖1 和圖2 中Lena 的頭飾可以得出,圖1(b)和圖2(b)采用H.D.Cheng等提出的同質(zhì)性對(duì)比度增強(qiáng)算法[11]后,對(duì)比度有了一定的提升,但是頭飾處并沒(méi)有很好地突出細(xì)節(jié),而且根據(jù)局部圖(圖2(b))可以看出畫(huà)面處理后出現(xiàn)的失真比較嚴(yán)重;圖1(c)和圖2(c)采用了李久賢等提出的新模糊增強(qiáng)算法[18],可以看出Lena圖像中頭飾處細(xì)節(jié)相對(duì)比較明顯,圖像比較平滑,但是對(duì)比度增強(qiáng)的效果并不理想;圖1(d)和圖2(d)采用了本文的方法,可以看出細(xì)節(jié)有提升,對(duì)比度也有相應(yīng)的增強(qiáng),較前兩種方法有一定的優(yōu)勢(shì).同樣對(duì)圖3 中Man的羽毛發(fā)飾與頭發(fā)的清晰程度來(lái)進(jìn)行比較,圖3(b)采用了H.D.Cheng等提出的同質(zhì)性對(duì)比度增強(qiáng)算法[11],整體的清晰度有提高,羽毛發(fā)飾與頭發(fā)的細(xì)節(jié)也有提高,但是細(xì)節(jié)信息效果仍不太理想;圖3(c)采用了李久賢等提出的新模糊增強(qiáng)算法[18],可以看出細(xì)節(jié)信息有提高,但是在陰影部分出現(xiàn)了噪聲;圖3(d)采用了本文方法,可以明顯地看出羽毛發(fā)飾與頭發(fā)的信息比較突出,從整體上看效果比較明顯,而且對(duì)比度增強(qiáng)的效果也比較明顯.因此可以得出,本文方法不僅能夠提高對(duì)比度,而且還能較好地突出圖像的特征.
通過(guò)實(shí)驗(yàn)仿真得到Lena 圖像的放大常數(shù)ξij=0.822 24,Man 圖像的放大常數(shù)ξij=0.872 58,由此可以看出本文的方法具有自適應(yīng)的功能,可以根據(jù)所用的圖像給出相應(yīng)的放大系數(shù),進(jìn)而能對(duì)圖像做出相應(yīng)的處理.而且本文通過(guò)非線(xiàn)性變換,強(qiáng)化了放大系數(shù)的作用,使圖像的處理效果更加理想.還有本文采用三個(gè)邊緣信息測(cè)度能夠很好地突顯出圖像特征,因此本文所采用的方法是有效的、可行的.
僅從直觀(guān)視覺(jué)上并不能客觀(guān)評(píng)價(jià)圖像的增強(qiáng)效果,因此本文選擇了平均梯度、邊緣強(qiáng)度、信息熵、增強(qiáng)度準(zhǔn)則(EME)這4 個(gè)標(biāo)準(zhǔn)來(lái)評(píng)價(jià)圖像的增強(qiáng)效果.
1)平均梯度
圖像的平均梯度表征圖像的清晰度,反映圖像質(zhì)量的改進(jìn),以及圖像的微小細(xì)節(jié)反差和紋理變化特征.平均梯度越大,則圖像的清晰度越高,微小細(xì)節(jié)及紋理反映越好.其定義式如下:
式中:M和N分別為圖像的行數(shù)和列數(shù);ΔmF(m,n)和ΔnF(m,n)分別表示圖像在點(diǎn)(m,n)的m和n方向上的差分.
2)邊緣強(qiáng)度
邊緣強(qiáng)度是圖像增強(qiáng)的一個(gè)比較重要的指標(biāo).圖像增強(qiáng)的越明顯邊緣值越大,在本文中用的是sobel算子來(lái)計(jì)算邊緣強(qiáng)度,其基本方法為:在x,y方向上分別使用不同的兩個(gè)卷積核得出某一像素的卷積像素值x,y,則邊緣強(qiáng)度的計(jì)算公式為
3)信息熵
信息熵是衡量圖像信息豐富程度的一個(gè)重要指標(biāo).融合圖像的信息熵越大,說(shuō)明融合圖像的信息量越多,反之則代表圖像的信息量較低.信息熵的定義式如下:
式中:p(m)是m灰度級(jí)的像素?cái)?shù)與整幅圖像的像素總數(shù)的比,即m灰度級(jí)出現(xiàn)的概率.
4)增強(qiáng)度準(zhǔn)則(EME)
將圖像I(x,y)分成K1×K2個(gè)中心點(diǎn)位于(k,l)處的均等小塊B(k,l),每個(gè)圖像塊的大小為M1×M2.EME定義為
式中:lmax;k,l和lmin;k,l分別是小塊B(k,l)內(nèi)圖像灰度的最大和最小值;c是一個(gè)小常量,防止出現(xiàn)分母為0 的情況.EME反映了圖像的整體動(dòng)態(tài)范圍,EME值越大,表明圖像的區(qū)域平均動(dòng)態(tài)范圍大,圖像增強(qiáng)效果好.
表1 Lena圖像質(zhì)量標(biāo)準(zhǔn)對(duì)比Tab.1 Comparison of Lena image quality standard
表2 Man 圖像質(zhì)量標(biāo)準(zhǔn)對(duì)比Tab.2 Comparison of Man image quality standard
由表1,表2 給出的質(zhì)量標(biāo)準(zhǔn)的數(shù)據(jù)可以看出,本文方法在平均梯度、邊緣強(qiáng)度、信息熵和EME指標(biāo)上表現(xiàn)的優(yōu)勢(shì)比較明顯,由此可以說(shuō)明本文方法具有一定的優(yōu)勢(shì)與可行性.
本文對(duì)傳統(tǒng)的同質(zhì)性增強(qiáng)算法進(jìn)行了改進(jìn),利用模糊熵構(gòu)造出邊緣檢測(cè)性能好的圖像信息測(cè)度來(lái)定量描述邊緣點(diǎn)的三個(gè)本質(zhì)特征:領(lǐng)域內(nèi)灰度的分布具有有序性,方向性,灰度突變具有的結(jié)構(gòu)性;然后根據(jù)這三個(gè)特征測(cè)度決定同質(zhì)性參數(shù),并由此對(duì)對(duì)比度進(jìn)行增強(qiáng),同時(shí)在同質(zhì)性增強(qiáng)的過(guò)程中加入非線(xiàn)性變換來(lái)改進(jìn)指數(shù)系數(shù).從實(shí)驗(yàn)結(jié)果可以看出,與傳統(tǒng)方法相比,利用模糊熵邊緣測(cè)度構(gòu)造同質(zhì)性的方法可以更多地保留細(xì)節(jié)信息的特點(diǎn),并且增強(qiáng)效果很明顯,是一種有效的圖像對(duì)比度增強(qiáng)方法.
[1]Panetta K A,Wharton E J,Agaian S S.Human visual system-based image enhancement and logarithmic contrast measure[J].Syst.,Man.,Cybern.,Part B:Cybern.,IEEE Trans.,2008,38(1):174-188.
[2]Celik T,Tjahjadi T.Automatic image equalization and contrast enhancement using Gaussian mixture modeling[J].Image Processing,IEEE Transactions on,2012,21(1):145-156.
[3]Lee C,Lee C,Lee Y Y,et al.Power-constrained contrast enhancement for emissive displays based on histogram equalization[J].Image Processing,IEEE Transactions on,2012,21(1):80-93.
[4]Zaafouri A,Sayadi M,F(xiàn)naiech F.A developed unsharp masking method for images contrast enhancement[C].8th International Multi-Conference on System,Signals and Devices.New York:IEEE,2011:1-6.
[5]Sengee N,Sengee A,Choi H K.Image contrast enhancement using bi-histogram equalization with neighborhood metrics[J].Consumer Electronics,IEEE Transactions on,2010,56(4):2727-2734.
[6]Zhang M H,Zhang Y Y.The application of adaptive enhancement algorithm based on gray entropy in mammary gland CR image[C].Consumer Electronics,Communications and Networks(CECNet),2012 2nd International Conference on.IEEE,2012:2937-2940.
[7]Chen S D.Preserving brightness in histogram equalization based contrast enhancement techniques[J].Digital Signal Processing,2004,14(9):413-428.
[8]劉清團(tuán),汪天富,林江莉,等.基于亮度不變的醫(yī)學(xué)超聲圖像對(duì)比度增強(qiáng)方法[J].中國(guó)醫(yī)學(xué)影像技術(shù),2006,22(3):461-463.Liu Qingtuan,Wang Tianfu,Lin Jiangli,et al.Contrast enhancement method of medical ultrasonic images based on preserving brightness[J].Chinese Journal of Medical Image Technology,2006,22(3):461-463.(in Chinese)
[9]Avci E,Avci D.An expert system based on fuzzy entropy for automatic threshold selection in image processing[J].Expert Systems with Applications,2009,36(2):3077-3085.
[10]Arici T,Dikbas S,Altunbasak Y.A histogram modification framework and its application for image contrast enhancement[J].Image Processing,IEEE Transactions on,2009,18(9):1921-1935.
[11]Cheng H D,Xue M,Shi X J.Desautels,contrast enhancement based on a novel homogeneity measurement[J].Pattern Recognition,2003,36:2687-2697.
[12]楊海軍,梁德群.一種新的基于信息測(cè)度和神經(jīng)網(wǎng)絡(luò)的邊緣的檢測(cè)方法[J].電子學(xué)報(bào),2001,29(1):51-53.Yang Haijun,Liang Dequn.A new method of edge detection based on information measure and neural network[J].Chinese Journal of Electronics,2001,29(1):51-53.(in Chinese)
[13]楊煊,梁德群.基于圖像信息測(cè)度的多尺度邊緣檢測(cè)方法[J].模式識(shí)別與人工智能,1998,11(4):442-446.Yang Xuan,Liang Dequn.Multiscale edge detection based on image information measure[J].Pattern Recognition and Artificial Intelligence,1998,11(4):442-446.(in Chinese)
[14]王保平.基于模糊技術(shù)的圖像處理方法研究[D].西安:西安電子科技大學(xué),2004.
[15]王保平,劉升虎,張家田,等.一種基于模糊熵和FKCN 的邊緣檢測(cè)方法[J].計(jì)算機(jī)學(xué)報(bào),2006,29(4):664-669.Wang Baoping,Liu Shenghu,Zhang Jiatian,et al.A method of edge detection based on fuzzy entropy and FKCN[J].Chinese Journal of Computers.2006,29(4):664-669.(in Chinese)
[16]王保平,劉升虎,范九倫,等.基于模糊熵的自適應(yīng)圖像多層次模糊增強(qiáng)算法[J].電子學(xué)報(bào),2005,33(4):730-734.Wan Baoping,Liu Shenghu,F(xiàn)an Jiulun,et al.An adaptive multi-level lmage fuzzy enhancement algorithm based on fuzzy entropy[J].Chinese Journal of Electronics,2005,33(4):730-734.(in Chinese)
[17]王保平,范九倫,謝維信.基于模糊熵的多值圖像恢復(fù)方法[J].西安電子科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,31(2):214-217.Wang Baoping,F(xiàn)an Jiulun,Xie Weixin.Fuzzy entropy-based method for multilevel image restoration[J].Journal of Xidian University(Natural Science Edition),2004,31(2):214-217.(in Chinese)
[18]李久賢,孫偉,夏良正.一種新的模糊對(duì)比度增強(qiáng)算法[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2004(9):675-677.Li Jiuxian,Sun Wei,Xia Liangzheng.Novel fuzzy contrast enhancement algorithm[J].Journal of Southeast University(Natural Science Edition),2004(9):675-677.(in Chinese)