葉周恒,劉文武,孫學(xué)軍
(第二軍醫(yī)大學(xué) 潛水醫(yī)學(xué)教研室, 上海 200433)
程序性壞死機(jī)制與缺血再灌注損傷
葉周恒,劉文武,孫學(xué)軍*
(第二軍醫(yī)大學(xué) 潛水醫(yī)學(xué)教研室, 上海 200433)
程序性壞死是一種具有可調(diào)控的信號(hào)傳導(dǎo)通路的細(xì)胞壞死方式。多種刺激可導(dǎo)致程序性壞死的發(fā)生,復(fù)合體Ⅰ、復(fù)合體Ⅱ和RIP1-RIP3壞死體是通路中的信號(hào)分子,而Necstatin-1是程序性壞死的特異性阻斷劑。程序性壞死可能是缺血再灌注損傷中細(xì)胞死亡的重要方式。
程序性壞死;受體相互作用蛋白激酶1;受體相互作用蛋白激酶3
壞死是一種重要的細(xì)胞死亡方式,生理和病理?xiàng)l件下均可發(fā)生,主要表現(xiàn)為細(xì)胞器水腫、活性氧和胞內(nèi)鈣升高、ATP含量下降以及細(xì)胞器和細(xì)胞膜最終破裂。過(guò)去認(rèn)為壞死是不可調(diào)控的,因此,相對(duì)于凋亡而言,壞死的研究較少。然而,最近發(fā)現(xiàn)某些特殊的細(xì)胞中,給予特定的誘導(dǎo)劑,同時(shí)抑制凋亡通路后,可發(fā)生具有一定分子基礎(chǔ)的、可調(diào)控的細(xì)胞壞死,這種細(xì)胞死亡方式被稱之為程序性壞死。程序性壞死在病毒感染[1]、肝和腎的缺血再灌注損傷[2-3]等疾病中都可發(fā)揮重要作用。程序性壞死是一種新的細(xì)胞死亡方式,研究程序性壞死能幫助我們更好的理解許多生理病理過(guò)程并尋找疾病治療的新靶點(diǎn)。
腫瘤壞死因子(tumor necrosis factor, TNF)誘導(dǎo)細(xì)胞死亡的研究中,用顯微攝影技術(shù)觀察細(xì)胞形態(tài),發(fā)現(xiàn)相同的TNF刺激能誘導(dǎo)不同細(xì)胞發(fā)生不同類(lèi)型的細(xì)胞死亡[4]。TNF誘導(dǎo)F17細(xì)胞發(fā)生典型的凋亡,卻也誘導(dǎo)L-M細(xì)胞發(fā)生細(xì)胞壞死。NF-κB信號(hào)通路中的受體相互作用蛋白激酶(receptor interaction protein kinase, RIP)可能是這種新通路中的信號(hào)分子。死亡受體FAS也能引起這種壞死,且不依賴caspase活性,卻需RIP和FAS蛋白相關(guān)死亡區(qū)域(Fas-associated protein with death domain, FADD)的參與[5]。小分子抑制劑necrostatin-1,能特異性抑制這種特殊的細(xì)胞死亡方式[6]。這種具有可調(diào)控的信號(hào)通路的細(xì)胞死亡過(guò)程被命名為程序性壞死(Necroptosis)。Necrostatin-1的分子靶點(diǎn)是受體相互作用蛋白1(RIP1)[7],necrostatin-1與RIP1的相互結(jié)合可使RIP1不激活[8]。此外,受體相互作用蛋白3(RIP3)在程序性壞死通路中的也具有重要作用[9]。混合線性激酶功能域樣蛋白(mixed lineage kinase domain-like protein, MLKL),可能是RIP3下游分子蛋白[10]。此外,Akt[11]和ERK[12]通路也可能參與了程序性壞死。
2.1 程序性壞死的誘導(dǎo)
各種相應(yīng)配體可以與腫瘤壞死因子受體1(TNFR1)、CD95(也稱FAS)、腫瘤壞死因子受體2(tumor necrosis factor receptor 2, TNFR2)、TNF相關(guān)凋亡誘導(dǎo)配體受體1和2(TRAILR1和TRAILR2)結(jié)合誘導(dǎo)程序性壞死[4-5]。此外, 谷氨酸鹽[12]等也可通過(guò)未知分子機(jī)制引起程序性壞死。這些因素誘導(dǎo)的程序性壞死中,對(duì)TNFR1介導(dǎo)的程序性壞死進(jìn)行的研究最為系統(tǒng)深入。因此雖然不排除不同受體介導(dǎo)的程序性壞死各自存在特殊的分子機(jī)制,下文以TNF誘導(dǎo)的程序性壞死為主,介紹程序性壞死的信號(hào)傳導(dǎo)通路(圖 1)。
圖1 程序性壞死分子機(jī)制Fig 1 Molecular mechanism ofnecroptosis
2.2 RIP1
RIP1在NF-κB通路中研究較多。已有研究表明,RIP1可以看做該通路中一個(gè)處于金字塔頂端的蛋白[5]。當(dāng)RIP1被泛素化時(shí),則選擇NF-κB通路介導(dǎo)細(xì)胞生存;當(dāng)RIP1去泛素化,細(xì)胞被迫選擇死亡機(jī)制時(shí),會(huì)出現(xiàn)凋亡或者程序性壞死[5]。因此RIP1泛素化是決定細(xì)胞壞死和存活的重要調(diào)節(jié)步驟。RIP1由3個(gè)功能區(qū)域組成:氨基末端激酶區(qū)域、中間區(qū)域和羧基末端死亡區(qū)域。程序性壞死過(guò)程中,RIP1的絲氨酸14/15,絲氨酸161等位點(diǎn)可發(fā)生自身磷酸化,這些位點(diǎn)都位于RIP1的氨基末端激酶區(qū)域[7],提示RIP1氨基末端激酶區(qū)域在程序性壞死中起到了重要作用?;罨乃劳鍪荏w募集RIP1,導(dǎo)致RIP1泛素化。這種泛素化狀態(tài)由凋亡胞內(nèi)抑制劑(inhibitor of apoptosis protein, IAP)維持,當(dāng)IAP的作用去除后,RIP1即可被去泛素化。藥物抑制cIAPs或基因敲除cIAPs,可抑制RIP1的泛素化,從而促進(jìn)程序性壞死[13]。RIP1處于復(fù)合體Ⅰ中,復(fù)合體Ⅰ由活化的TNFR1聚集 RIP1、凋亡胞內(nèi)抑制劑1(cIAP1)、cIAP2、TNFR相關(guān)因子2(TRAF2),TRAF5,和TNFR結(jié)合死亡區(qū)域(TRADD)一起組成[8]。
2.3 RIP3
RIP3與RIP1具有共同的氨基末端激酶區(qū)域和羧基末端激酶RIP同型作用功能域(RIP homotypic interaction motif, RHIM),不同的是RIP3不參與NF-κB通路。去泛素化的RIP1能募集RIP3,與TRADD、FADD和caspase-8一起組成復(fù)合體Ⅱ[14],后者也被稱為死亡激發(fā)信號(hào)復(fù)合物(death-inducing signaling complex, DISC)。RIP1的去泛素化狀態(tài)是復(fù)合體Ⅰ轉(zhuǎn)變?yōu)閺?fù)合體Ⅱ的重要因素[14]。去泛素化的RIP1能激活復(fù)合體Ⅱ中的caspase-8,后者則黏附并使RIP1和RIP3失活,同時(shí)黏附并活化BID和caspase-3,觸發(fā)caspase依賴的細(xì)胞凋亡。然而,當(dāng)caspase激活被阻斷,復(fù)合體Ⅱ?qū)?dòng)促壞死信號(hào)[5]。
2.4 RIP1-RIP3壞死體
Caspase被抑制后,RIP3通過(guò)RIP蛋白家族共同的氨基末端RHIM區(qū)域結(jié)合成超分子復(fù)合體,稱為RIP1-RIP3壞死體[15]。RIP1和RIP3相互結(jié)合后,去泛素化的RIP1發(fā)生自身磷酸化,RIP3又發(fā)生直接或者間接的第199位絲氨酸磷酸化[5],引起程序性壞死[9-14]。Necrostatin-1可破壞RIP1與RIP3的結(jié)合,阻斷程序性壞死[14]。
MLKL由氨基末端卷曲(Coiled-Coil,CC)區(qū)域和羧基末端激酶樣區(qū)域組成,但缺少與其他蛋白結(jié)合的P環(huán)和磷酸化活性。MLKL缺失的細(xì)胞在程序性壞死過(guò)程中停留在壞死體環(huán)節(jié),而RIP3可磷酸化MLKL,誘導(dǎo)致程序性壞死。因此,MLKL可能是壞死體的核心組成部分。Necrosulfonamide可以通過(guò)抑制MLKL活性阻斷程序性壞死[10]。
需指出的是,RIP1或者RIP3可能都不是程序性壞死的必需蛋白,因?yàn)榍贸齊IP1的鼠類(lèi)胚胎成纖維細(xì)胞在TNF誘導(dǎo)下仍可發(fā)生程序性壞死[16]。
RIP1-RIP3壞死體下游引起細(xì)胞最終壞死的機(jī)制比較復(fù)雜,如:通過(guò)氧化應(yīng)激途徑,增加胞內(nèi)活性氧簇(reactive oxygen species, ROS)導(dǎo)致程序性壞死[17];通過(guò)多聚ADP核糖聚合酶1[poly(ADP-ribose) polymerase-1, PARP1][18]和線粒體釋放凋亡誘導(dǎo)因子(apoptosis-inducing factor, AIF)途徑導(dǎo)致DNA斷裂導(dǎo)致程序性壞死等[19]。
缺血再灌注損傷過(guò)程中細(xì)胞具有不同的死亡方式,包括壞死、凋亡和自噬等。程序性壞死的發(fā)現(xiàn)為細(xì)胞死亡方式添加了新的可能。程序性壞死通路抑制劑Nec-1不僅可以在體外阻止細(xì)胞發(fā)生程序性壞死,也有結(jié)果表明可以增強(qiáng)鼠大腦中動(dòng)脈栓塞再灌注后的神經(jīng)恢復(fù)。這表明體內(nèi)缺血再灌注延遲損傷中程序性壞死是細(xì)胞死亡的重要方式,這也為研制開(kāi)發(fā)神經(jīng)保護(hù)藥物以減少細(xì)胞壞死提供了新的靶點(diǎn)[6]。雖然神經(jīng)細(xì)胞缺血再灌注損傷后細(xì)胞以發(fā)生自噬為主,但這可能因?yàn)榧?xì)胞培養(yǎng)皿中缺乏體內(nèi)缺血再灌注后出現(xiàn)的其他一些影響因素,如TNF-α、FasL等誘導(dǎo)程序性壞死的配基[20]。
上述實(shí)驗(yàn)表明,離體細(xì)胞缺血再灌注中細(xì)胞死亡的方式主要以自噬為主;而在體環(huán)境中細(xì)胞因所處環(huán)境更復(fù)雜,參與細(xì)胞死亡的因素更多,可能細(xì)胞的壞死以程序性壞死為主。在視網(wǎng)膜缺血模型中,Nec-1預(yù)處理組與對(duì)照組相比可有效保護(hù)視網(wǎng)膜,且在缺血后再給予Nec-1依然有明顯保護(hù)作用[21]。神經(jīng)元缺血模型中,發(fā)現(xiàn)聯(lián)合應(yīng)用Nec-1和凋亡抑制藥(HNG,Gly14-humanin)后神經(jīng)保護(hù)效果較好[22]。有關(guān)缺血再灌注損傷與程序性壞死的研究仍然較少,且根據(jù)不同的器官中細(xì)胞發(fā)生程序性壞死的組成不同,Nec-1的療效也各有差異[23],缺血再灌注損傷與程序性壞死的研究還有待進(jìn)一步深入。
程序性壞死是一種新的細(xì)胞死亡方式,已有證據(jù)表明它在免疫調(diào)節(jié)、組織損傷和癌癥進(jìn)展等方面具有重要作用。程序性壞死可被多種刺激誘導(dǎo),也可被necstatin-1抑制。RIP1和RIP3壞死體是程序性壞死中的重要參與者。目前,程序性壞死的分子機(jī)制尚未完全清楚,如FADD在其中的作用并不清晰。程序性壞死的研究必然會(huì)為疾病治療發(fā)現(xiàn)更多的治療靶點(diǎn)。
[1] Hu ZQ, Zhao WH. Type 1 interferon-associated necroptosis: a novel mechanism for Salmonella enterica Typhimurium to induce macrophage death [J]. Cell Mol Immunol, 2013, 10: 10-12.
[2] Shuh M, Bohorquez H, Loss GE,etal. Tumor Necrosis Factor-alpha: Life and Death of Hepatocytes During Liver Ischemia/Reperfusion Injury [J]. Ochsner J, 2013, 13: 119-130.
[3] Linkermann A, Brasen JH, Himmerkus N,etal. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury [J]. Kidney Int, 2012, 81: 751-761.
[4] Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis [J]. J Immunol, 1988, 141: 2629-2634.
[5] Holler N, Zaru R, Micheau O,etal. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule [J]. Nat Immunol, 2000, 1: 489-495.
[6] Degterev A, Huang Z, Boyce M,etal. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury [J]. Nat Chem Biol, 2005, 1:112-119.
[7] Degterev A, Hitomi J, Germscheid M,etal. Identification of RIP1 kinase as a specific cellular target of necrostatins [J]. Nat Chem Biol, 2008, 4: 313-321.
[8] Xie T, Peng W, Liu Y,etal. Structural basis of RIP1 inhibition by necrostatins [J]. Structure, 2013, 21: 493-499.
[9] Zhang DW, Shao J, Lin J,etal. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis [J]. Science, 2009, 325: 332-336.
[10] Sun L, Wang H, Wang Z,etal. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase [J]. Cell, 2012, 148: 213-227.
[11] McNamara CR, Ahuja R, Osafo-Addo AD,etal. Akt Regulates TNFalpha Synthesis Downstream of RIP1 Kinase Activation during Necroptosis [J]. PLoS One, 2013, 8: e56576. doi:10.1371/journal.pone.0056576.
[12] Zhang M, Li J, Geng R,etal. The Inhibition of ERK Activation Mediates the Protection of Necrostatin-1 on Glutamate Toxicity in HT-22 Cells [J]. Neurotox Res, 2013, 24:64-70.
[13] Vanlangenakker N, Vanden Berghe T, Bogaert P,etal. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production [J]. Cell Death Differ, 2011, 18: 656-665.
[14] He S, Wang L, Miao L,etal. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha [J]. Cell, 2009, 137: 1100-1111.
[15] Vandenabeele P, Galluzzi L, Vanden Berghe T,etal. Molecular mechanisms of necroptosis: an ordered cellular explosion [J]. Nat Rev Mol Cell Biol, 2010, 11: 700-714.
[16] Moujalled DM, Cook WD, Okamoto T,etal. TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1 [J]. Cell Death Dis, 2013, 4: e465. doi: 10.1038/cddis.2012.201.
[17] Ye YC, Wang HJ, Yu L,etal. RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy [J]. Int Immunopharmacol, 2012, 14: 674-682.
[18] Wu YT, Tan HL, Huang Q,etal. zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway [J]. Cell Death Differ, 2011, 18: 26-37.
[19] Baritaud M, Cabon L, Delavallee L,etal. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation [J]. Cell Death Dis, 2012, 3: e390. doi: 10.1038/cddis.2012.120.
[20] Meloni BP, Meade AJ, Kitikomolsuk D,etal. Characterisation of neuronal cell death in acute and delayedinvitroischemia (oxygen-glucose deprivation) models [J]. J Neurosci Methods, 2011, 195: 67-74.
[21] Rosenbaum DM, Degterev A, David J,etal. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model [J]. J Neurosci Res, 2010, 88: 1569-1576.
[22] Xu X, Chua KW, Chua CC,etal. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury [J]. Brain Res, 2010, 1355: 189-194.
[23] Dong K, Zhu H, Song Z,etal. Necrostatin-1 protects photoreceptors from cell death and improves functional outcome after experimental retinal detachment [J]. Am J Pathol, 2012, 181: 1634-1641.
Molecular mechanism of necroptosis and its effect in IR injury
YE Zhou-heng, LIU Wen-wu, SUN Xue-jun*
(Dept. of Diving Medicine, the Second Military Medical University, Shanghai 200433, China)
Necroptosis is a special cell necrosis that is capable of being regulated through particular molecular mechanism. Multiple stimuli could induce necroptosis, complex Ⅰ, complex Ⅱ and RIP1-RIP3 necrosome are critical participants in the necroptosis. Also, necrostatin-1 is a special and potent small-molecular inhibitor of necroptosis. Necroptosis could be an important alternative for cell death in ischemia-reperfusion injury.
necroptosis; receptor interaction protein kinase 1; receptor interaction protein kinase 3
2013-06-13
2013-09-24
*通信作者(correspondingauthor): sunxjk@hotmail.com
1001-6325(2014)03-0414-04
短篇綜述
R 34
A