陳偉+馬建光+李紅勛+潘文杰
摘要:異黃酮還原酶相似蛋白(IRL)是與異黃酮還原酶具有高度序列同源一致性而功能不同的一類蛋白。通過PCR擴增普通煙草(Nicotiana tabacum)品種龍里紅花煙IRL基因的一段特異保守片段NtIRLA,并將其亞克隆到中間載體pCAMBIA2301G中,構建了IRL反義植物表達載體pCAMBIA2301G-IRLA。通過PCR鑒定、酶切鑒定證實載體構建成功,并轉(zhuǎn)化到根癌農(nóng)桿菌LBA4404菌株中形成工程菌株,為進一步利用轉(zhuǎn)基因手段明確IRL基因在煙草次生代謝中的功能奠定了基礎。
關鍵詞:類異黃酮還原酶基因;反義表達載體;普通煙草
中圖分類號:S572 文獻標識碼:A 文章編號:0439-8114(2014)19-4730-04
DOI:10.14088/j.cnki.issn0439-8114.2014.19.059
Construction of an Antisense Plant Expression Vector of IRL from Common Tobacco
CHEN Wei1, MA Jian-guang2, LI Hong-xun1,PAN Wen-jie1
(1. Guizhou Academy of Tobacco Science, Guiyang 550081,China;
2. Guizhou Weining Municipal Tobacco Company, Weining 553100, Guizhou,China)
Abstract: Isoflavone reductase-like protein has highly homologous consistency of sequences with isoflavone reductase, but their function was different. In order to reveal its function in metabolism pathway, a specific conserved fragment of NtIRLA from Nicotiana tabacum Longlihonghua was amplified by PCR and subcloned into intermediate vector pCAMBIA2301G. An antisense plant expression vector pCAMBIA2301G-IRLA was constructed, confirmed by PCR analysis and endonuclease digestion. Then the recombinant vector was introduced into agrobacterium tumefaciens strain LBA4404 to form an engineered strain. It will lay a foundation for studying biological function of IRL gene involved in tobacco metabolism with transgenic approach.
Key words: isoflavone reduetase-like gene;antisense vector;common tobacco
異黃酮還原酶相似蛋白(IRL)是一類蛋白質(zhì)的統(tǒng)稱,包括松脂醇-落葉松脂醇還原酶(PLR)、苯基香豆?jié)M芐基醚還原酶(PcBER)及其他與異黃酮還原酶具有高度序列同源一致性而功能非異黃酮還原酶的一類蛋白質(zhì)。PLR、IFR和PcBER是具有高同源性的SDR(Short-chain dehydrogenasez/eduetase)家族成員[1],是具有NADPH依賴性的芳香醇還原酶,屬于PIP酶亞家族[2],均參與重要苯丙素衍生物植物防御類化合物的合成。該類蛋白質(zhì)與苜蓿IFR序列有顯著同源性,2種蛋白質(zhì)不僅具有高度的基因序列相似,而且其結構也具有高度相似性。
近年來,一些與PLR、PCBER、IFR、IFR基因具有高度同源性的相關基因己經(jīng)從多種植物中被分離出來[3],這些基因統(tǒng)稱為類異黃酮還原酶基因(IRL)。從前人的研究[4-6]可以推論,NtIRL基因編碼屬于IFR家族中異常的依賴于NADPH的還原酶,位于nic的下游,能夠被MeJA誘導表達,被乙烯及其類似物所抑制,參與煙堿或其相關的生物堿合成途徑的調(diào)控。目前,關于NtIRL基因的功能還沒有直接證據(jù),本研究構建了普通煙草IRL基因反義植物表達載體,為通過轉(zhuǎn)基因操作分析普通煙草NtIRL基因的生物功能奠定基礎,旨在為探索煙草次生物質(zhì)代謝工程,創(chuàng)造優(yōu)質(zhì)煙草育種新材料提供參考。
1 材料與方法
1.1 植物材料
供試材料為普通煙草品種(Nicotiana tabacum)龍里紅花煙,田間常規(guī)種植。取一株典型煙株的嫩葉,立即放入液氮并于-80 ℃超低溫冰箱保存,用于抽提RNA。
1.2 菌株和質(zhì)粒
大腸桿菌菌株DH5α、根癌農(nóng)桿菌(Agrobacterium tumefaciens)菌株LBA4404、植物表達中間載體pCAMBIA2301G來自西南大學生物技術與作物品質(zhì)改良重點實驗室,pMD18-T載體購自寶生物工程(大連)有限公司。
1.3 NtIRL基因家族反義片段的克隆
對克隆的普通煙草IRL基因和已報道的IRL基因序列進行多重比對,找出該基因在不同物種中共同的保守區(qū),設計引物FNtIRLA(5′-GAGCTCAAAAATCCGATTTAATTCCTAGTTTCTAGC-3′)和RNtIRLA(5′-GGATCCTGGAATAAGACGAAAAATA
GAAAACAACAG-3′) ,為便于定向克隆,上、下游引物的5′端分別引入了一個SacⅠ或BamHⅠ酶切位點。以龍里紅花煙草根系總cDNA為模板,采用高保真的Pfu DNA聚合酶進行PCR擴增,50 μL 體系中含1.0 μL 模板和2.5 U/μL Pfu DNA聚合酶。反應條件為94 ℃預變性2 min,94 ℃變性1 min,55 ℃退火1 min,72 ℃延伸2 min,35個循環(huán),最后72 ℃延伸10 min。PCR產(chǎn)物進行電泳檢測,回收目的條帶,然后進行亞克隆和測序。
1.4 NtIRL基因家族反義表達植物載體的構建與鑒定
將含有經(jīng)測序驗證無誤的pMD18-T-IRLA載體的DH5α單克隆進行培養(yǎng),對數(shù)晚期后提取質(zhì)粒,用BamHⅠ和SacⅠ雙酶切,同時雙酶切植物表達中間載體pCAMBIA2301G?;厥誌RLA目的片段和切去GUS基因后的pCAMBIA2301G載體骨架。將回收的2種片段用T4 DNA連接酶連接,并轉(zhuǎn)化DH5α感受態(tài)。從鑒定無誤的大腸桿菌單克隆菌液中抽提重組質(zhì)粒,用液氮冷激法[7]轉(zhuǎn)化農(nóng)桿菌LBA4404,鑒定正確的陽性單克隆子進行培養(yǎng),作為植物轉(zhuǎn)化的工程菌株。
2 結果與分析
2.1 NtIRL基因反義片段的克隆
采用帶有SacⅠ/BamHⅠ酶切位點的PCR引物FNtIRLA和RNtIRLA,以龍里紅花煙草根系總cDNA為模板,擴增出了與預期的1 179 bp大小相吻合的條帶(圖1)?;厥漳康臈l帶進行TA克隆,轉(zhuǎn)化DH5α, 挑選單菌落測序,獲得了與前面所克隆的NtIRL全長cDNA對應序列相一致的連接于pMD18-T Vector上的陽性克隆,并抽提出大小約3.8 kb的質(zhì)粒(圖2)。
2.2 NtIRLA基因植物反義表達載體的構建
對上述抽提的pMD18-T-NtIRLA質(zhì)粒進行SacⅠ/BamHⅠ完全雙酶切后,經(jīng)過1%瓊脂糖凝膠電泳分析,酶切后產(chǎn)生1 179 bp大小的NtIRLA目的片段和約2.7 kb的pMD18-T載體骨架條帶(圖3),證實重組的pMD18-T中含有NtIRLA,回收酶切片段。采用文獻[7]中的方法對中間表達載體pCAMBIA2301G質(zhì)粒(圖4)同樣進行BamHⅠ/SacⅠ雙酶切,切去1. 9 kb的GUS基因(圖5),回收約12 kb 的pCAMBIA2301G 載體骨架,將帶粘性末端的NtIRLA目標片段與之相連,得到重組質(zhì)粒pCAM2BIA2301G-NtIRLA。
2.3 NtIRLA基因植物反義表達載體的鑒定
將重組質(zhì)粒pCAM2BIA2301G-NtIRLA進行雙酶切鑒定,切下一條大小約1 200 bp的片段,與反義片段預測大小一致(圖6)。鑒定表明,NtIRLA目標片段已定向克隆到中間載體pCAMBIA2301G中,成功替換上面的GUS基因,形成了植物表達載體pCAM2BIA2301G-NtIRLA,表明載體構建成功。將大腸桿菌中抽提的含有目的基因的植物表達載體質(zhì)粒轉(zhuǎn)化到根癌農(nóng)桿菌LBA4404中,對Kan+Str+Rif表現(xiàn)為三重抗性的轉(zhuǎn)化子單克隆進行了PCR檢測(圖7),陽性克隆檢測結果與大腸桿菌一致,可用于植物轉(zhuǎn)化。構建成功的含NtIRLA表達盒的重組pCAMBIA2301G載體取名為pNtIRLA,其目的基因均由CaMV 35S啟動子驅(qū)動,由NOS終止子終止轉(zhuǎn)錄,同時在T-DNA邊界內(nèi)分別連鎖有報告基因GUS和篩選標記基因nptⅡ的表達盒(圖8)。
3 討論
NtIRL基因最早是1994年Hibi等[4]在普通煙草低煙堿突變體中克隆了該基因的cDNA全長,該基因可能編碼異黃酮還原酶,在煙草的根中特異表達,且該基因的表達受茉莉酸酮酯的誘導。Shoji等[5]的研究表明,NtIRL能選擇性和NADPH結合,是一種依賴于NADPH的氧化還原酶。IRL基因在野生型煙草和普通煙草的根和莖中表達,但在nic1nic2雙突變體的根和莖中幾乎沒有表達。在MeJA誘導下,野生型煙草和普通煙草中煙堿合成途徑的相關結構酶基因表達增加,而在雙突變體nic1nic2中,MeJA的處理下,IRL基因的表達量幾乎沒有變化。在不同時間和不同濃度MeJA處理下,IRL、PMT、ODC基因表達量的變化相似。推測NtIRL基因可能參與煙堿合成途徑的調(diào)控,且在nic基因的下游。同時Shoji等[6]研究發(fā)現(xiàn),IRL和PMT蛋白質(zhì)在根中積聚,而不在葉片中積累,IRL蛋白質(zhì)和PMT蛋白質(zhì)在煙草根尖相同類型的細胞中積聚,且分布規(guī)律相似。在受MeJA誘導后,從轉(zhuǎn)錄和翻譯水平上,IRL和PMT基因的變化規(guī)律相似,推測NtIRL基因的功能可能與PMT基因相似。但是,要闡明NtIRL基因的具體生物功能,僅有表達分析是不夠的,必需進一步通過遺傳轉(zhuǎn)化和轉(zhuǎn)基因植株的成分鑒定等手段進行功能分析。
一些IRL基因己經(jīng)從多種植物中被分離出來,其中有一些蛋白質(zhì)是PLR、PCBER或者是IFR的垂直同源體,催化不同的反應。它們可能參與應答生物或非生物脅迫。例如,玉米IRL基因參與硫饑餓應答反應[8];柚子IRL基因參與應答紫外輻射[9],水稻的IRL基因則會被稻瘟病真菌誘導而編碼產(chǎn)生相應的蛋白質(zhì)或酶[1];擬南芥中的IRL基因被氧化脅迫誘導,編碼產(chǎn)生相應蛋白[10]。馬鈴薯IRL基因在花粉管生長過程中表達IFR蛋白同系物[11]。有些IRL蛋白也可能參與催化獨特的還原反應。例如,金鐘連翹木脂素合成途徑中的PLR[3],PLR還參與鬼臼屬植物中抗病毒劑鬼臼毒素的形成。PLR還能催化產(chǎn)生具有重要生理作用的代謝產(chǎn)物。例如,在西方檜柏類似植物中合成的皺酸,能保證其組織的耐久力和結構的完整性[11]。PcBER催化8-5連接的木脂素的還原過程。例如,去氫雙松柏醇在植物防御中有類似作用。PcBER是火炬松木脂素合成途徑的關鍵酶。IFR參與如紫花苜蓿中苜蓿素等多種植物抗毒素的合成途徑[12]。因此,構建普通煙草IRL基因反義植物表達載體,通過遺傳轉(zhuǎn)化,為揭示普通煙草IRL基因的功能,修飾煙草次生物質(zhì)代謝途徑相關的性狀奠定了基礎。
參考文獻:
[1] GANG D R, DINKOVA-KOSTOVA A T, DAVIN L B, et al. Phylogenetic links in plant defense systems: Lignans,isoflavonoids and their reduetases[J]. American Chemical Society , 1997, 658: 58-89.
[2] VASSAO D G,KIM S J,MILHOLLAN J K, et al. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol [J]. Biochem Biophys, 2007, 465(1): 209-218.
[3] ALBENA T, DINKOVA K, GANG D R, et al. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia [J]. J Biol Chem, 1996, 271(46): 29473-29482.
[4] HIBI N, HIGASHIGUCHI S, HASHIMOTO T, et al. Gene expression in tobacco low-nicotine mutants[J]. Plant Cell, 1994, 6(5): 723-735.
[5] SHOJI T, WINZ1 R, IWASE T, NAKAJIMA K, et al. Expression patterns of two tobacco isoflavone reductase-like genes andtheir possible roles in secondary metabolism in tobacco [J]. Plant Mol Biol, 2002, 50: 427-440.
[6] SHOJI T, YAMADA Y, HASHIMOTO T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris[J]. Plant Cell Physiol, 2000, 41(7): 831-839.
[7] 柴友榮.植物抗大麗輪枝菌受體類蛋白基因及甘露糖結合型凝集素基因的克隆與表達[D].重慶:西南農(nóng)業(yè)大學,2003.
[8] GANG D R, KASAHARA H,XIA Z Q, et al. Evolution of plant defense mechanism[J]. J Biol Chem, 1999,274(11):7516-7527.
[9] MIN T,KASAHARA H,BEDGAR D L, et al. Crystal structures of pinoresinol-larieiresinol and phenyleoumaran benzylic ether reductases and their relationship to isoflavone reductases[J]. J Biol Chem,2003,278(50):50714-50723.
[10] BABIYEHUK E,KUSHNIRM S,BELLES B E, et al. Arabidopsis thaliana NADH oxidoreductase homologs confer tolerance of yeasts toward the thiol- oxidizing drug diamin[J]. J Biol Chem,1995,270:26224-26231.
[11] VAN ELDIK G J, RUITER R K, COLLA P H, et al. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum[J]. Plant Mol Biol, 1997, 33(5): 923-929.
[12] KARAMLOO F, SCHMITZ N, SCHEURER S, et al. Molecular cloning and characterization of a birch pollen minor allegen,betes belonging to family of isoflavone reduetase-like proteins[J]. J Allegy Clin Immunol, 1999,104:991-999.
參考文獻:
[1] GANG D R, DINKOVA-KOSTOVA A T, DAVIN L B, et al. Phylogenetic links in plant defense systems: Lignans,isoflavonoids and their reduetases[J]. American Chemical Society , 1997, 658: 58-89.
[2] VASSAO D G,KIM S J,MILHOLLAN J K, et al. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol [J]. Biochem Biophys, 2007, 465(1): 209-218.
[3] ALBENA T, DINKOVA K, GANG D R, et al. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia [J]. J Biol Chem, 1996, 271(46): 29473-29482.
[4] HIBI N, HIGASHIGUCHI S, HASHIMOTO T, et al. Gene expression in tobacco low-nicotine mutants[J]. Plant Cell, 1994, 6(5): 723-735.
[5] SHOJI T, WINZ1 R, IWASE T, NAKAJIMA K, et al. Expression patterns of two tobacco isoflavone reductase-like genes andtheir possible roles in secondary metabolism in tobacco [J]. Plant Mol Biol, 2002, 50: 427-440.
[6] SHOJI T, YAMADA Y, HASHIMOTO T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris[J]. Plant Cell Physiol, 2000, 41(7): 831-839.
[7] 柴友榮.植物抗大麗輪枝菌受體類蛋白基因及甘露糖結合型凝集素基因的克隆與表達[D].重慶:西南農(nóng)業(yè)大學,2003.
[8] GANG D R, KASAHARA H,XIA Z Q, et al. Evolution of plant defense mechanism[J]. J Biol Chem, 1999,274(11):7516-7527.
[9] MIN T,KASAHARA H,BEDGAR D L, et al. Crystal structures of pinoresinol-larieiresinol and phenyleoumaran benzylic ether reductases and their relationship to isoflavone reductases[J]. J Biol Chem,2003,278(50):50714-50723.
[10] BABIYEHUK E,KUSHNIRM S,BELLES B E, et al. Arabidopsis thaliana NADH oxidoreductase homologs confer tolerance of yeasts toward the thiol- oxidizing drug diamin[J]. J Biol Chem,1995,270:26224-26231.
[11] VAN ELDIK G J, RUITER R K, COLLA P H, et al. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum[J]. Plant Mol Biol, 1997, 33(5): 923-929.
[12] KARAMLOO F, SCHMITZ N, SCHEURER S, et al. Molecular cloning and characterization of a birch pollen minor allegen,betes belonging to family of isoflavone reduetase-like proteins[J]. J Allegy Clin Immunol, 1999,104:991-999.
參考文獻:
[1] GANG D R, DINKOVA-KOSTOVA A T, DAVIN L B, et al. Phylogenetic links in plant defense systems: Lignans,isoflavonoids and their reduetases[J]. American Chemical Society , 1997, 658: 58-89.
[2] VASSAO D G,KIM S J,MILHOLLAN J K, et al. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol [J]. Biochem Biophys, 2007, 465(1): 209-218.
[3] ALBENA T, DINKOVA K, GANG D R, et al. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia [J]. J Biol Chem, 1996, 271(46): 29473-29482.
[4] HIBI N, HIGASHIGUCHI S, HASHIMOTO T, et al. Gene expression in tobacco low-nicotine mutants[J]. Plant Cell, 1994, 6(5): 723-735.
[5] SHOJI T, WINZ1 R, IWASE T, NAKAJIMA K, et al. Expression patterns of two tobacco isoflavone reductase-like genes andtheir possible roles in secondary metabolism in tobacco [J]. Plant Mol Biol, 2002, 50: 427-440.
[6] SHOJI T, YAMADA Y, HASHIMOTO T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris[J]. Plant Cell Physiol, 2000, 41(7): 831-839.
[7] 柴友榮.植物抗大麗輪枝菌受體類蛋白基因及甘露糖結合型凝集素基因的克隆與表達[D].重慶:西南農(nóng)業(yè)大學,2003.
[8] GANG D R, KASAHARA H,XIA Z Q, et al. Evolution of plant defense mechanism[J]. J Biol Chem, 1999,274(11):7516-7527.
[9] MIN T,KASAHARA H,BEDGAR D L, et al. Crystal structures of pinoresinol-larieiresinol and phenyleoumaran benzylic ether reductases and their relationship to isoflavone reductases[J]. J Biol Chem,2003,278(50):50714-50723.
[10] BABIYEHUK E,KUSHNIRM S,BELLES B E, et al. Arabidopsis thaliana NADH oxidoreductase homologs confer tolerance of yeasts toward the thiol- oxidizing drug diamin[J]. J Biol Chem,1995,270:26224-26231.
[11] VAN ELDIK G J, RUITER R K, COLLA P H, et al. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum[J]. Plant Mol Biol, 1997, 33(5): 923-929.
[12] KARAMLOO F, SCHMITZ N, SCHEURER S, et al. Molecular cloning and characterization of a birch pollen minor allegen,betes belonging to family of isoflavone reduetase-like proteins[J]. J Allegy Clin Immunol, 1999,104:991-999.