孫冬營++王慧敏++于晶
摘要水資源短缺是我國面臨的十分重要的資源問題,隨著人口的不斷增長,對水資源的需求也逐漸增加。水資源短缺已成為經(jīng)濟(jì)發(fā)展和社會和諧的一個(gè)主要瓶頸,如何將一個(gè)流域有限的水資源合理地分配給流域內(nèi)不同的行政區(qū)域、區(qū)域內(nèi)不同的產(chǎn)業(yè)是水資源規(guī)劃與管理領(lǐng)域?qū)W術(shù)研究的核心內(nèi)容。流域是一個(gè)自然形成的空間范圍,往往涉及多個(gè)不同的行政區(qū)域,流域水資源分配牽涉到流域內(nèi)不同利益主體,公平有效地進(jìn)行流域水資源配置以達(dá)到水資源的可持續(xù)利用已經(jīng)成為流域經(jīng)濟(jì)發(fā)展和社會穩(wěn)定的重要因素。本文采用流域水資源分配的二次配置模型,在流域水資源初次分配當(dāng)中考慮公平,建立基于用水主體需求的水資源分配優(yōu)化模型,使得各主體需水量和分配水量的離差平方和最小,并得到初始水資源分配結(jié)果;在流域水資源二次分配當(dāng)中考慮效率,建立流域水資源二次分配的模糊聯(lián)盟合作博弈模型以最大化流域整體收益,并將由合作帶來的流域整體收益的增加部分采用模糊夏普利值的方法分配給參與模糊聯(lián)盟的各個(gè)用水主體,同時(shí)流域水資源得到有效再分配。最后,將上述流域水資源二次分配模型運(yùn)用到一個(gè)算例當(dāng)中,驗(yàn)證了模型本身的有效性和適應(yīng)性。模糊聯(lián)盟合作博弈模型對于促進(jìn)流域水資源規(guī)劃與管理具有借鑒意義。
關(guān)鍵詞合作博弈;模糊聯(lián)盟;水資源配置;優(yōu)化
中圖分類號文獻(xiàn)標(biāo)識碼A文章編號1002-2104(2014)12-0153-06doi:10.3969/j.issn.1002-2104.2014.12.021
水資源是人類社會賴以生存和發(fā)展的基本要素和戰(zhàn)略性資源。伴隨著社會經(jīng)濟(jì)的快速發(fā)展,人們對水資源的需求也不斷增加,水資源已經(jīng)成為新時(shí)期我國最為稀缺的自然資源之一。同時(shí),水資源短缺、水污染、水生態(tài)惡化等問題已經(jīng)成為國民經(jīng)濟(jì)發(fā)展的瓶頸,嚴(yán)重制約著經(jīng)濟(jì)社會的可持續(xù)發(fā)展。流域水資源配置是一個(gè)涉及多個(gè)行政區(qū)域、多個(gè)業(yè)務(wù)部門以及多個(gè)目標(biāo)的復(fù)雜決策問題。如何將有限的水資源分配給用水主體、使得水資源的利用得到最大化效益,成為研究人員研究的熱點(diǎn)問題。由于各個(gè)利益主體目標(biāo)的不完全一致性,在流域水資源配置過程中常常發(fā)生國家之間、區(qū)域之間以及行業(yè)之間的用水沖突。在流域水資源配置過程中,如何處理公平與效率的關(guān)系使得各利益主體個(gè)體收益不減少的情況下增加整體收益不僅關(guān)系到每一個(gè)用水主體,同時(shí)也是水資源主管部門所關(guān)心的核心問題,更影響著社會和諧與穩(wěn)定。本文嘗試研究利用流域水資源二次配置模型,在初次配置中考慮公平,在二次配置中考慮效率。流域水資源配置研究在國內(nèi)外都取得了一定進(jìn)展。羅其友等[1]重點(diǎn)研究了黃河流域農(nóng)業(yè)水資源在不同區(qū)域不同作物間的合理配置問題;陳曉宏等[2]采用大系統(tǒng)“分解協(xié)調(diào)”原理提出多層次優(yōu)化的水資源優(yōu)化配置模型,在模型中考慮了防洪、供水、航運(yùn)等多種約束;王浩等[3]提出水資源“三次平衡”和水資源可持續(xù)利用思想并進(jìn)行了詳細(xì)闡述;陳西慶等[4]提出在長江流域?qū)嵭辛饔蚓C合管理使水資源利用和管理在流域?qū)用嫔线_(dá)到優(yōu)化狀態(tài),并確定了流域各行政區(qū)管理機(jī)構(gòu)與用水戶共同協(xié)商決策的原則,開啟了對流域各主體協(xié)商管理水資源的研究;王勇[5]從負(fù)外部性的角度探討了流域水資源配置,并對比了流域管理中的科層協(xié)調(diào)機(jī)制、市場協(xié)調(diào)機(jī)制和府際治理協(xié)調(diào)機(jī)制,表明三者的結(jié)合成為淮河治污的最佳選擇;史銀軍等[6]針對內(nèi)陸河流域水資源多次轉(zhuǎn)化多次利用的特點(diǎn),建立以水資源轉(zhuǎn)化過程為基礎(chǔ)的流域水資源優(yōu)化配置模型,并引入進(jìn)化算法求解計(jì)算實(shí)現(xiàn)水資源的流域配置和行政區(qū)配置的統(tǒng)一,便于水資源統(tǒng)一管理;吳丹等[7]建立流域初始水權(quán)配置的雙層優(yōu)化模型使得流域水資源得到合理配置,減少了區(qū)域之間的用水矛盾,并基于交互式群決策方法對模型進(jìn)行求解。Koos De Voogt等[8]使用一個(gè)半分布式水文模型對流域水資源配置對水資源可用性和作物產(chǎn)量的影響進(jìn)行評估,發(fā)現(xiàn)在灌溉季節(jié)濕地需水的增加減少了作物產(chǎn)量;ClaudiaRingler等[9]使用一個(gè)集成經(jīng)濟(jì)-水文的流域模型分析水資源分配政策的產(chǎn)生發(fā)展和應(yīng)用,并在這個(gè)模型框架下考慮政治因素對水資源配置的影響;Devaraj de Condappa等[10]開發(fā)一個(gè)決策支持系統(tǒng)用于沃爾特河流域跨界水資源管理,該系統(tǒng)綜合了水文模型、水資源評估與規(guī)劃模型和水資源配置模型并考慮潛在的氣候變化的影響;Mojtaba Sadegh等[11]利用合作博弈模型研究跨流域水資源轉(zhuǎn)移的最優(yōu)化,但并未考慮因此而產(chǎn)生的跨流域調(diào)水所產(chǎn)生的費(fèi)用問題;D. Haro等[12]將非線性引入傳統(tǒng)的網(wǎng)絡(luò)流模型用于流域水資源配置,三種不同網(wǎng)絡(luò)流算法用于配置問題的求解,結(jié)果表明OutofKilter具有最好的魯棒性(robustness)。
總結(jié)已有的國內(nèi)外研究,我們可以發(fā)現(xiàn)已有的水資源配置研究主要集中在優(yōu)化算法模型、決策支持技術(shù)的研究上,卻很少考慮到水資源配置過程中涉及的不同用水主體之間的關(guān)系,水資源配置目的在于最大化流域整體利益并使得相關(guān)利益主體參與水資源配置的積極性得到提高。對于流域水資源配置過程中的利益主體間的關(guān)系的研究有助于減少配置過程中可能產(chǎn)生的矛盾和沖突,提高主體參與水資源配置積極性,并最終達(dá)到流域水資源在整個(gè)流域?qū)用娴玫胶椭C配置。由于合作能夠給局中人帶來更多的利益,所以合作博弈常被用來研究公共池塘資源的分配,比如水資源。合作博弈理論研究局中人中的聯(lián)盟關(guān)系以及聯(lián)盟利益分配問題,這與流域水資源配置實(shí)踐相符合。采用合作博弈的方法配置流域水資源,可以充分考慮各個(gè)主體決策的策略。本文采用模糊聯(lián)盟合作博弈的方法給出流域水資源配置的一個(gè)框架:第一步基于公平的初始水資源配置;第二步基于效率的水資源二次分配。最后將所提出的方法用于一個(gè)算例分析,結(jié)果表明該方法確實(shí)提高了流域整體收益并增加了各參與主體的收益。
孫冬營等:基于模糊聯(lián)盟合作博弈的流域水資源優(yōu)化配置研究中國人口·資源與環(huán)境2014年第12期1流域水資源優(yōu)化配置模糊合作博弈模型
所采用的方法的應(yīng)用過程如圖1所示。
圖1流域水資源配置模糊聯(lián)盟合作博弈模型
應(yīng)用框架
Rm表示第m個(gè)月水庫S釋放的水量,Dm表示第m個(gè)月總的需水量,共有M個(gè)月,i表示第i個(gè)用水主體,共有N個(gè)用水主體。Xi,m表示第m個(gè)月分配給第i個(gè)用水主體的水量,di,m表示第m個(gè)月第i個(gè)用水主體的需水量。Ifm表示第m個(gè)月維持河道環(huán)境所需的徑流,Im表示第m個(gè)月水庫上游來水量。Rmax表示水庫能夠釋放的最大水量,Sm表示水庫在第m個(gè)月初的存量,S1表示水庫初始存量,Smin和Smax分別表示水庫的死庫容和最大庫容。
方程(2)確保水資源按照用水主體需水量的相同比例分配給不同用水主體,本模型所得到的分配水量Xi,m將作為二次分配模型的輸入部分。
1.2流域水資源二次配置模型
合作博弈研究聯(lián)盟之間的相互作用以及聯(lián)盟收益如何在盟友之間進(jìn)行分配的問題,水資源配置問題往往也是復(fù)雜的多主體決策問題,用合作博弈去解決水資源配置問題具體先天優(yōu)勢[13]。在常規(guī)聯(lián)盟(Crisp Coalition)中,要求局中人攜帶自己的全部資源參與某個(gè)聯(lián)盟,根據(jù)Shapley的定義,聯(lián)盟中某個(gè)局中人的收益決定于其對該聯(lián)盟的貢獻(xiàn)。根據(jù)Aubin(1974)提出的模糊聯(lián)盟(Fuzzy Coalition)的含義,在模糊聯(lián)盟中,局中人只需要攜帶部分資源參與各個(gè)聯(lián)盟,其收益等于該局中人參與各個(gè)聯(lián)盟獲得的收益之和。具體來說,模糊聯(lián)盟不要求局中人攜帶自身擁有的全部資源參與某個(gè)聯(lián)盟,而是允許其攜帶自身擁有的部分資源參與不同的聯(lián)盟。常規(guī)聯(lián)盟和模糊聯(lián)盟的區(qū)別在于,在常規(guī)聯(lián)盟中,局中人只能參與某一個(gè)聯(lián)盟;而在模糊聯(lián)盟中,局中人可以同時(shí)參與多個(gè)聯(lián)盟。模糊聯(lián)盟產(chǎn)生的實(shí)際背景在于,實(shí)際問題當(dāng)中,局中人并不是將其所有的資源貢獻(xiàn)給聯(lián)某個(gè)盟,只是將一部分資源貢獻(xiàn)給該聯(lián)盟,也就是以不同的參與率參與不同的聯(lián)盟。在水資源二次分配模型中,首先,各用水主體攜帶一定數(shù)量的水資源參加不同的模糊聯(lián)盟,使得整個(gè)流域系統(tǒng)的收益達(dá)到最大,然后將最大化的收益按照一定的方法分配給各個(gè)參與聯(lián)盟的用水主體,同時(shí)各個(gè)用水主體的水資源也將在不同的模糊聯(lián)盟間進(jìn)行再分配。對于一個(gè)模糊聯(lián)盟所擁有的資源如何在模糊聯(lián)盟中各個(gè)參與主體之間的分配,模糊聯(lián)盟并沒有定義,相反地,模糊聯(lián)盟研究的是收益的增加部分在局中人之間的分配。在實(shí)際問題當(dāng)中,各個(gè)局中人之間的合作往往是多個(gè)維度的,也即除了在水資源分配當(dāng)中的合作,還有其他合作途徑,而這些不同的合作途徑又往往互相作用并最終達(dá)到一個(gè)動態(tài)平衡狀態(tài)。
為了最大化流域整體收益,我們需要確定各個(gè)用水主體參與各個(gè)模糊聯(lián)盟的參與率。這里參與率指的是用水主體攜帶多少比例的初始水資源參加某個(gè)模糊聯(lián)盟。目標(biāo)函數(shù)與約束如下:
在這里T代表流域整體收益,也即總的流域水資源收益。v(s)代表聯(lián)盟s的收益,其中B(s)表示聯(lián)盟s的收益參數(shù)即單位水產(chǎn)生的收益,C(s)表示聯(lián)盟s對水資源的最大需求能力,x(s)表示參與聯(lián)盟s的用水主體攜帶的水資源總量。pri(s)代表第i個(gè)用水主體參與聯(lián)盟s的參與率,其最大值為1表示攜帶全部初始水資源參與聯(lián)盟s,最小值為0表示不參與聯(lián)盟s,且每個(gè)用水主體參與各個(gè)聯(lián)盟的參與率之和為1,也即全部水資源都被用來參與再分配。v(i,s)代表第i個(gè)用水主體獨(dú)立使用其用于參與聯(lián)盟s的水資源所產(chǎn)生的收益,其中b(i)表示第i個(gè)用水主體的單位水資源收益參數(shù),而Xi表示第i個(gè)用水主體的初始水資源量。φi(s)代表第i個(gè)用水主體參與聯(lián)盟s所獲得的收益,必須滿足個(gè)體理性也即從參與聯(lián)盟s中獲得的收益必須不小于這部分水資源獨(dú)立使用時(shí)產(chǎn)生的收益。
在求解上面的模型之后,可以使用不同的收益分配方法將系統(tǒng)總的凈收益分配給各個(gè)用水主體,主要有模糊夏普利值、模糊最小核與模糊弱最小核,本文采用模糊夏普利值來分配收益。
3結(jié)論
在現(xiàn)實(shí)問題當(dāng)中,流域不同灌區(qū)之間對水資源的需求可能并不是同時(shí)發(fā)生的,比如,由于作物種類的不同而產(chǎn)生的灌溉時(shí)間的差異以及降雨的時(shí)空差異也會產(chǎn)生對水資源需求的不同步性;而流域上下游之間因?yàn)楫a(chǎn)業(yè)結(jié)構(gòu)的不同也會產(chǎn)生對水資源需求的不同步性;另外流域內(nèi)區(qū)域之間的水資源合作聯(lián)盟可能建立在其他形式的經(jīng)濟(jì)合作基礎(chǔ)之上,就像本文算例中所說,區(qū)域B可以為區(qū)域A加工農(nóng)產(chǎn)品而區(qū)域C可以為區(qū)域A和B提供服務(wù)和產(chǎn)品。所以考慮到這些因素,流域不同區(qū)域用水主體之間的合作就成為可能。合理有效地在流域范圍內(nèi)利用水資源有助于提高水資源的利用效率,減少水資源浪費(fèi)。
通過建立基于需水的流域水資源初始分配模型,保證水資源在初次分配中保證公平,而流域水資源的二次分配確保流域整體利益得到最大化,效率成為關(guān)鍵因素。在流域水資源二次分配過程中,提高流域整體利益的同時(shí)并沒有減少每個(gè)區(qū)域的收益,滿足各主體參與聯(lián)盟的個(gè)體理性,并根據(jù)模糊夏普利值計(jì)算出各個(gè)參與主體獲得的收益。算例分析表明,所建立的模型有效,對于實(shí)際的水資源分配具有一定的借鑒意義。
(編輯:于杰)
參考文獻(xiàn)(Reference)
[1]羅其友,陶陶,宮連英等. 黃河流域農(nóng)業(yè)水資源優(yōu)化配置[J]. 干旱區(qū)資源與環(huán)境,1994,8(2):1-6. [Luo Qiyou,Tao Tao,Going Lianying, et al. Disposition of Agriculture Water Resources in Yellow River Basin[J]. Journal of Arid Land Resources and Environment, 1994,8(2):1-6.]
[2]陳曉宏,陳永勤,賴國友. 東江流域水資源優(yōu)化配置研究[J]. 自然資源學(xué)報(bào),2001,17(3):366-372. [Chen Xiaohong, Chen Yongqin, Lai Guoyou. Optimal Allocation of Water Resources in Dongjiang River Basin[J] . Journal of Natural Resources: 2002, 17(3):366-372.]
[3]王浩,秦大庸.黃淮海流域水資源合理配置[M].北京:科學(xué)出版社,2001. [Wang Hao, Qin Dayong. Water Resource Management in Water Basin [M] .Beijing:Science Press, 2001.]
[4]陳西慶,陳進(jìn). 長江流域的水資源配置與水資源綜合管理[J]. 長江流域資源與環(huán)境,2005,14(2):163-167.[Chen Xiqing, Chen Jin. Water Resources Allocation and Integrated Water Resources Management in The Yangtze River Basin [J]. Resources and Environment in the Yangtze Basin, 2005,14(2):163-167.]
[5]王勇. 流域政府間橫向協(xié)調(diào)機(jī)制研究[D]. 南京, 南京大學(xué), 2008.[Wang Yong. Research on Horizontal Coordinating Mechanism between Basin Governments[D],Nanjing, Nanjing University,2008.]
[6]史銀軍,粟曉玲,徐萬林等. 基于水資源轉(zhuǎn)化模擬的石羊河流域水資源優(yōu)化配置[J].自然資源學(xué)報(bào),2011,26(8):1423-1434.[Shi Yinjun, Su Xiaoling, Xu Wanlin, et al. Water Resources Optimal Allocation Based on Simulation of Water Resources Transformation in Shiyanghe River Basin[J]. Journal of Natural Resources, 2011,26(8):1423-1434.]
[7]吳丹,吳鳳平,陳艷萍. 流域初始水權(quán)配置復(fù)合系統(tǒng)雙層優(yōu)化模型[J]. 系統(tǒng)工程理論與實(shí)踐,2012,32(1):196-202. [Wu Dan, Wu Fengping, Chen Yanping. The Bilevel Optimization Model of the Compound System for Basin Initial Water Right Allocation[J]. Systems EngineeringTheory&Practice, 2012,32(1):196-202.]
[8]K De Voogt, G Kite, P Droogers, et al. Modelling Water Allocation between a Wetland and Irrigated Agriculture in the Gediz Basin, Turkey[J]. International Journal of Water Resources Development,2000,16(4):639-650.
[9]C Ringler, NV Huy, S Msangi. Water allocation policy modeling for the Dong Nai River Basin: An integrated perspective [J]. Journal of the American Water Resources,2006,42(6):1465-1482.
[10]D de Condappa, A Chaponnière, J Lemoalle. A decisionsupport tool for water allocation in the Volta Basin[J]. Water International,2009,34(1):71-87.
[11]Sadegh M, Kerachian R. Water resources allocation using solution concepts of fuzzy cooperative games: fuzzy least core and fuzzy weak least core[J]. Water resources management, 2011, 25(10): 2543-2573.
[12]D. Haro, J. Paredes, A. Solera, et al. A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing NonLinearities[J]. Water Resources Management,2012,26(14):4059-4071.
[13]HP Young, N Okada, T Hashimoto,Cost allocation in water resources development,Water resources research, 1982,18:463-475.
[14]Li S J,Zhang Q.A reduced expression of the Shapley function for fuzzy game[J].European Journal of Operational Research,2009,196(1):234-245.
Study on Optimal Allocation of Water Resources in Basin
Based on Cooperative Game Under Fuzzy Coalition
SUN Dongying1,2WANG Huimin1,2Yu Jing3
(1. State Key Laboratory of HydrologyWater Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;
2. Institute of Management Science, Hohai University, Nanjing 211100, China;
3. Business school, Hohai University, Nanjing 211100, China)
AbstractWater shortage is an important resource problem faced by China, and nowadays the need for water resource is increasing with rising population. It has become the bottleneck of economic development and social harmony. How to allocate limited water resources among different regions and/or different industrials in a basin becomes one of the key topics in water resources planning and management. A basin is a naturally shaped area that usually involves multiadministrative. The allocation of water resources in a basin involves different stakeholders. As a result, equitable and effective allocation of water resources to obtain sustainable water usage is an important factor of the economic development and social stability. A model for water resources allocation with two steps is presented. The equality is considered in the initial water allocation in which an optimization model based on the water needs of water users and the results can be obtained by minimizing the sum of the squared deviations. The efficiency is taken into account in the second allocation, in which cooperative games with fuzzy coalitions is adopted to maximize the overall benefit of the basin. And the incremental benefits from cooperation is reallocated to related stakeholders by using the fuzzy Shapley value and water resources are reallocated among all coalitions at the same time. Finally, the proposed model is applied to a numerical example and the effectiveness and applicability of this model is examined. And there are some lessons can be obtained from cooperative games with fuzzy coalitions to improve water resource planning and management.
Key wordscooperative game; fuzzy coalition; water resources allocation; optimization
Based on Cooperative Game Under Fuzzy Coalition
SUN Dongying1,2WANG Huimin1,2Yu Jing3
(1. State Key Laboratory of HydrologyWater Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;
2. Institute of Management Science, Hohai University, Nanjing 211100, China;
3. Business school, Hohai University, Nanjing 211100, China)
AbstractWater shortage is an important resource problem faced by China, and nowadays the need for water resource is increasing with rising population. It has become the bottleneck of economic development and social harmony. How to allocate limited water resources among different regions and/or different industrials in a basin becomes one of the key topics in water resources planning and management. A basin is a naturally shaped area that usually involves multiadministrative. The allocation of water resources in a basin involves different stakeholders. As a result, equitable and effective allocation of water resources to obtain sustainable water usage is an important factor of the economic development and social stability. A model for water resources allocation with two steps is presented. The equality is considered in the initial water allocation in which an optimization model based on the water needs of water users and the results can be obtained by minimizing the sum of the squared deviations. The efficiency is taken into account in the second allocation, in which cooperative games with fuzzy coalitions is adopted to maximize the overall benefit of the basin. And the incremental benefits from cooperation is reallocated to related stakeholders by using the fuzzy Shapley value and water resources are reallocated among all coalitions at the same time. Finally, the proposed model is applied to a numerical example and the effectiveness and applicability of this model is examined. And there are some lessons can be obtained from cooperative games with fuzzy coalitions to improve water resource planning and management.
Key wordscooperative game; fuzzy coalition; water resources allocation; optimization
Based on Cooperative Game Under Fuzzy Coalition
SUN Dongying1,2WANG Huimin1,2Yu Jing3
(1. State Key Laboratory of HydrologyWater Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;
2. Institute of Management Science, Hohai University, Nanjing 211100, China;
3. Business school, Hohai University, Nanjing 211100, China)
AbstractWater shortage is an important resource problem faced by China, and nowadays the need for water resource is increasing with rising population. It has become the bottleneck of economic development and social harmony. How to allocate limited water resources among different regions and/or different industrials in a basin becomes one of the key topics in water resources planning and management. A basin is a naturally shaped area that usually involves multiadministrative. The allocation of water resources in a basin involves different stakeholders. As a result, equitable and effective allocation of water resources to obtain sustainable water usage is an important factor of the economic development and social stability. A model for water resources allocation with two steps is presented. The equality is considered in the initial water allocation in which an optimization model based on the water needs of water users and the results can be obtained by minimizing the sum of the squared deviations. The efficiency is taken into account in the second allocation, in which cooperative games with fuzzy coalitions is adopted to maximize the overall benefit of the basin. And the incremental benefits from cooperation is reallocated to related stakeholders by using the fuzzy Shapley value and water resources are reallocated among all coalitions at the same time. Finally, the proposed model is applied to a numerical example and the effectiveness and applicability of this model is examined. And there are some lessons can be obtained from cooperative games with fuzzy coalitions to improve water resource planning and management.
Key wordscooperative game; fuzzy coalition; water resources allocation; optimization