• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      ALDH2對(duì)缺血再灌中心肌損傷的保護(hù)作用及其作用機(jī)制

      2015-01-23 13:55:54龐佼佼陳玉國(guó)山東大學(xué)齊魯醫(yī)院急診科山東濟(jì)南500CenterforCardiovascularResearchandAlternativeMedicineUniversityofWyomingCollegeofHealthSciencesLaramieWY807USA
      關(guān)鍵詞:醛類(lèi)線粒體氧化應(yīng)激

      龐佼佼,陳玉國(guó),任 駿(山東大學(xué)齊魯醫(yī)院急診科,山東 濟(jì)南 500;Center for Cardiovascular Research and Alternative Medicine,University of Wyoming College of Health Sciences,Laramie,WY 807,USA)

      ·綜述·

      ALDH2對(duì)缺血再灌中心肌損傷的保護(hù)作用及其作用機(jī)制

      龐佼佼1,2,陳玉國(guó)1,任 駿2(1山東大學(xué)齊魯醫(yī)院急診科,山東 濟(jì)南 250012;2Center for Cardiovascular Research and Alternative Medicine,University of Wyoming College of Health Sciences,Laramie,WY 82071,USA)

      隨著冠心病發(fā)病率的升高和診療技術(shù)的提高,如何有效保護(hù)心肌免受缺血再灌注損傷(ischemia-reperfusion injury or I/R injury),提高治療效果成為目前臨床治療的突出問(wèn)題.乙醛脫氫酶2(Aldehyde Dehydrogenase-2,ALDH2)是人體中活性最強(qiáng)的醛脫氫酶,近年來(lái)其參與心肌保護(hù)的特殊角色越來(lái)越被人們熟知.本文將就 ALDH2在心肌缺血再灌注中的心肌保護(hù)作用、主要機(jī)制及轉(zhuǎn)化醫(yī)學(xué)研究予以綜述.

      ALDH2;心肌缺血再灌注;轉(zhuǎn)化

      0 引言

      心肌損傷是各類(lèi)心血管疾病進(jìn)展為心力衰竭的共同通路和關(guān)鍵環(huán)節(jié),是多種心臟疾病的病理生理基礎(chǔ),是疾病級(jí)聯(lián)反應(yīng)中的根本促發(fā)因素.隨著冠心病發(fā)病率的升高和臨床診療技術(shù)的提高,心肌缺血再灌注損傷成為心肌損傷領(lǐng)域的重要課題.及時(shí)有效恢復(fù)缺血心肌的血流供應(yīng)是減輕缺血癥狀、防止心肌梗死面積進(jìn)一步加大的最有效方法,然而再灌注可使心肌損傷進(jìn)一步加重,并有發(fā)生致命性心律失常等危險(xiǎn).臨床血管成形術(shù)與溶栓術(shù)并不能預(yù)防缺血造成的心肌損傷,也不能減輕再灌注損傷.如何有效減輕缺血再灌注損傷仍是醫(yī)學(xué)界的難題.

      心肌在不良刺激下是適應(yīng)、存活,還是損傷、死亡,結(jié)局取決于其內(nèi)源性保護(hù)機(jī)制與死亡信號(hào)之間的角力.氧化應(yīng)激是缺血再灌注損傷最主要的機(jī)制,在缺血再灌注過(guò)程中將產(chǎn)生大量活性氧(Reactive oxygen species,ROS)[1].在 ROS的攻擊下,細(xì)胞內(nèi)非飽和脂質(zhì)被氧化,同時(shí)產(chǎn)生大量活性醛類(lèi)物質(zhì),其中乙醛就是其中產(chǎn)量最高和毒性最強(qiáng)的代謝產(chǎn)物[2].由于醛類(lèi)遠(yuǎn)比ROS穩(wěn)定,所以將彌散到器官各處,放大了氧化損傷的效應(yīng).4-HNE(4-羥壬烯醛 )和 MDA(丙二醛)是醛類(lèi)主要的代謝產(chǎn)物,毒性高,可與蛋白質(zhì)、DNA等大分子物質(zhì)形成加合物影響其功能[3].隨著心臟內(nèi)醛類(lèi)物質(zhì)的蓄積,將對(duì)心肌細(xì)胞產(chǎn)生很大的毒性作用.而在心肌保護(hù)機(jī)制中作為心肌細(xì)胞能量工廠和應(yīng)激中樞的線粒體扮演了重要角色.以線粒體這一關(guān)鍵細(xì)胞器為切入點(diǎn),運(yùn)用蛋白質(zhì)組學(xué)技術(shù),發(fā)現(xiàn)在心肌損傷過(guò)程中 ALDH2的活性發(fā)生改變[4].鑒于其位于線粒體這一重要細(xì)胞器,并降解有害醛類(lèi)物質(zhì),因而推斷其參與心臟功能維護(hù),而一系列體內(nèi)外實(shí)驗(yàn)的開(kāi)展揭開(kāi)了ALDH2心肌保護(hù)研究的序幕,證明ALDH2活性增加可以減輕多種心肌損傷,包括缺血再灌注損傷,并在心肌保護(hù)中扮演重要角色[5-9].ALDH2是模仿缺血預(yù)適應(yīng),預(yù)防缺血再灌注損傷的新靶點(diǎn),有重要的潛在臨床應(yīng)用價(jià)值.近年來(lái)學(xué)者們對(duì)ALDH2與心肌缺血再灌注的研究更加深入,證明其不僅通過(guò)解毒活性醛類(lèi)物質(zhì),還通過(guò)調(diào)節(jié)自噬等機(jī)制減輕缺血再灌注損傷.

      1 ALDH2及其對(duì)缺血再灌注心肌的保護(hù)作用

      人體內(nèi)有19種ALDH,其中ALDH2位于線粒體內(nèi),是活性最強(qiáng)的醛脫氫酶,在心臟中含量也遠(yuǎn)高于其他醛脫氫酶[10].ALDH2廣泛參與了體內(nèi)醛類(lèi)物質(zhì)的氧化,起到清除活性醛類(lèi)物質(zhì)的作用[11].ALDH2還是一種硝酸還原酶,參與硝酸甘油的生物轉(zhuǎn)化[12].ALDH2基因位于染色體12q24.2,由13個(gè)外顯子組成,其中外顯子 12處可發(fā)生點(diǎn)突變(Glu504Lys),使正常的等位基因ALDH2*1變?yōu)橥蛔冃?ALDH2*2,導(dǎo)致ALDH2酶活性顯著下降[13].ALDH2基因在高加索人中突變率極低,而東亞人種中,ALDH2突變率約為40%[14,15].ALDH2活性下降的人群中,由于對(duì)飲酒后乙醇代謝所產(chǎn)生的乙醛難以降解,將導(dǎo)致面紅耳赤,惡心難受,所以有學(xué)者將其俗稱(chēng)為“臉紅”(flushing face)基因.

      Chen等[5]首先發(fā)現(xiàn) ALDH2在心肌缺血再灌注損傷中起重要保護(hù)作用,參與缺血前適應(yīng)的信號(hào)轉(zhuǎn)導(dǎo)通路,ALDH2的活性與心肌梗死面積呈顯著負(fù)相關(guān).隨后多項(xiàng)實(shí)驗(yàn)數(shù)據(jù)[16-20]也表明,ALDH2活性增加可有效減輕心肌缺血再灌注損傷,減小心肌梗死面積,改善心肌收縮功能及射血分?jǐn)?shù),降低缺血再灌注性心律失常的發(fā)生.中國(guó)[21-22]、日本[23]等國(guó) 家的流行 病學(xué)研究均表明,ALDH2的基因多態(tài)性與冠心病有密切關(guān)聯(lián),ALDH2突變型攜帶者有更高的冠心病發(fā)病率.獨(dú)立的全基因組關(guān)聯(lián)分析[24-25]和 meta分析[26-27]進(jìn)一步證實(shí)了這一觀點(diǎn).

      2 ALDH2解毒活性醛類(lèi)物質(zhì)

      心肌缺血再灌注過(guò)程中氧化應(yīng)激導(dǎo)致脂質(zhì)過(guò)氧化,在此過(guò)程中產(chǎn)生大量醛類(lèi)物質(zhì),尤其是4-HNE和MDA等乙醛代謝產(chǎn)物具有高活性和穩(wěn)定性,不僅影響糖酵解,改變蛋白酶體活性,更重要的是,它們可以直接抑制線粒體呼吸鏈功能,促使線粒體通透性轉(zhuǎn)化通道開(kāi)放,直接導(dǎo)致線粒體功能障礙[28-31].線粒體功能障礙將進(jìn)一步加重氧化應(yīng)激反應(yīng),從而導(dǎo)致更多活性醛類(lèi)物質(zhì)生成,形成惡性循環(huán).實(shí)驗(yàn)證明,4-HNE可導(dǎo)致心肌收縮功能紊亂[31].另外,4-HNE被認(rèn)為是乙醛導(dǎo)致過(guò)度自噬的重要介質(zhì)[32],并且可作為信號(hào)分子調(diào)節(jié)轉(zhuǎn)錄,抑制細(xì)胞周期,促進(jìn)細(xì)胞凋亡[33-34].實(shí)驗(yàn)表明,在心肌梗死后數(shù)周內(nèi),心臟線粒體功能持續(xù)受損,線粒體H2O2的釋放大量增加,伴隨脂質(zhì)過(guò)氧化及 4-HNE加成蛋白的形成,以及電子傳遞鏈復(fù)合物I和 V的減低[20].所以,在 I/R損傷中乙醛及其代謝物起著極其重要的作用.研究表明,ALDH2可顯著抑制缺血再灌注過(guò)程中 4-HNE生成、蛋白損傷及 4-HNE導(dǎo)致的心功能紊亂[17].ALDH2通過(guò)催化4-HNE轉(zhuǎn)為無(wú)活性的4-HNA,減輕活性醛類(lèi)物質(zhì)的毒性作用及其誘導(dǎo)的氧化應(yīng)激反應(yīng),解除二者的惡性循環(huán),并阻止4-HNE介導(dǎo)的自噬、細(xì)胞凋亡等不良因素,是ALDH2發(fā)揮顯著心肌保護(hù)作用的重要機(jī)制.4-HNE可導(dǎo)致LKB1和PTEN信號(hào)傳導(dǎo)通路的抑制[17],而LKB1和PTEN是AMPK和Akt的上游因子,所以ALDH2可以通過(guò)解毒4-HNE對(duì)AMPK與Akt發(fā)揮調(diào)控作用.但4-HNE濃度高時(shí)可以抑制ALDH2的活性,一方面,4-HNE在高濃度時(shí)可直接對(duì)ALDH產(chǎn)生抑制,另一方面,4-HNE可與Cys302共價(jià)結(jié)合,占據(jù) ALDH2的活性位點(diǎn),導(dǎo)致大于 90%的酶活 性 被 抑 制[5,20].

      3 ALDH2調(diào)節(jié)細(xì)胞自噬

      自噬(Autophagy)被認(rèn)為是一種進(jìn)化保守的機(jī)制,用以在應(yīng)激時(shí)維持細(xì)胞穩(wěn)態(tài),促進(jìn)細(xì)胞生存.細(xì)胞內(nèi)受損或衰老的蛋白質(zhì)、細(xì)胞器可在自噬過(guò)程中被運(yùn)輸?shù)饺苊阁w進(jìn)行消化降解,降解過(guò)程中可產(chǎn)生氨基酸等物質(zhì)供細(xì)胞循環(huán)利用并釋放一定能量,完成細(xì)胞自我更新[35].但自噬是一把雙刃劍.有研究表明,自噬在缺血前適應(yīng)中發(fā)揮重要心肌保護(hù)作用[36,37].且在輕度刺激下,如短暫的缺血或低水平的氧化應(yīng)激,增強(qiáng)的自噬可通過(guò)清除受損細(xì)胞器,循環(huán)利用大分子物質(zhì)減輕細(xì)胞損傷,促進(jìn)細(xì)胞生存.相反地,持續(xù)的缺血及再灌注的發(fā)生可導(dǎo)致過(guò)度及持續(xù)自噬,反而使細(xì)胞器和蛋白過(guò)度降解,發(fā)生自噬性II型程序性細(xì)胞死亡[38].所以,將自噬調(diào)節(jié)在合適水平可能會(huì)有效控制缺血再灌注性心肌損傷.我們實(shí)驗(yàn)室最早證明ALDH2在缺血、再灌注兩個(gè)階段中對(duì)自噬起雙向調(diào)節(jié)作用,改善心肌收縮功能以及減小梗死面積[17].心肌缺血時(shí),低氧、ATP耗竭及細(xì)胞器損傷激活自噬,自噬通過(guò)清除受損細(xì)胞器,降解有害物質(zhì)保護(hù)心肌.而再灌注時(shí),氧化應(yīng)激、線粒體損傷、內(nèi)質(zhì)網(wǎng)應(yīng)激等進(jìn)一步刺激導(dǎo)致自噬過(guò)度激活,最終損傷心?。M(jìn)一步的機(jī)制研究證明,心肌缺血時(shí),AMPK被激活,而ALDH2進(jìn)一步明顯增強(qiáng)AMPK的激活,AMPK抑制自噬的反向調(diào)節(jié)因子mTOR,減弱 mTOR對(duì)自噬的抑制作用而增強(qiáng)自噬水平;再灌注時(shí),AMPK活性不再,ALDH2通過(guò)增強(qiáng) Akt的磷酸化,從而增加 mTOR的表達(dá),使過(guò)度激活的自噬受到抑制[17].通過(guò)兩個(gè)階段的雙重作用,ALDH2在缺血再灌注過(guò)程中有效減輕缺血再灌注損傷.

      另外,在酒 精 性心 肌 ?。?9-41]、糖 尿 病 性 心肌?。?2]、心衰[43]等心血管疾病模型中也證明了ALDH2通過(guò)調(diào)節(jié)自噬起心肌保護(hù)作用.我們實(shí)驗(yàn)室的結(jié)果還表明,ALDH2可通過(guò)調(diào)節(jié)自噬,減輕內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress or ER stress)引起的心肌收縮功能障礙[44].自噬還與線粒體功能有重要關(guān)聯(lián),二者在心肌損傷中互為因果[45].

      4 ALDH2對(duì)再灌注性心律失常的防治

      心肌缺血再灌注過(guò)程中,缺血的心肌快速恢復(fù)血流灌注后易誘發(fā)再灌注性心律失常,發(fā)生率高達(dá)50%~80%,嚴(yán)重者可發(fā)生心室顫動(dòng)甚至交感風(fēng)暴.再灌注性心律失常的機(jī)制復(fù)雜.其中最常見(jiàn)的機(jī)制為,心肌缺血再灌注過(guò)程中肥大細(xì)胞釋放腎素,造成局部腎素-血管緊張素系統(tǒng)的形成,使局部交感神經(jīng)興奮,從而導(dǎo)致心律失常[46].心臟交感神經(jīng)中ALDH2的激活可減少再灌注性心律失常的發(fā)生[16,47,48],且其可 能 機(jī) 制為,ALDH2可通 過(guò) 腺 苷 A(2b)/A(3)受體-PKCε-ALDH2信號(hào)通路模仿缺血預(yù)適應(yīng),減少心臟肥大細(xì)胞因過(guò)氧化引起的脫顆粒及腎素釋放,阻止局部RAS激活,減少去甲腎上腺素的釋放.此外,ALDH2還可通過(guò)解毒活性醛類(lèi)物質(zhì)減輕氧化應(yīng)激降低再灌注性心律失常的發(fā)生[47].

      5 ALDH2激活劑在心肌保護(hù)治療上的轉(zhuǎn)化研究

      既然 ALDH2具有保護(hù)心肌的作用,那么能否為心肌損傷的患者帶來(lái)益處?能否在目前標(biāo)準(zhǔn)藥物治療的基礎(chǔ)上,進(jìn)一步拓寬心肌保護(hù)的藥物治療譜?Alda-1是ALDH2的特異性激活劑,可使野生型ALDH2活性在基礎(chǔ)水平上成倍增加,可增強(qiáng)純合子突變型(A/A)ALDH2的活性10倍,增強(qiáng)雜合子突變型(G/A)ALDH2的活性1倍,使雜合子突變型基本達(dá)到野生型(G/G)的水平[5],這種彌補(bǔ)基因型所致的功能不足的作用很罕見(jiàn).Alda-1不僅可增強(qiáng)ALDH2的活性,還可阻止4-HNE導(dǎo)致的ALDH2失活[5].Alda-1可用于心臟缺血前適應(yīng)預(yù)防心肌損傷[5]、缺血再灌注時(shí)減輕心肌損傷[17,49],也可用于心肌梗死后治療心肌損傷[20],此外,有研究證明,在遠(yuǎn)端缺血前適應(yīng)[50]和遠(yuǎn)端缺血后適應(yīng)[51]的過(guò)程中,均有ALDH2參與.Alda-1治療的缺血再灌注或心肌梗死心臟中,4-HNE蛋白加成物的聚積顯著降低,心肌梗死面積減少,心臟功能明顯改善[5,20].此外,Alda-1還可通過(guò)激活 ALDH2改善酒精性心肌病[40]、糖尿病性心肌病[52]、心力衰竭[53]、動(dòng)脈粥樣硬化[54]等心臟疾病,以及腦缺血與梗死[55],肝硬化[54]等疾病,有很大的臨床應(yīng)用前景.

      中華民族有悠久的酒文化,一直以來(lái)人們?cè)诰凭c健康的關(guān)系上爭(zhēng)論不休.從ALDH2與心臟疾病關(guān)系的角度出發(fā),適量飲酒可使ALDH2活性增加,模仿缺血前適應(yīng),并促進(jìn)NO生成,起到減少心肌梗死面積、減輕心肌損傷等保護(hù)心肌的作用[5,56-57].

      此外,硫辛酸(Alpha-lipoic acid)[58-59]、異氟烷(Isoflurane)[60]、聚腺苷二磷酸核糖聚合酶-1(PARP -1)抑制劑[61]等都被證明有激活 ALDH2,保護(hù)心肌的作用.這些研究結(jié)果預(yù)示了將 ALDH2激活劑用于治療急慢性心肌損傷的重要臨床價(jià)值,為改善心肌梗死預(yù)后、保護(hù)殘存心肌細(xì)胞功能帶來(lái)了新的策略.

      [1]Bolli R,Jeroudi MO,Patel BS,et al.Direct evidence that oxygenderived free radicals contribute to postischemic myocardial dysfunction in the intact dog[J].Proc Natl Acad Sci U S A,1989,86(12):4695-4699.

      [2]Cordis GA,Maulik N,Bagchi D,et al.Estimation of the extent of lipid peroxidation in the ischemic and reperfused heart by monitoring lipid metabolic products with the aid of high-performance liquid chromatography[J].J Chromatogr,1993,632(1-2):97-103.

      [3]Uchida K,Stadtman ER.Modification of histidine residues in proteins by reaction with 4-hydroxynonenal[J].Proc Natl Acad Sci U S A,1992,89(10):4544-4548.

      [4]Chen L,Wright LR,Chen CH,et al.Molecular transporters for peptides:delivery of a cardioprotective epsilonPKC agonist peptide into cells and intact ischemic heart using a transport system,R(7)[J].Chem Biol,2001,8(12):1123-1129.

      [5]Chen CH,Budas GR,Churchill EN,et al.Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J].Science,2008,321(5895):1493-1495.

      [6]Doser TA,Turdi S,Thomas DP,et al.Transgenic overexpression of aldehyde dehydrogenase-2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction[J].Circulation,2009,119(14):1941-1949.

      [7]Churchill EN,Disatnik MH,Mochly-Rosen D.Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonPKC and activation of aldehyde dehydrogenase 2[J].J Mol Cell Cardiol,2009,46(2):278-284.

      [8]Budas GR,Disatnik MH,Mochly-Rosen D.Aldehyde dehydrogenase 2 in cardiac protection:a new therapeutic target?[J].Trends Cardiovasc Med,2009,19(5):158-164.

      [9]Ma H,Li J,Gao F,et al.Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol:role of protein phosphatase and forkhead transcription factor[J].J Am Coll Cardiol,2009,54(23):2187-2196.

      [10]Kato N,Takeuchi F,Tabara Y,et al.Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians[J].Nat Genet,2011,43(6):531-538.

      [11]Vasiliou V,Nebert DW.Analysis and update of the human aldehyde dehydrogenase(ALDH)gene family[J].Hum Genomics,2005,2(2):138-143.

      [12]Chen Z,Zhang J,Stamler JS.Identification of the enzymatic mechanism of nitroglycerin bioactivation[J].Proc Natl Acad Sci U S A,2002,99(12):8306-8311.

      [13]Larson HN,Weiner H,Hurley TD.Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase“Asian”variant.J Biol Chem,2005.280(34):p.30550-6.

      [14]Li Y,Zhang D,Jin W,et al.Mitochondrial aldehyde dehydrogenase-2(ALDH2)Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin[J].J Clin Invest,2006,116(2):506-511.

      [15]Li H,Borinskaya S,Yoshimura K,et al.Refined geographic distribution of the oriental ALDH2*504Lys(nee 487Lys)variant.Ann Hum Genet,2009,73(Pt 3):335-345.

      [16]Koda K,Salazar-Rodriguez M,Corti F,et al.Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells[J].Circulation,2010,122(8):771-781.

      [17]Ma H,Guo R,Yu L,et al.Aldehyde dehydrogenase 2(ALDH2)rescues myocardial ischaemia/reperfusion injury:role of autophagy paradox and toxic aldehyde[J].Eur Heart J,2011,32(8):1025-1038.

      [18]Bian Y,Chen YG,Xu F,et al.The polymorphism in aldehyde dehydrogenase-2 gene is associated with elevated plasma levels of highsensitivity C-reactive protein in the early phase of myocardial infarction[J].Tohoku J Exp Med,2010,221(2):107-112.

      [19]Sun L,F(xiàn)erreira JC,Mochly-Rosen D.ALDH2 activator inhibits increased myocardial infarction injury by nitroglycerin tolerance[J].Sci Transl Med,2011,3(107):107-111.

      [20]Gomes KM,Bechara LR,Lima VM,et al.Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy:Benefits of Alda-1[J].Int J Cardiol,2015,179:129-138.

      [21]Xu F,Chen YG,Xue L,et al.Role of aldehyde dehydrogenase 2 Glu504lys polymorphism in acute coronary syndrome[J].J Cell Mol Med,2011,15(9):1955-1962.

      [22]Xu F,Chen YG,Xue L,et al.The Glu504Lys polymorphism of aldehyde dehydrogenase 2 contributes to development of coronary artery disease[J].Tohoku J Exp Med,2014,234(2):143-150.

      [23]Takagi S,Iwai N,Yamauchi R,et al.Aldehyde dehydrogenase 2 gene is a risk factor for myocardial infarction in Japanese men[J].Hypertens Res,2002,25(5):677-681.

      [24]Lu X,Wang L,Lin X,et al.Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension[J].Hum Mol Genet,2015,24(3):865-874.

      [25]Takeuchi F,Yokota M,Yamamoto K,et al.Genome-wide association study of coronary artery disease in the Japanese[J].Eur J Hum Genet,2012,20(3):333-340.

      [26]Gu JY,Li LW.ALDH2 Glu504Lys polymorphism and susceptibility to coronary artery disease and myocardial infarction in East Asians:a meta-analysis[J].Arch Med Res,2014,45(1):76-83.

      [27]Wang Q,Zhou S,Wang L,et al.ALDH2 rs671 Polymorphism and coronary heart disease risk among Asian populations:a meta-analysis and meta-regression[J].DNA Cell Biol,2013,32(7):393-399.

      [28]Mali VR,Palaniyandi SS.Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease[J].Free Radic Res,2014,48(3):251-263.

      [29]Akude E,Zherebitskaya E,Roy Chowdhury SK,et al.4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy[J].Neurotox Res,2010,17(1):28-38.

      [30]Raza H,John A.4-hydroxynonenal induces mitochondrial oxidative stress,apoptosis and expression of glutathione S-transferase A4-4 and cytochrome P450 2E1 in PC12 cells[J].Toxicol Appl Pharmacol,2006,216(2):309-318.

      [31]Aberle NS,Picklo MJ,Amarnath V,et al.Inhibition of cardiac myocyte contraction by 4-hydroxy-trans-2-nonenal[J].Cardiovasc Toxicol,2004,4(1):21-28.

      [32]Hill BG,Haberzettl P,Ahmed Y,et al.Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells[J].Biochem J,2008,410(3):525-534.

      [33]Barrera G,Pizzimenti S,Dianzani MU.4-hydroxynonenal and regulation of cell cycle:effects on the pRb/E2F pathway[J].Free Radic Biol Med,2004,37(5):597-606.

      [34]Chaudhary P,Sharma R,Sharma A,et al.Mechanisms of 4-hydroxy-2-nonenal induced pro-and anti-apoptotic signaling[J].Biochemistry,2010,49(29):6263-6275.

      [35]Levine B,Kroemer G.Autophagy in the pathogenesis of disease[J].Cell,2008,132(1):27-42.

      [36]Huang C,Yitzhaki S,Perry CN,et al.Autophagy induced by ischemic preconditioning is essential for cardioprotection[J].J Cardiovasc Transl Res,2010,3(4):365-373.

      [37]Yitzhaki S,Huang C,Liu W,et al.Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA[J].Basic Res Cardiol,2009,104(2):157-167.

      [38]Zhang Y,Ren J.Autophagy in ALDH2-elicited cardioprotection against ischemic heart disease:slayer or savior?[J].Autophagy,2010,6(8):1212-1213.

      [39]Ge W,Ren J.mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism[J].J Cell Mol Med,2012,16(3):616-626.

      [40]Ge W,Guo R,Ren J.AMP-dependent kinase and autophagic flux are involved in aldehyde dehydrogenase-2-induced protection against cardiac toxicity of ethanol[J].Free Radic Biol Med,2011,51(9):1736-1748.

      [41]Zhang Y,Ren J.ALDH2 in alcoholic heart diseases:molecular mechanism and clinical implications[J].Pharmacol Ther,2011,132(1):86-95.

      [42]Guo Y,Yu W,Sun D,et al.A novel protective mechanism for mitochondrial aldehyde dehydrogenase(ALDH2)in type i diabetes-induced cardiac dysfunction:Role of AMPK-regulated autophagy[J].Biochim Biophys Acta,2015,1852(2):319-331.

      [43]Shen C,Wang C,F(xiàn)an F,et al.Acetaldehyde dehydrogenase 2(ALDH2)deficiency exacerbates pressure overload-induced cardiac dysfunction by inhibiting Beclin-1 dependent autophagy pathway[J].Biochim Biophys Acta,2015,1852(2):310-318.

      [44]Zhang B,Zhang Y,La Cour KH,et al.Mitochondrial aldehyde dehydrogenase obliterates endoplasmic reticulum stress-induced cardiac contractile dysfunction via correction of autophagy[J].Biochim Biophys Acta,2013,1832(4):574-584.

      [45]De Meyer GR,De Keulenaer GW,Martinet W.Role of autophagy in heart failure associated with aging[J].Heart Fail Rev,2010,15(5):423-430.

      [46]Mackins CJ,Kano S,Seyedi N,et al.Cardiac mast cell-derived renin promotes local angiotensin formation,norepinephrine release,and arrhythmias in ischemia/reperfusion[J].J Clin Invest,2006,116(4):1063-1070.

      [47]Robador PA,Seyedi N,Chan NY,et al.Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons:mediation by protein kinase Cepsilon[J].J Pharmacol Exp Ther,2012,343(1):97-105.

      [48]Aldi S,Takano K,Tomita K,et al.Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C epsilon-dependent aldehyde dehydrogenase type-2 activation[J].J Pharmacol Exp Ther,2014,349(3):508-517.[49]Gong D,Zhang Y,Zhang H,et al.Aldehyde dehydrogenase-2 activation during cardioplegic arrest enhances the cardioprotection against myocardial ischemia-reperfusion injury[J].Cardiovasc Toxicol,2012,12(4):350-358.

      [50]Contractor H,Stottrup NB,Cunnington C,et al.Aldehyde dehydrogenase-2 inhibition blocks remote preconditioning in experimental and human models[J].Basic Res Cardiol,2013,108(3):343.

      [51]Yu Y,Jia XJ,Zong QF,et al.Remote ischemic postconditioning protects the heart by upregulating ALDH2 expression levels through the PI3K/Akt signaling pathway[J].Mol Med Rep,2014,10(1):536-542.

      [52]Zhang Y,Babcock SA,Hu N,et al.Mitochondrial aldehyde dehydrogenase(ALDH2)protects against streptozotocin-induced diabetic cardiomyopathy:role of GSK3beta and mitochondrial function[J].BMC Med,2012,10:40.

      [53]Gomes KM,Campos JC,Bechara LR,et al.Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling[J].Cardiovasc Res,2014,103(4):498-508.

      [54]Stachowicz A,Olszanecki R,Suski M,et al.Mitochondrial aldehyde dehydrogenase activation by Alda-1 inhibits atherosclerosis and attenuates hepatic steatosis in apolipoprotein E-knockout mice[J].J Am Heart Assoc,2014,3(6):e001329.

      [55]Luo XJ,Liu B,Ma QL,et al.Mitochondrial aldehyde dehydrogenase,a potential drug target for protection of heart and brain from ischemia/reperfusion injury[J].Curr Drug Targets,2014,15(10):948-955.

      [56]Xue L,Xu F,Meng L,et al.Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation[J].FEBS Lett,2012,586(2):137-142.

      [57]Mukamal KJ,Jensen MK,Gronbaek M,et al.Drinking frequency,mediating biomarkers,and risk of myocardial infarction in women and men[J].Circulation,2005,112(10):1406-1413.

      [58]Li RJ,Ji WQ,Pang JJ,et al.Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome[J].Tohoku J Exp Med,2013,229(1):45-51.

      [59]He L,Liu B,Dai Z,et al.Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation[J].Eur J Pharmacol,2012,678(1-3):32-38.

      [60]Lang XE,Wang X,Zhang KR,et al.Isoflurane preconditioning confers cardioprotection by activation of ALDH2[J].PLoS One,2013,8(2):e52469.

      [61]Wei SJ,Xing JH,Wang BL,et al.Poly(ADP-ribose)polymerase inhibition prevents reactive oxygen species induced inhibition of aldehyde dehydrogenase2 activity[J].Biochim Biophys Acta,2013,1833(3):479-486.

      R541

      A

      2095-6894(2015)02-160-05

      2014-12-16;接受日期:2015-01-05

      龐佼佼.E-mail:pangjiaojiao2011@126.com

      猜你喜歡
      醛類(lèi)線粒體氧化應(yīng)激
      不同成熟期番石榴果實(shí)香氣成分變化
      棘皮動(dòng)物線粒體基因組研究進(jìn)展
      線粒體自噬與帕金森病的研究進(jìn)展
      基于炎癥-氧化應(yīng)激角度探討中藥對(duì)新型冠狀病毒肺炎的干預(yù)作用
      氧化應(yīng)激與糖尿病視網(wǎng)膜病變
      為什么有人討厭香菜?
      氧化應(yīng)激與結(jié)直腸癌的關(guān)系
      HS-SPME同時(shí)萃取衍生化定量白酒中反-2-烯醛和二烯醛類(lèi)化合物
      頂空衍生固相微萃取測(cè)定大米中醛類(lèi)物質(zhì)
      NF-κB介導(dǎo)線粒體依賴(lài)的神經(jīng)細(xì)胞凋亡途徑
      上思县| 左权县| 鲁山县| 灵丘县| 永新县| 兖州市| 内丘县| 泰顺县| 东平县| 且末县| 上林县| 肇东市| 松江区| 承德县| 通州区| 新竹县| 尼勒克县| 外汇| 花莲市| 大新县| 金塔县| 商洛市| 繁昌县| 兴安盟| 山阳县| 临朐县| 乌恰县| 金阳县| 察隅县| 定陶县| 沧源| 灵宝市| 霍邱县| 台北市| 仙桃市| 乐都县| 汝阳县| 闵行区| 金塔县| 比如县| 衡水市|