張麗娟, 楊曉明, 陸建英, 王 昶
(甘肅省農(nóng)業(yè)科學(xué)院作物研究所,蘭州 730070)
豌豆白粉病研究進(jìn)展
張麗娟, 楊曉明*, 陸建英, 王 昶
(甘肅省農(nóng)業(yè)科學(xué)院作物研究所,蘭州 730070)
豌豆白粉病是由氣傳性豌豆白粉菌(Erysiphe pisi)引起的病害。近年來(lái)白粉病對(duì)于豌豆的危害日趨嚴(yán)重,直接導(dǎo)致豌豆大面積減產(chǎn),鮮莢和籽粒的數(shù)量和品質(zhì)下降,從數(shù)量和質(zhì)量上嚴(yán)重制約豌豆生產(chǎn),已成為世界性重要病害。本文對(duì)豌豆白粉病病原菌、病害癥狀及其侵染發(fā)生規(guī)律進(jìn)行了闡述。并對(duì)抗病性鑒定、抗性機(jī)理、種質(zhì)資源、防治策略和分子標(biāo)記等國(guó)內(nèi)外新近研究進(jìn)展進(jìn)行了綜述,并探討了豌豆白粉病抗性研究的方向。
豌豆; 白粉病; 抗性機(jī)理; 分子標(biāo)記
豌豆所特有的根瘤固氮作用使其成為重要的養(yǎng)地作物。加之其生育期短,能適應(yīng)多種氣候及土壤環(huán)境條件,是重要的輪作倒茬和間、套種作物。近年來(lái),隨著人們保健意識(shí)的增強(qiáng)和農(nóng)業(yè)結(jié)構(gòu)調(diào)整,豌豆在食用、深加工和畜牧飼料方面的需求有所提高,已成為我國(guó)的優(yōu)勢(shì)小宗雜糧作物和世界第二大食用豆類作物[1]。白粉?。‥rysiphe pisiDC.)作為影響豌豆生產(chǎn)的常見(jiàn)病害之一在全球范圍內(nèi)均有發(fā)生。隨著全球氣候變暖,白粉病對(duì)于豌豆的危害日趨嚴(yán)重,病害流行年份產(chǎn)量損失可達(dá)50%,鮮莢和籽粒的數(shù)量和品質(zhì)也明顯下降,直接導(dǎo)致豌豆大面積減產(chǎn),已成為世界性重要豌豆病害。本文就豌豆白粉病病原菌危害特點(diǎn)、抗性鑒定、抗性機(jī)理、種質(zhì)資源、分子標(biāo)記及防治方法等方面國(guó)內(nèi)外研究進(jìn)展進(jìn)行了綜述,并探索了豌豆白粉病今后研究的方向。
1.1 白粉病病原菌
豌豆白粉病是主要由氣傳性豌豆白粉菌(Erysiphe pisiDC.)引起的植物病害。該菌屬于子囊菌亞門白粉菌目真菌。分生孢子桶形至柱形,無(wú)色,單胞,大小為(25.4~38.1)μm×(12.7~17.8)μm。子囊殼暗褐色,扁球形,直徑92~120μm,壁細(xì)胞不規(guī)則,多角形,直徑7.1~20.3μm。附屬絲絲狀,12~34根,為子囊殼的1~3倍。子囊5~8個(gè),卵形,大?。?5.9~76.2)μm×(35.6~43.2)μm,子囊孢子3~5個(gè),卵形,帶黃色,大?。?0.3~25.4)μm×(12.7~15.2)μm。Ondrej等[2]和Attanayake等[3]發(fā)現(xiàn)鮑勒白粉病菌(E.baeumleriMagnus)和車軸草白粉病菌(E.trifoliiGrev.)也可導(dǎo)致豌豆白粉病的發(fā)生。
1.2 癥狀
豌豆白粉病在豌豆的整個(gè)生育期都可以發(fā)生,多發(fā)生于生育中后期,主要危害豌豆葉片、莖蔓和莢,多始于葉片。病害初期在葉片表面形成零星白粉狀小點(diǎn),不易被察覺(jué),隨著病情擴(kuò)展癥狀表現(xiàn)逐漸明顯,受害部位呈現(xiàn)不規(guī)則形白粉狀斑,互相連合擴(kuò)散至全葉、莖、莢。發(fā)病高峰期葉片表面被白粉覆蓋,致使葉片迅速枯黃蜷縮。莖、莢染病后也出現(xiàn)小粉斑,病害嚴(yán)重時(shí)布滿莖莢,致使莖部枯黃,嫩莖干縮,豆莢萎蔫皺縮,莢粒變形壞死。有的在發(fā)病后期在菌絲層上會(huì)出現(xiàn)小黑點(diǎn),即閉囊殼。
1.3 侵染規(guī)律
病原菌分生孢子萌發(fā)產(chǎn)生附著孢,附著孢穿透角質(zhì)層和表皮細(xì)胞壁進(jìn)入到表皮細(xì)胞,在表皮內(nèi)細(xì)胞首先形成一個(gè)吸器,從植物細(xì)胞吸收養(yǎng)分,由分生孢子上長(zhǎng)出的菌絲在細(xì)胞間蔓延,菌絲表面形成氣生孢子梗產(chǎn)生分生孢子開(kāi)始一個(gè)新的侵染周期[4-6]。在溫暖地區(qū),豌豆白粉菌無(wú)明顯越冬期,病原菌以無(wú)性時(shí)期的結(jié)構(gòu)越冬并在春季直接進(jìn)行侵染;而寒冷地區(qū),病原菌多以閉囊殼在病殘?bào)w上越冬,翌年產(chǎn)生子囊孢子進(jìn)行初侵染,發(fā)病后病部產(chǎn)生分生孢子借助氣流、雨水、昆蟲、機(jī)械、人力等因素進(jìn)行多次重復(fù)侵染,使病害逐漸蔓延擴(kuò)大,后期病菌產(chǎn)生閉囊殼越冬。病害在日暖夜涼多露潮濕的環(huán)境易發(fā)生和流行,但即使氣候干旱,該病仍有可能發(fā)生。
2.1 抗病性鑒定及接種方法
豌豆白粉病抗病鑒定最常用田間自然發(fā)病和人工接種兩種方法。在白粉病流行年份,田間自然發(fā)病鑒定的結(jié)果可以表明豌豆的抗病程度。但是田間環(huán)境因素變化較大,條件不易控制。人工接種以其試驗(yàn)條件可控的優(yōu)點(diǎn)多用于苗期室內(nèi)鑒定。Warkentin等[7]成功采用離體葉片鑒定法對(duì)半無(wú)葉型豌豆進(jìn)行白粉病抗性鑒定。他們?nèi)〉?至第3節(jié)點(diǎn)處的托葉,于培養(yǎng)皿中置于含15 mL 5%蔗糖溶液的棉花上。選擇白粉病菌覆蓋率達(dá)80%~100%的幼嫩葉片進(jìn)行接種,將培養(yǎng)皿置于培養(yǎng)箱內(nèi)進(jìn)行培養(yǎng)。Vaid等[8]采用30~40日齡植株上的小葉片進(jìn)行接種,接種后讓葉片漂浮于裝有自來(lái)水的培養(yǎng)皿中,室溫(22±1)℃進(jìn)行培養(yǎng)。劉愛(ài)媛[9]也對(duì)豌豆離體葉片鑒定白粉病抗性的方法進(jìn)行了研究,將豌豆苗期離體葉片在墊有兩層濕濾紙的培養(yǎng)皿內(nèi)培養(yǎng),并人工接種白粉病菌,進(jìn)行豌豆品種白粉病抗性鑒定。鑒定結(jié)果與田間成株期的抗病性表現(xiàn)基本一致。溫度、光照強(qiáng)度、葉齡、病菌接種量等因素影響離體葉片白粉病發(fā)生速度和保綠時(shí)間。通常情況下,田間自然發(fā)病調(diào)查和人工接種方法相結(jié)合,能更為準(zhǔn)確地反映品種在整個(gè)生育期的抗病程度,也是現(xiàn)在較為常用的鑒定方法。
2.2 分級(jí)及評(píng)價(jià)方法
對(duì)于豌豆白粉病抗病性的分級(jí)和評(píng)價(jià)標(biāo)準(zhǔn),不少學(xué)者都作了闡述。Warkentin等[7]通過(guò)直觀觀察葉片病原菌覆蓋率將植株個(gè)體病害程度分為0到9級(jí),植株完全發(fā)病時(shí)進(jìn)行病害指數(shù)調(diào)查。病情級(jí)數(shù)0~4級(jí)表現(xiàn)抗病,5~9級(jí)表現(xiàn)感病。Vaid等[8]對(duì)接種10~15 d的葉片上病原菌生長(zhǎng)情況進(jìn)行觀察,用肉眼和體視顯微鏡(×90)相結(jié)合進(jìn)行分級(jí)評(píng)估,分為5個(gè)等級(jí),抗病類型(R)的侵染等級(jí)為0、1和2;感病類型(S)的侵染等級(jí)為3和4。林成輝等人[10]根據(jù)菌體覆蓋單葉面積的百分率分級(jí),病情指數(shù)0~10.0為高抗(HR);10.1~20.0為抗(R);20.1~35.0為感(S);35.1~100.0為高感(HS)。宗緒曉等人[11]根據(jù)病原菌覆蓋葉面積百分率將病害分為0、1、3、5、7、9共6個(gè)等級(jí),根據(jù)病情指數(shù)劃分豌豆白粉病抗性:0~1級(jí)為高抗(HR);3級(jí)為抗(R);5級(jí)為中抗(MR);7級(jí)為感(S);9級(jí)為高感(HS)。
豌豆抗白粉病不同的癥狀表現(xiàn)說(shuō)明存在不止一個(gè)抗性基因。目前已被正式命名的豌豆白粉病抗性基因有兩個(gè)隱性基因(er1、er2)和一個(gè)顯性基因(Er3)[12-14]。抗性基因er1源于豌豆栽培種,抵抗病原菌初侵染,病原菌附著后不久便停止萌發(fā),同時(shí)也沒(méi)有次生菌絲的形成,表現(xiàn)完全抗性,已被廣泛運(yùn)用于豌豆抗性育種[15-18]。Humphry等研究發(fā)現(xiàn)er1的抗性是由于大麥感白粉病基因MLO同源序列PsMLO功能缺失所致[19]。er2基因抗性不穩(wěn)定,受地域、環(huán)境、葉齡及其他因素影響較大,在不同地域抗性表現(xiàn)也不同,可能與病原菌致病力有關(guān)。病原菌侵染后產(chǎn)生過(guò)敏性反應(yīng)。Curto等人[20]比較研究接種和不接種白粉病菌的抗病品種‘JI2480’(含有抗性基因er2)和感病品種葉片蛋白質(zhì)組差異。從蛋白質(zhì)水平研究了抗病品種‘JI2480’的抗性作用機(jī)理。也有研究認(rèn)為,單一的er2基因無(wú)法表現(xiàn)抗性,只有與er1相結(jié)合才能表現(xiàn)抗病性[21]??剐曰駿r3是從野生豌豆(Pisum fulvumL.)中發(fā)現(xiàn),通過(guò)誘導(dǎo)被侵染組織細(xì)胞快速程序性死亡,從而抗初侵染以及初侵染后抑制病原菌擴(kuò)展或生長(zhǎng),延緩病害的發(fā)生。目前,該基因正通過(guò)有性雜交導(dǎo)入豌豆栽培種中[14,22]。
目前國(guó)外已報(bào)道的抗豌豆白粉病種質(zhì)資源中,已確定由er1基因控制的抗白粉病種質(zhì)較多,如澳大利亞的‘Glenroy’、‘Kiley’、‘Mukta’、‘M257-3-6’、‘M257-5-1’、‘PSI11’、‘ATC1181’[23];印度‘LE25’、‘ATC823’[23]和‘JI210’[24];美國(guó)‘ATC649’、‘ATC1036’[23]和‘JI1210’[24];加拿大‘Tara’[24]和‘955180’[25]等材料。受er2基因控制的抗豌豆白粉病品種只有1份,為英國(guó)的‘JI2480’[24]。受顯性基因Er3控制的抗豌豆白粉病資源是來(lái)自ICARDA的野生型豌豆‘P660-4’[14]。Davidson等[26]對(duì)澳大利亞的88個(gè)豌豆品系進(jìn)行了抗白粉病和霜霉?。跴eronospora viciaede Bary(Berkeley)Caspary]的田間自然感病和溫室接種鑒定,發(fā)現(xiàn)19個(gè)抗白粉病,14個(gè)兼抗2種病害。Rana等[27]對(duì)來(lái)自60多個(gè)國(guó)家的701份豌豆種質(zhì)進(jìn)行白粉病抗性鑒定,篩選出在田間和室內(nèi)連續(xù)3年表現(xiàn)出穩(wěn)定抗性的材料57份。我國(guó)已選育出的抗病品種有‘中豌2號(hào)’、‘中豌4號(hào)’、‘晉硬1號(hào)’、‘晉軟1號(hào)’、‘綠珠豌豆’、‘小青莢豌豆’、‘無(wú)須豆尖1號(hào)’、‘雜交大莢豌豆’、‘臺(tái)中16號(hào)’等。曾亮等[28]連續(xù)3年對(duì)國(guó)內(nèi)外的535份豌豆資源進(jìn)行白粉病田間自然發(fā)病調(diào)查,篩選出1份高抗白粉病資源(‘X9002’)、2份抗性材料(‘定褐’和‘L0313’)和17份中抗種質(zhì)。王仲怡等[29]對(duì)396份豌豆資源進(jìn)行苗期接種鑒定,有101份資源對(duì)2個(gè)不同地理來(lái)源的豌豆白粉病菌分離物EPBJ和EPYN表現(xiàn)免疫或抗病,其中對(duì)分離物EPBJ和EPYN免疫的資源分別為59份和60份,對(duì)2個(gè)分離物均免疫的資源有54份;其中82份中國(guó)資源有8份對(duì)2個(gè)分離物均表現(xiàn)免疫。這些來(lái)自世界各地的抗豌豆白粉病種質(zhì)資源為今后的抗病育種工作提供了很好的親本來(lái)源。
在不同地域、不同年份和氣候環(huán)境中,同一抗性品種的抗性表現(xiàn)可能存在差異,這與所攜帶抗性基因的抗病機(jī)理、不同地域病原菌的致病力、氣候環(huán)境等因素有關(guān)[30]。因此在選用抗病品種時(shí),應(yīng)因地制宜,選擇和引進(jìn)適合當(dāng)?shù)胤N植的抗性品種。
豌豆白粉病抗性基因的分子標(biāo)記作為研究重點(diǎn)已被國(guó)外許多學(xué)者研究報(bào)道。Timmerman等[31]找到與er1緊密連鎖的RAPD標(biāo)記OPD10650,遺傳距離2.1 c M,并利用分子標(biāo)記手段將er1基因定位在豌豆第Ⅵ連鎖群上,而這個(gè)RAPD標(biāo)記OPD10650已由Paran等人轉(zhuǎn)化成SCAR標(biāo)記ScOPD106[3520],與er1的遺傳距離是3.4 c M[33]。Dirlewanger等[34]報(bào)道了er1基因的RFLP標(biāo)記p236,與er1之間的遺傳距離是9.8 cM。Tonguc和Weeden[35]報(bào)道了er1基因位于兩個(gè)與er1連鎖的RAPD標(biāo)記之間,其中標(biāo)記BC210與er1的遺傳距離為8.2 c M,并再次確定er1位于豌豆遺傳圖譜第Ⅵ連鎖群。Nisar和Ghafoor[36]發(fā)現(xiàn)與er1連鎖的RAPD標(biāo)記OPB18430,遺傳距離11.2 cM。Srivastava等[37]開(kāi)發(fā)了與該基因緊密連鎖的SCAR標(biāo)記ScOPX04880,與er1的遺傳距離僅為0.6 cM。印度學(xué)者Katoch[38]將er2基因定位在第Ⅲ連鎖群上,并找到了與該基因緊密連鎖的RAPD分子標(biāo)記OPX-17_1400,將其轉(zhuǎn)化成SCAR標(biāo)記,遺傳距離為2.6 cM。與Er3連鎖的RAPD標(biāo)記也已被確定并轉(zhuǎn)化成SCAR標(biāo)記SCAB1,遺傳距離2.8 c M[39-40]。
874利用與目的基因緊密連鎖或共分離的分子標(biāo)記更有利于進(jìn)行分子標(biāo)記輔助選擇(MAS)[41]。Rakshit等[30]利用DNA標(biāo)記技術(shù)進(jìn)行豌豆抗白粉病分子標(biāo)記輔助育種的研究。Ek等[25]找到3個(gè)與er1連鎖的SSR標(biāo)記PSMPSAD60、PSMPSAA374和PSMPA5,遺傳距離分別是10.4、11.6和14.9 cM。但是很可能因?yàn)檫@些遺傳距離過(guò)大而不能進(jìn)行MAS[42]。單個(gè)標(biāo)記與目的基因遺傳距離過(guò)遠(yuǎn)不能進(jìn)行分子標(biāo)記輔助選擇時(shí),可以同時(shí)利用位于目的基因兩側(cè)的標(biāo)記進(jìn)行選擇[43]。Ek等[25]同時(shí)利用位于er1兩側(cè)的SSR標(biāo)記PSMPSAD60和PSMPA5進(jìn)行抗性植株選擇,獲得抗性個(gè)體的概率為98.4%。
傳統(tǒng)的防治方法是提前播種期、種植早熟品種、輪作倒茬和加強(qiáng)田間管理。提早播種期和種植早熟品種使作物在病害流行前已成熟,病害對(duì)產(chǎn)量的影響較小。輪作倒茬在時(shí)間和空間上可延緩病情擴(kuò)散,但是不能防治[44]。藥劑防治對(duì)于豌豆白粉病非常有效,常見(jiàn)的白粉病防治藥劑有硫制劑、苯并咪唑類殺菌劑和三唑類殺菌劑等。楊德良等[45]采用43%戊唑醇防治大莢豌豆白粉病,試驗(yàn)證明發(fā)病初期開(kāi)始施藥,3~4次可達(dá)到較好防效;王兆美等[46]研究發(fā)現(xiàn)30%氟菌唑2 000倍液對(duì)豌豆白粉病防治效果最好;王昶等[47]等研究發(fā)現(xiàn)20%丙環(huán)唑乳油800倍液對(duì)于‘隴豌1號(hào)’和‘S3008’白粉病防治效果較好,15%三唑酮可濕性粉劑1 000倍液對(duì)‘S4008’白粉病防治效果較好。新的藥劑在不斷被研發(fā)利用,如嘧啶核苷類抗菌素、氨基寡糖素等生物源農(nóng)藥殺菌劑。但人們往往不愿意遵循正確的藥劑使用時(shí)間,直到生產(chǎn)后期產(chǎn)量受損嚴(yán)重以致無(wú)法彌補(bǔ)的情況下才頻繁使用[48]。
農(nóng)藥的濫用導(dǎo)致農(nóng)藥殘留、環(huán)境污染、耐藥性增強(qiáng)甚至危害人類健康使得人們更傾向于尋求新的白粉病防治方法。選育和利用抗病品種是我國(guó)目前防治白粉病首選的有效措施。選用適宜當(dāng)?shù)胤N植的抗病品種,不但可以減少化學(xué)農(nóng)藥的使用,而且對(duì)保護(hù)環(huán)境及人類健康更為有利。但是目前國(guó)內(nèi)外所選育的能廣泛運(yùn)用于生產(chǎn)中的抗性品種甚少。甘肅省農(nóng)業(yè)科學(xué)院作物所選育的軟莢半無(wú)葉型豌豆品種‘X9002’在白粉菌侵染后,葉片上并無(wú)過(guò)敏反應(yīng)癥狀,且在感染20 d左右后,葉片上只有零星的小孢子堆,是高抗且抗性穩(wěn)定的抗白粉病豌豆品種。云南省農(nóng)科院選育的豌豆品種‘云豌4號(hào)’、‘云豌8號(hào)’抗豌豆白粉病且優(yōu)質(zhì)高產(chǎn),已在生產(chǎn)中進(jìn)行推廣。
一些非化學(xué)殺菌劑如磷、硅酸鹽、蛋氨酸-核黃素混合物是傳統(tǒng)的白粉病防治藥劑[49]。腰果殼提取物被認(rèn)為對(duì)于豌豆白粉病病原菌分生孢子萌發(fā)和病情發(fā)展有一定抑制作用。酚類物質(zhì),如沒(méi)食子酸、阿魏草酸和肉桂酸,也用于豌豆白粉病防治[50]。也有研究認(rèn)為一些天然提取物如天然印楝素[51]、虎耳草素、大蒜素[52]、姜的提取物[53]、紫堇提取物α-黃連堿[54]、夾竹桃提取物[55]可以控制豌豆白粉病的發(fā)生。
生物防治如利用細(xì)菌、原生動(dòng)物、真菌防治劑及核酸等,最可行的生物防治是使用一些拮抗劑和研制生物抑菌劑。Singh等[56]研究發(fā)現(xiàn)通過(guò)空中噴施熒光假單胞桿菌孢子懸浮液對(duì)白粉病發(fā)生有一定抑制作用。生物防治白粉病作為一種可行方法具有研究前景,有待進(jìn)一步深入研究。
誘導(dǎo)植物抗病性是防治白粉病的重點(diǎn)。病原菌侵染、機(jī)械損傷、化學(xué)因素及環(huán)境因素都可誘導(dǎo)植物抗病性。Singh等[57]采用接種非致病菌來(lái)誘導(dǎo)豌豆白粉病抗性,能有效抑制白粉病菌分生孢子萌發(fā)和病害擴(kuò)散。國(guó)外有學(xué)者報(bào)道一些化學(xué)物質(zhì)如苯丙氨酸、β-氨基丁酸、殼聚糖、水楊酸、草酸以及一些植物提取物對(duì)誘導(dǎo)豌豆耐藥性非常有效[58-62]。
選育抗病品種是最高效、經(jīng)濟(jì)和環(huán)保的豌豆白粉病防治方法,但是現(xiàn)有的能廣泛應(yīng)用于生產(chǎn)的豌豆抗病品種非常有限。隨著同一抗病品種栽培面積的不斷擴(kuò)大,品種抗性很可能因新的病原菌毒力型產(chǎn)生而喪失。因此,盡管一些豌豆品種對(duì)白粉病表現(xiàn)穩(wěn)定抗性,但在豌豆育種中應(yīng)同時(shí)利用其他抗性基因及發(fā)掘新的抗性基因使得病原菌突變體很難將其原有抗性突破,從而保持持久抗性。另外,國(guó)內(nèi)外在細(xì)胞水平、分子水平及生理生化水平對(duì)豌豆白粉病抗性機(jī)理研究較少。深入研究豌豆白粉病抗性機(jī)理,對(duì)豌豆抗病育種和分子標(biāo)記具有重要意義。加強(qiáng)對(duì)于能引起豌豆白粉病的病原菌種類鑒定以及分布和侵染特點(diǎn)的研究有利于不同區(qū)域采取針對(duì)性防控手段進(jìn)行及時(shí)防治,有助于豌豆白粉病新型防治藥劑的研發(fā)及防治方法的優(yōu)化。
[1] 楊曉明,任瑞玉.國(guó)內(nèi)外豌豆生產(chǎn)和育種研究進(jìn)展[J].甘肅農(nóng)業(yè)科技,2005(8):3 5.
[2] O n dˇrej M,DostálováR,O ds trˇcilováL.Response ofPisum sativumgermplasm resistant toErysiphe pisito inoculation withErysiphe baeumleri,a new pathogen of pea[J].Plant Protection Science,2005,41(3):95 103.
[3] Attanayake R N,Glawe D A,McPhee K E,et al.Erysiphe trifolii—a newly recognized powdery mildew pathogen of pea[J].Plant Pathology,2010,59:712 720.
[4] Falloon R E,Sutherland P W,Hallett I C.Morphology ofErysiphe pision leaves ofPisum sativum[J].Canadian Journal of Botany,1989,67(11):3410 3416.
[5] Prithiviraj B,Singh U P.A simple technique for studying the development ofErysiphe pisiin the epidermis ofPisum sativum[J].Mycologia,1995,87(1):138 139.
[6] Smith P H,F(xiàn)oster E M,Boyd L A,et al.The early development ofErysiphe pisionPisumsativumL.[J].Plant Pathology,1996,45(2):302 309.
[7] Warkentin T D,Rashid K Y,Zimmer R C.Effectiveness of a detached leaf assay for determination of the reaction of pea plants to powdery mildew[J].Canadian Journal of Plant Pathology,1995,17(1):87 89.
[8] Vaid A,Tyagi P D.豌豆白粉病抗性的遺傳學(xué)[J].國(guó)外農(nóng)學(xué)—雜糧作物,1998,18(5):14 16.
[9] 劉愛(ài)媛.豌豆離體葉片鑒定白粉病抗性方法[J].植物保護(hù)學(xué)報(bào),2002,29(2):119 123.
[10]林成輝,唐樂(lè)塵,倪偉健,等.不同豌豆品種對(duì)白粉病的抗性特點(diǎn)與防治對(duì)策[J].中國(guó)蔬菜,2002(6):37 38.
[11]宗緒曉,王志剛,關(guān)建平,等.豌豆種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)[M].北京:中國(guó)農(nóng)業(yè)出版社,2005:57 59.
[12]Harland S C.Inheritance of immunity to mildew in Peruvian forms ofPisum sativum[J].Heredity,1948,2:263 269.
[13]Heringa R J,van Norel A,Tazelaar M F.Resistance to powdery mildew(Erysiphe polygoniD.C.)in peas(PisumsativumL.)[J].Euphytica,1969,18:163 169.
[14]Fondevilla S,Torres A M,Moreno M T,et al.Identification of a new gene for resistance to powdery mildew inPisum fulvum,a wild relative of pea[J].Breeding Science,2007,57:181 184.
[15]Fondevilla S,Carver T L W,Moreno M T,et al.Identification and characterisation of sources of resistance toErysiphe pisiSyd.inPisumspp.[J].Plant Breeding,2007,126(2):113 119.
[16]Cousing R.étude de la résistanceàl′o?dium chez le pois[J]. Annales de l′Amélioration des Plantes,1965,15:93 97.
[17]Tiwari K R,Penner G A,Warkentin T D.Inheritance of powdery mildew resistance in pea[J].Plant Science,1997,77:307 310.
[18]Fondevilla S,Carver T L W,Moreno M T,et al.Macroscopic and histological characterisation of geneser1 ander2 for powdery mildew resistance in pea[J].Plant Pathology,2006,115(3):309 321.
[19]Humphry M,Reinst?dler A,Ivanov S,et al.Durable broadspectrum powdery mildew resistance in peaer1 plants is conferred by natural loss-of-function mutations in PsMLO1[J]. Molecular Plant Pathology,2011,12(9):866 878.
[20]Curto M,Camafeita E,Lopez JA,et al.A proteomic approach to study pea(Pisum sativum)responses to powdery mildew(Erysiphe pisi)[J].Proteomics,2006,6:S163 S174.
[21]Su H,Hwang S F,Chang K F,et al.Differences in the growth stages ofErysiphe pision cultivars on field pea(Pisum sativumL.)[J].Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-Journal of Plant Disease and Protection,2004,111(1):64 70.
[22]Fondevilla S,Cubero J I,Rubiales D.Confirmation that theEr3 gene,conferring resistance toErysiphe pisiin pea,is a different gene fromer1 ander2 genes[J].Plant Breeding,2011,130(2):281 282.
[23]Liu S M,O’Brien L,Moore SG.A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales[J].Australian Journal of Experimental Agriculture,2003,43(4):373 378.
[24]Tiwari K R,Penner G A,Warkentin T D,et al.Pathogenic variation inErysiphe pisi,the causal organism of powdery mildew of pea[J].Canadian Journal of Plant Pathology,1997,19(3):267 271.
[25]Ek M,Eklund M,Von Post R,et al.Microsatellite markers for powdery mildew resistance in pea(PisumsativumL.)[J]. Hereditas,2005,142:86 91.
[26]Davidson J A,Krysinska-Kaczmarek M,Kimber R B E,et al. Screening field pea germplasm for resistance to downy mildew(Peronospora viciae)and powdery mildew(Erysiphe pisi)[J]. Australasian Plant Pathology,2004,33(3):413 417.
[27]Rana J C,Banyal D K,Sharma K D,et al.Screening of pea germplasm for resistance to powdery mildew[J].Euphytica,2013,189(2):271 282.
[28]曾亮,李敏權(quán),楊曉明.豌豆種質(zhì)資源白粉病抗性鑒定[J].草原與草坪,2012,32(4):35 38.
[29]王仲怡,包世英,段燦星,等.豌豆抗白粉病資源篩選及分子鑒定[J].作物學(xué)報(bào),2013,39(6):1030 1038.
[30]Rakshit S,Mohapatra T,Mishra S K,et al.Marker assisted selection for powdery mildew resistance in pea(PisumsativumL.)[J].Journal of Genetics and Breeding,2001,55:343 348.
[31]Timmerman G M,F(xiàn)rew T J,Weeden N F,et al.Linkage analysis ofer-1,a recessivePisum sativumgene for resistance to powdery mildew fungus(Erysiphe pisiD.C.)[J].Theoretical and Applied Genetics,1994,88(8):1050 1055.
[32]Paran I,Michelmore R W.Development of reliable PCR based markers linked to downy mildew resistance gene in lettuce[J]. Theoretical and Applied Genetics,1993,85(8):985 993.
[33]Janila P,Sharma B.RAPD and SCAR markers for powdery mildew resistance gene er in pea[J].Plant Breeding,2004,123(3):271 274.
[34]Dirlewanger E,Isaac P G,Ranade S,et al.Restriction fragment length polymorphism analysis of loci with disease resistance genes and developmental traits inPisum sativumL.[J]. Theoretical and Applied Genetics,1994,88(1):17 27.
[35]Tonguc M,Weeden N F.Identification and mapping of molecular markers linked toer1 gene in pea[J].Journal of Plant Molecular Biology Biotechnology,2010,1(1):1 5.
[36]Nisar M,Ghafoor A.Linkage of a RAPD marker with powdery mildew resistance er-1 gene inPisum sativumL.[J].Russian Journal of Genetics,2011,47(3):300 304.
[37]Srivastava R K,Mishra S K,Singh A K,et al.Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene er1 in pea(PisumsativumL.)[J].Euphytica,2012,186(3):855 866.
[38]Katoch V,Sharma S,Pathania S,et al.Molecular mapping of pea powdery mildew resistance geneer2 to pea linkage groupⅢ[J].Molecular Breeding,2010,25(2):229 237.
[39]Fondevilla S,Rubiales D,Moreno M T,et al.Identification and validation of RAPD and SCAR markers linked to the geneEr3 conferring resistance toErysiphe pisiDCin pea[J].Molecular Breeding,2008,22(2):193 200.
[40]Rubiales D,F(xiàn)ernandez-Aparicio M,Moral A,et al.Disease resistance in pea(Pisum sativumL.)types for autumn sowings in Mediterranean environments[J].Czech Journal of Genetics and Plant Breeding,2009,45(4):135 142.
[41]Johnson E,Miklas P N,Stavely J R,et al.Coupling and repulsion-phase RAPDs for marker-assisted selection of PI 181996 rust resistance in common bean[J].Theoretical and Applied Genetics,1995,90(5):659 664.
[42]Ribaut J M,Jiang C,Hoisington D.Simulation experiments on efficiencies of gene introgression by backcrossing[J].Crop Science,2002,42(2):557 565.
[43]Werner K,Pellio B,Ordon F,et al.Development of an STS marker and SSRs suitable for marker-assisted selection for the BaMMV resistance generym9 in barley[J].Plant Breeding,2000,119(6):517 519.
[44]Viljanen-Rollinson S L H,F(xiàn)ramptom C M A,Gaunt R E,et al.Spatial and temporal spread of powdery mildew(Erysiphe pisi)in peas(Pisum sativum)varying in quantitative resistance[J].Plant Pathology,1998,47(2):148 156.
[45]楊德良,劉有德.43%好力克懸浮劑防治大莢豌豆白粉病銹病田間試驗(yàn)[J].農(nóng)資科技,2002(3):27 29.
[46]王兆美,字迎彪,楊錫銀,等.30%特富靈粉劑防治大莢豌豆白粉病試驗(yàn)[J].蔬菜,2000(6):27.
[47]王昶,楊曉明,陸建英,等.4種殺菌劑對(duì)豌豆白粉病的防效初探[J].中國(guó)植保導(dǎo)刊,2011,31(6):45 46.
[48]Fondevila S,Rubiales D.Powdery mildew control in pea.A review[J].Agronomy for Sustainable Development,2012,32(2):401 409.
[49]Tzeng D D S,Tzeng H C,Chen R S,et al.The use of MR formulation as a novel and environmentally safe photodynamic fungicide for the control of powdery mildews[J].Crop Protection,1996,15(4):341 347.
[50]Bahadur A,Singh U P,Singh D P,et al.Control ofErysiphe pisicausing powdery mildew of pea(Pisum sativum)by cashewnut(Anacardiumoccidentale)shell extract[J].Mycobiology,2008,36(1):60 65.
[51]Singh U P,Prithiviraj B.Neemazal,a product of neem(Azadirachta indica)induces resistance in pea(Pisum sativum)againstErysiphe pisi[J].Physiological and Molecular Plant Pathology,1997,51(3):181 194.
[52]Prithiviraj B,Singh U P,Singh K P,et al.Field evaluation of ajoene,a constituent of garlic(Alliumsativum)and neemazal,a product of neem(Azadirachta indica),for the control of powdery mildew(Erysiphe pisi)of pea(Pisum sativum)[J]. Journal of Plant Diseases and Protection,1998,105:274 278.
[53]Singh U P,Srivastava B P,Singh K P,et al.Control of powdery mildew of pea by ginger extract[J].Indian Phytopathology,1991,44(1):55 59.
[54]Goel M,Singh U P,Jha R N,et al.Individual and combined effect of(+/-)-α-hydrastine and(+/-)-β-hydrastine on spore germination of some fungi[J].Folia Microbiologica,2003,48(3):363 368.
[55]Singh U P,Sarma B K,Mishra P K,et al.Antifungal activity of venenatine,an indole alkaloid isolated fromAlstonia venenata[J].Folia Microbiologica,2000,45(2):173 176.
[56]Singh U P,Prithiviraj B,Singh K P,et al.Control of powdery mildew(Erysiphe pisi)of pea(Pisum sativum)by combined application of plant growth-promoting rhizobacteria and neemazal(TM)[J].Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-Journal of Plant Disease and Protection,2000,107(1):59 66.
[57]Singh U P,Bahadur A,Singh D P,et al.Non-pathogenic powdery mildews induce resistance in pea(Pisumsativum)againstErysiphe pisi[J].Journal of Phytopathology,2003,151:419 424.
[58]Dann E K,Deverall B J.Activation of systemic disease resistance in pea by an avirulent bacterium or a benzothiadiazole,but not by a fungal leaf spot pathogen[J].Plant Pathology,2000,49(3):324 332.
[59]Bёlanger R R,Labbe C.Control of powdery mildews without chemicals:prophylactic and biological alternatives for horticultural crops[M]∥Bélanger R R,Bushnell W R,Dik A J,et al. The powdery mildews,a comprehensive treatise.The American Phytopathological Society Press,2002:256 267.
[60]Barilli E,Sillero J C,Rubiales D.Induction of systemic acquired resistance in pea against rust(Uromyces pisi)by exogenous application of biotic and abiotic inducers[J].Journal of Phytopathology,2010,158(1):30 34.
[61]Frey S,Carver T L W.Induction of systemic resistance in pea to pea powdery mildew by exogenous application of salicylic acid[J].Journal of Phytopathology,1998,146:239 245.
[62]Barilli E,Prats E,Rubiales D.Benzothiadiazole and BABA improve resistance toUromyces pisi(Pers.)Wint.inPisum sativumL.with an enhancement of enzymatic activitiesand total phenolic content[J].European Journal of Plant Pathology,2010,128(4):483 493.
Research progress in powdery mildew in peas
Zhang Lijuan, Yang Xiaoming, Lu Jianying, Wang Chang
(Institute of Crop,Gansu Academy of Agricultural Sciences,Lanzhou730070,China)
Pea powdery mildew is an air-borne disease of pea.In recent years,powdery mildew has become increasingly serious hazards worldwide and caused severe losses both in quality and quantity of fresh pods as well as dry seeds.The following topics are discussed such as pathogen,symptoms and invading rules.The resistance mechanism,control strategies and molecular markers were reviewed as well.Further research direction of pea powdery mildew resistance was also explored.
pea; powdery mildew; resistance mechanism; molecular marker
S 435.24
A
10.3969/j.issn.0529 1542.2015.01.002
2014 01 31
2014 05 14
現(xiàn)代農(nóng)業(yè)食用豆產(chǎn)業(yè)技術(shù)體系(CARS-09);國(guó)家自然科學(xué)基金(31160304);甘肅省農(nóng)業(yè)科學(xué)院創(chuàng)新專項(xiàng)(2011GAAS06 18)
*通信作者 E-mail:yangxm04@hotmail.com