謝侃綜述,馮大雄審核
(1四川醫(yī)科大學(xué)研究生院,2四川醫(yī)科大學(xué)附屬第一醫(yī)院脊柱外科,四川瀘州646000)
巨噬細(xì)胞與脊髓損傷的研究進(jìn)展
謝侃1綜述,馮大雄2審核
(1四川醫(yī)科大學(xué)研究生院,2四川醫(yī)科大學(xué)附屬第一醫(yī)院脊柱外科,四川瀘州646000)
脊髓損傷后,減輕繼發(fā)性損傷、補(bǔ)充丟失神經(jīng)元、促進(jìn)損傷軸突的再生已成為脊髓損傷的研究熱點(diǎn)。脊髓損傷后,損傷區(qū)多種細(xì)胞、多系統(tǒng)、多機(jī)制參與炎癥、免疫、化學(xué)反應(yīng)[1-3]導(dǎo)致外周血源性巨噬細(xì)胞和脊髓損傷處小膠質(zhì)細(xì)胞的激活、積聚、吞噬壞死組織碎片、分泌炎性細(xì)胞因子、生長(zhǎng)及神經(jīng)營養(yǎng)因子導(dǎo)致脊髓損傷加重,同時(shí)也促進(jìn)髓鞘及軸突再生[4-6]。據(jù)最近研究表明,這種截然不同作用,與巨噬細(xì)胞不同極化方向有關(guān)[7]。國內(nèi)外許多研究者從脊髓損傷后巨噬細(xì)胞的應(yīng)答、脊髓損傷區(qū)微環(huán)境與其極化方向的關(guān)系、不同細(xì)胞表型的巨噬細(xì)胞功能,尋求調(diào)控巨噬細(xì)胞極化方向促進(jìn)軸突再生的方法。本文就巨噬細(xì)胞與脊髓損傷的研究進(jìn)展進(jìn)行綜述。
巨噬細(xì)胞是機(jī)體重要免疫細(xì)胞,其屬于單核巨噬細(xì)胞系統(tǒng),具有吞噬、抗原提呈及分泌多種細(xì)胞因子等作用。在傳統(tǒng)觀點(diǎn)認(rèn)為,在骨髓中,在細(xì)胞因子IL-1、IL-3和(或)IL-6誘導(dǎo)干細(xì)胞分裂成粒細(xì)胞-紅細(xì)胞-巨核細(xì)胞-巨噬細(xì)胞集落形成單元,并在IL-1和(或)IL-3存在下分化形成粒細(xì)胞和巨噬細(xì)胞前體,并在集落刺激因子(CSF)、粒-巨細(xì)胞集落刺激因子(GM-CSF)等刺激下分形成單核細(xì)胞[8]。單核細(xì)胞進(jìn)入外周血液,一方面分化形成巨噬細(xì)胞,同時(shí)也可隨血流到中樞神經(jīng)系統(tǒng),產(chǎn)生形態(tài)學(xué)變化,形成小膠質(zhì)細(xì)胞[9]。但不是全部小膠質(zhì)細(xì)胞均來源于單核細(xì)胞。據(jù)最近研究表明,一些小膠質(zhì)細(xì)胞在胚胎8 d前由卵黃囊中產(chǎn)生的髓系前體細(xì)胞分化而來[10]。同樣,據(jù)最近研究表明,成人各組織中大多數(shù)巨噬細(xì)胞在胚胎發(fā)育時(shí)即開始出現(xiàn),少部分則是由血液循環(huán)中的單核細(xì)胞分化而來[11]。
小膠質(zhì)細(xì)胞在中樞神經(jīng)系統(tǒng)中,有著不同形態(tài),可有分枝狀和阿米巴狀,不同形態(tài)代表不同的功能狀態(tài):前者代表靜息的小膠質(zhì)細(xì)胞,后者代表激活的小膠質(zhì)細(xì)胞。小膠質(zhì)細(xì)胞平時(shí)處于靜止?fàn)顟B(tài),當(dāng)中樞神經(jīng)系統(tǒng)損傷或炎癥時(shí),它迅速被激活,并從分枝狀將細(xì)胞上突起收回轉(zhuǎn)變成阿米巴形吞噬細(xì)胞形態(tài)。據(jù)研究表明,激活的小膠質(zhì)細(xì)胞和外周血源性巨噬細(xì)胞在形態(tài)學(xué)(都呈阿米巴型吞噬細(xì)胞形態(tài))和免疫標(biāo)記物(CD11b、CD45、GR1)上是不能區(qū)別的,故這兩種細(xì)胞都統(tǒng)稱為巨噬細(xì)胞[4]。
在脊髓損傷后,激活了多種炎細(xì)胞,同時(shí)也在脊髓損傷中發(fā)揮了重要作用。Popovich等[12]通過光鏡及電鏡下觀察OX42(即CD11b)標(biāo)記的巨噬細(xì)胞、OX19標(biāo)記的T淋巴細(xì)胞及GFAP標(biāo)記的星形細(xì)胞,發(fā)現(xiàn)在脊髓損傷中心的小膠質(zhì)細(xì)胞于損傷后第3 d和第7 d達(dá)到高峰,并于2至4周后在巨噬細(xì)胞浸潤至脊髓頭側(cè)及尾側(cè)達(dá)到穩(wěn)定數(shù)量,T淋巴細(xì)胞于損傷后3至7 d達(dá)到高峰,而星形膠質(zhì)細(xì)胞于7至28 d達(dá)到高峰,巨噬細(xì)胞占主要數(shù)量分布于受損部位,而T淋巴細(xì)胞和反應(yīng)性星形膠質(zhì)細(xì)胞只是散在其周圍。同時(shí)Sroga等[13]實(shí)驗(yàn)表明,在大鼠脊髓損傷3 d后,即可在損傷脊髓處與周邊白質(zhì)交界區(qū)測(cè)到用OX42標(biāo)記的巨噬細(xì)胞,7 d時(shí)巨噬細(xì)胞達(dá)到高峰并可持續(xù)存在28 d,28 d后OX42標(biāo)記的巨噬細(xì)胞開始減少。以上說明,在脊髓損傷時(shí),巨噬細(xì)胞/小膠質(zhì)細(xì)胞參與其炎癥反應(yīng),且數(shù)量最多、持續(xù)最久,并起到重要作用。
2.1 巨噬細(xì)胞/小膠質(zhì)細(xì)胞對(duì)脊髓損傷的識(shí)別
巨噬細(xì)胞是一種高度動(dòng)態(tài)性的細(xì)胞,它可快速識(shí)別一種來自于病原體的蛋白序列即病原體相關(guān)分子模式(Pathogen associated molecular patterns,PAMPS)和來自于損傷細(xì)胞的蛋白序列即損傷相關(guān)分子模式(Damage associated molecular pattern molecules,DAMPS)。PAMPS和DAMPS被巨噬細(xì)胞表面的Toll樣受體(TLRs)、NOD樣受體(NLRs)等所識(shí)別[14]。而這種配體、受體的結(jié)合,激活了巨噬細(xì)胞在脊髓感染及損傷時(shí)的炎癥反應(yīng),而這種炎癥反起到雙刃劍作用,既有不利方面,也有有利方面。
2.2 不利方面
Popovich等[15]通過在脊髓損傷老鼠炎癥最強(qiáng)期間,用脂質(zhì)體包裹的氯膦酸鹽來耗盡外周血源性巨噬細(xì)胞,其發(fā)現(xiàn)脊髓損傷老鼠的下肢運(yùn)動(dòng)得到了明顯恢復(fù),并發(fā)現(xiàn)該方法很大程度保留了有髓鞘的軸突、減少了脊髓的空穴現(xiàn)象、增強(qiáng)了損傷部位軸突的再生,提示了巨噬細(xì)胞對(duì)脊髓損傷具有不利作用。
在脊髓損傷時(shí),被激活的巨噬細(xì)胞第一時(shí)間釋放出多種促炎癥細(xì)胞因子、蛋白酶及其他細(xì)胞毒性因子,這些細(xì)胞細(xì)胞因子能促進(jìn)巨噬細(xì)胞/小膠質(zhì)細(xì)胞在損傷部位的聚集[4]。Pineau等[16]通過檢測(cè)小鼠在脊髓損傷后釋放的細(xì)胞因子的mRNA表明,在脊髓損傷后,巨噬細(xì)胞可產(chǎn)生IL-1β、腫瘤壞死因子(TNF)、IL-6、白血病抑制因子(LIF)。Boato F等[17]通過腹腔內(nèi)注射IL-1β于脊髓損傷小鼠,發(fā)現(xiàn)其脊髓損傷癥狀加重,而缺乏IL-1β的脊髓損傷小鼠起脊髓損傷癥狀得到恢復(fù)。Ferguson,Pickering等[18-19]發(fā)現(xiàn),谷氨酸作為神經(jīng)系統(tǒng)中主要的興奮性神經(jīng)遞質(zhì),需通過谷氨酸受體(AMPAR)來接受從神經(jīng)細(xì)胞內(nèi)通過突觸前膜釋放的谷氨酸轉(zhuǎn)運(yùn)至突觸后膜來維持神經(jīng)細(xì)胞興奮性,而脊髓損傷時(shí)巨噬細(xì)胞釋放的大量TNF-α可降低突觸功能、損傷AMPAR,從而導(dǎo)致神經(jīng)細(xì)胞死亡。Lacroix等[20]通過注射高濃度IL-6于脊髓損傷大鼠中,發(fā)現(xiàn)脊髓損傷部位與為注射IL-6脊髓損傷大鼠相比,白細(xì)胞數(shù)量增加了6倍、巨噬細(xì)胞/小膠質(zhì)細(xì)胞浸潤增加了2倍、但軸突生長(zhǎng)數(shù)量卻少了4倍。Kerr等[21]則通過腺病毒載體過度表達(dá)LIF于成年小鼠脊髓中發(fā)現(xiàn),其出現(xiàn)嚴(yán)重下肢運(yùn)動(dòng)功能障礙。以上則說明了巨噬細(xì)胞可通過產(chǎn)生細(xì)胞因子如IL-1β、TNF、IL-6、LIF導(dǎo)致脊髓損傷加重,其對(duì)于脊髓損傷有不利作用。
2.3 有利方面
為了證明巨噬細(xì)胞對(duì)損傷脊髓的有利作用,Prewitt等[22]通過分別用浸潤巨噬細(xì)胞、轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)、巨噬細(xì)胞抑制因子(MIF)的硝化纖維移植于損傷脊髓組織,并將脊髓背根神經(jīng)節(jié)貼于損傷組織上,觀察背根神經(jīng)節(jié)軸突再生,發(fā)現(xiàn)浸潤巨噬細(xì)胞及TGF-β組背根神經(jīng)出現(xiàn)軸突再生,而浸潤MIF組背根神經(jīng)軸突幾乎無再生,而Kiefer等[23]同時(shí)研究表明,在橫切面部神經(jīng)后,巨噬細(xì)胞可產(chǎn)生TGF-β。故說明巨噬細(xì)胞及TGF-β可促進(jìn)損傷脊髓的再生。
據(jù)研究表明,巨噬細(xì)胞集落刺激因子(M-CSF)是一種在腦中、神經(jīng)元及神經(jīng)膠質(zhì)中表達(dá)的造血細(xì)胞因子,其可以促進(jìn)小膠質(zhì)細(xì)胞的生成,同時(shí)也具有保護(hù)神經(jīng)保護(hù)功能[24],而Mitrasinovic等[25]研究發(fā)現(xiàn)巨噬細(xì)胞可通過過度表達(dá)巨噬細(xì)胞集落刺激因子受體(M-CSFR),與M-CSF共同發(fā)揮神經(jīng)保護(hù)作用。而另有研究表明,巨噬細(xì)胞可通過吞噬髓鞘碎片[26]和分泌生長(zhǎng)及神經(jīng)營養(yǎng)因子(BDNF)來促進(jìn)髓鞘再生[27]通過腺病毒相關(guān)病毒(AAV)攜帶神經(jīng)營養(yǎng)因子形成AAV-BDNF于脊髓損傷大鼠中,發(fā)現(xiàn)大鼠的踏步運(yùn)動(dòng)得到增強(qiáng),則說明巨噬細(xì)胞可通過分泌BDNF來促進(jìn)脊髓損傷的恢復(fù)。
3.1 巨噬細(xì)胞/小膠質(zhì)細(xì)胞的極化與表型
巨噬細(xì)胞對(duì)于脊髓損傷加重?fù)p傷及修復(fù)損傷的兩種截然不同的作用則是與其極化方向的不同有關(guān)。巨噬細(xì)胞的極化是指巨噬細(xì)胞在不同微環(huán)境下如存在IFN-γ、INF、IL-10、IL-13等細(xì)胞因子下,可極化產(chǎn)生兩種不同表型,即M1型即經(jīng)典活化的巨噬細(xì)胞(classically activated macrophage)及M2型即替代性活化的巨噬細(xì)胞(alternatively activated macrophage)[29]。M1型巨噬細(xì)胞是指巨噬細(xì)胞在Th1細(xì)胞因子如IFN-γ誘導(dǎo)下極化形成的一種表型,其特征性表型標(biāo)記為:CD16、CD32、CD86、主要組織相容性復(fù)合體Ⅱ(MHCⅡ)、誘導(dǎo)型一氧化氮合酶(iNOS)[12],其能增強(qiáng)巨噬細(xì)胞殺菌作用,同時(shí)也能導(dǎo)致脊髓損傷加重。M2型巨噬細(xì)胞是指巨噬細(xì)胞在Th2細(xì)胞因子如IL-4、IL-13等誘導(dǎo)下極化形成的一種表型,其特征性表型標(biāo)記為:精氨酸酶1(Arg1)、CD163、CD204、CD206、YN1、 Fizz1[12]其能減少、修復(fù)與保護(hù)機(jī)體于炎癥反應(yīng),促進(jìn)損傷組織的修復(fù)與再生。
3.2M1型巨噬細(xì)胞的極化及功能
當(dāng)脊髓損傷時(shí),巨噬細(xì)胞則是作為第一刻反應(yīng)的細(xì)胞,能由自身許多免疫受體如Toll樣受體(TLRs)、NOD樣受體(NLRs)、和各種清道夫受體[14]能識(shí)別PAMPS和DAMPS并表達(dá)產(chǎn)生細(xì)胞細(xì)胞因子如:TNFα、IL-1β、IL-6、IFN-γ及許多趨化因子如:CCL8、CCL15、CXCL9等[30],這些細(xì)胞因子及趨化因子能促進(jìn)巨噬細(xì)胞極化形成M1型巨噬細(xì)胞,并增加巨噬細(xì)胞吞噬及抗原提呈能力。由Th1細(xì)胞、小膠質(zhì)細(xì)胞和星形細(xì)胞產(chǎn)生的IFN-γ[31-33]對(duì)于極化巨噬細(xì)胞為M1型巨噬細(xì)胞也同樣起到重要作用。這同時(shí)也說明,巨噬細(xì)胞既能通過自分泌又能旁分泌的方式來控制自身的極化。
為了研究M1型巨噬細(xì)胞的功能,Horn等[34]通過IFN-γ和脂多糖(LPS)共同極化巨噬細(xì)胞為M1型巨噬細(xì)胞,將其直接作用于大鼠的損傷脊髓處的營養(yǎng)不良的軸突,發(fā)現(xiàn)M1型巨噬細(xì)胞能很好的與營養(yǎng)不良的軸突接觸,并導(dǎo)致軸突的回縮。據(jù)研究表明,M1型巨噬細(xì)胞能產(chǎn)生細(xì)胞因子(如:TNFα、IL-6等)、活性氧、蛋白水解酶、一氧化氮等,都能直接損害神經(jīng)元及神經(jīng)膠質(zhì)[35]。故M1型巨噬細(xì)胞雖能釋放促炎癥細(xì)胞因子增強(qiáng)巨噬細(xì)胞吞噬作用并清除壞死細(xì)胞[36],但這種持續(xù)、無序的炎癥反應(yīng)同樣能加重脊髓損傷。
3.3M2型巨噬細(xì)胞的極化及功能
M2型巨噬細(xì)胞產(chǎn)生的一系列細(xì)胞因子、趨化因子來識(shí)別。據(jù)研究表明,可由Th2細(xì)胞、嗜酸性粒細(xì)胞、嗜堿性粒細(xì)胞和巨噬細(xì)胞本身產(chǎn)生的細(xì)胞因子如IL-4、IL-13、GM-CSF等可極化巨噬細(xì)胞為M2型巨噬細(xì)胞[37]。
據(jù)研究M2型巨噬細(xì)胞通過表達(dá)一系列物質(zhì)作為特征性表型標(biāo)記來識(shí)別,其中精氨酸酶1(Arg1)則是重要的一個(gè)特征性表型標(biāo)記,其表達(dá)的Arg1則將精氨酸轉(zhuǎn)換為鳥氨酸、脯氨酸及多胺類等,以上可促進(jìn)傷口愈合及基質(zhì)沉積[38]。同樣的誘導(dǎo)型一氧化氮合酶(iNOS)則可作為M1型巨噬細(xì)胞的特征性表型標(biāo)記,其可產(chǎn)生一氧化氮導(dǎo)致組織損傷[34]。當(dāng)iNOS作用于精氨酸時(shí),Arg1與精氨酸的作用明顯超過iNOS的作用,并能抑制iNOS產(chǎn)生一氧化氮導(dǎo)致組織損傷的反應(yīng)[39],故Arg1能作為M2型巨噬細(xì)胞的特征性表型標(biāo)記,并說明M2型巨噬細(xì)胞具有組織修復(fù)功能。
M2型巨噬細(xì)胞可根據(jù)不同的可極化巨噬細(xì)胞的細(xì)胞因子而分為3個(gè)亞型,包括:M2a、M2b、M2c型巨噬細(xì)胞[40]。其中,M2a型巨噬細(xì)胞可由IL-4、IL-13極化巨噬細(xì)胞而形成,而M2c型巨噬細(xì)胞則可有IL-10及TGF-β極化而來,它們兩種亞型具有抗炎癥反應(yīng)及修復(fù)損傷功能,而M2c型巨噬細(xì)胞則最不同于M2型巨噬細(xì)胞而和M1型巨噬細(xì)胞相似,它缺乏典型M2型巨噬細(xì)胞特征性表型標(biāo)記如Arg1、YM1和Fizz1,而具有M1型巨噬細(xì)胞特征性表型標(biāo)記如MCHII和CD86,但它功能卻更傾向于M2型巨噬細(xì)胞,能產(chǎn)生大量抗炎癥細(xì)胞因子IL-10及少了促炎癥細(xì)胞因子IL-12,但它同時(shí)也產(chǎn)生了TNFα、IL-1β和IL-6這些能導(dǎo)致組織損傷的細(xì)胞因子[12],也就說明M2b型巨噬細(xì)胞具有復(fù)雜的機(jī)制去調(diào)控炎癥反應(yīng),而不是局限于損傷或是修復(fù)。
為了研究M2型巨噬細(xì)胞對(duì)損傷脊髓的作用,Kigerl等[6]發(fā)現(xiàn)在損傷脊髓處,M2型巨噬細(xì)胞基因表達(dá)非常短暫,到第7 d后則回到脊髓未損傷水平,而M1型巨噬細(xì)胞基因表達(dá)可至少持續(xù)1個(gè)月,再用熒光染色來自骨髓的M2型巨噬細(xì)胞移植于損傷脊髓,3~7 d后其標(biāo)記的M2型巨噬細(xì)胞則減少了20%~40%,而移植于正常脊髓的M2型巨噬細(xì)胞則不出現(xiàn)這種減少現(xiàn)象。同時(shí)分別用M1型巨噬細(xì)胞、M2型巨噬細(xì)胞作用于損傷脊髓背根神經(jīng)節(jié)(DRG),并發(fā)現(xiàn)用M1型巨噬細(xì)胞作用的DRG軸突生長(zhǎng)緩慢,而用M2型巨噬細(xì)胞的DRG軸突生長(zhǎng)長(zhǎng)度大約為M1型巨噬細(xì)胞組的2倍,并發(fā)現(xiàn),在加入軸突生長(zhǎng)抑制劑GSPG和MAG組中,用M2型巨噬細(xì)胞作用DRG軸突也得到了生長(zhǎng)。這種現(xiàn)象說明了:①在損傷部位的微環(huán)境更傾向使巨噬細(xì)胞向M1型巨噬細(xì)胞極化,也可說明M1型巨噬細(xì)胞的持續(xù)存在,而M2型巨噬細(xì)胞的短暫聚集,則可導(dǎo)致M1型巨噬細(xì)胞持續(xù)表達(dá)的促炎癥細(xì)胞因子、氧自由基、一氧化氮等導(dǎo)致?lián)p傷脊髓加重;②M2型巨噬細(xì)胞具有促進(jìn)軸突生長(zhǎng)作用,即使在具備軸突生長(zhǎng)抑制劑的環(huán)境下,也能具有該能力,故M2型巨噬細(xì)胞能修復(fù)脊髓損傷。
巨噬細(xì)胞在脊髓繼發(fā)性損傷時(shí)不同微環(huán)境下,有著不同功能。故能調(diào)節(jié)M1、M2型巨噬細(xì)胞在脊髓損傷中時(shí)的極化方向,通過改變脊髓損傷部位微環(huán)境,減少M(fèi)1型巨噬細(xì)胞、增加M2型巨噬細(xì)胞數(shù)量、存在時(shí)間及分布,對(duì)于脊髓損傷修復(fù)提供了一條治療方案。
1.Oyinbo CA.Secondary injury mechanisms in traumatic spinal cord injury:a nugget of this multiply cascade[J].Acta Neurobiol Exp(Wars),2011,71(2):281-299.
2.Anthony,Daniel C,Yvonne Couch.The systemic response to CNS injury[J].Experimental neurology,2014(258):105-111.
3.BeckKD,Nguyen HX,GalvanMD,etal.Quantitativeanalysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute tochronicenvironment[J].Brain,2010,133(2):433-447.
4.David S,Kroner A.Repertoire of microglial and macrophage responses after spinal cord injury[J].Nature Reviews Neuroscience,2011,12(7):388-399.
5.Kotter MR,Zhao C,van Rooijen N,et al.Macrophagedepletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression[J].Neurobiology of disease,2005,18(1):166-175.
6.Kigerl KA,Gensel JC,Ankeny DP,et al.Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord[J].The Journal of Neuroscience,2009,29 (43):13435-13444.
7.Murray PJ,Wynn TA.Protective andpathogenic functions of macrophage subsets[J].Nature Reviews Immunology,2011, 11(11):723-737.
8.趙陽,趙勇.單核-巨噬細(xì)胞起源及發(fā)育分化的特征與分子調(diào)控[J].中國免疫學(xué)雜志,2014,30(1):126-132.
9.Chan WY,Kohsaka S,Rezaie P.The origin and cell lineage of microglia—New concepts[J].Brain research reviews, 2007,53(2):344-354.
10.Ginhoux F,Greter M,Leboeuf M,et al.Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J].Science,2010,330(6005):841-845.
11.Epelman S,Lavine KJ,Randolph GJ.Origin and functions of tissue macrophages[J].Immunity,2014,41(1):21-35.
12.Popovich PG,Wei P,Stokes BT.Cellular inflammatory response after spinal cord injury in sprague‐dawley and lewis rats[J].Journal of comparative neurology,1997,377(3):443-464.
13.Sroga JM,Jones T,Kigerl KA,et al.Rats and mice exhibit distinct inflammatory reactions after spinal cord injury[J]. Journal of Comparative Neurology,2003,462(2):223-240.
14.Ransohoff RM,Brown MA.Innate immunity in the central nervous system[J].The Journal of clinical investigation, 2012,122(4):1164-1171.
15.Popovich PG,Guan Z,Wei P,et al.Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury[J].Experimental neurology,1999,158(2):351-365.
16.Pineau I,Lacroix S.Proinflammatory cytokine synthesis in the injured mouse spinal cord:multiphasic expression pattern and identification of the cell types involved[J].Journal of Comparative Neurology,2007,500(2):267-285.
17.Boato F,Rosenberger K,Nelissen S,et al.Absence of IL-1β positively affects neurological outcome,lesion development and axonal plasticity after spinal cord injury[J].Journal of neuroinflammation,2013,10:6(2):267-368.
18.Ferguson AR,Christensen RN,Gensel JC,et al.Cell death after spinal cord injury is exacerbated by rapid TNFα-induced trafficking of GluR2-lacking AMPARs to the plasmamembrane[J].The Journal of Neuroscience,2008,28 (44):11391-11400.
19.Pickering M,Cumiskey D,Connor JJ.Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system[J].Experimental Physiology,2005,90(5):663-670.
20.Lacroix S,Chang L,Rose‐John S,et al.Delivery of hyper‐interleukin‐6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth[J].Journal of Comparative Neurology,2002,454(3): 213-228.
21.Kerr BJ,Patterson PH.Potent pro-inflammatory actions of leukemia inhibitory factor in the spinal cord of the adult mouse[J].Experimental neurology,2004,188(2):391-407.
22.Prewitt CMF,Niesman IR,Kane CJM,et al.Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord[J].Experimental neurology,1997,148(2):433-443.
23.Kiefer R,Lindholm D,Kreutzberg GW.Interleukin-6 and transforming growth factor-beta 1 mRNAs are induced in rat facial nucleus following motoneuron axotomy [J].Eur J Neurosci,1993,5(7):775-781
24.Vincent VAM,Robinson CC,Simsek D,et al.Macrophage colony stimulating factor prevents NMDA‐induced neuronal death in hippocampal organotypic cultures[J].Journal of neurochemistry,2002,82(6):1388-1397.
25.Mitrasinovic OM,Grattan A,Robinson CC,et al.Microglia overexpressing the macrophage colony-stimulating factor receptor are neuroprotective in a microglial-hippocampal organotypic coculture system[J].The Journal of neuroscience, 2005,25(17):4442-4451.
26.Ruckh J M,Zhao JW,Shadrach JL,et al.Rejuvenation of regeneration in the aging central nervous system[J].Cell stem cell,2012,10(1):96-103.
27.Kotter MR,Zhao C,van Rooijen N,et al.Macrophagedepletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression[J].Neurobiology of disease,2005,18(1):166-175.
28.Boyce VS,Park J,Gage FH,et al.Differential effects of brain‐derived neurotrophic factor and neurotrophin‐3 on hindlimb function in paraplegic rats[J].European Journal of Neuroscience,2012,35(2):221-232.
29.Schwab ME,Popovich PG.Central nervous system regenerative failure:role of oligodendrocytes,astrocytes,and microglia[J].Cold Spring Harb perspect biol,2014,7(3):20602.
30.Boche D,Perry VH,Nicoll JAR.Review:activation patterns of microglia and their identification in the human brain [J].Neuropathology and applied neurobiology,2013,39(1): 3-18.
31.Nathan CF,Murray HW,Wiebe ME,et al.Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity.J Exp Med.1983,158(3):670-689.
32.Suzuki Y,Claflin J,Wang X,et al.Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii[J]. International journal for parasitology,2005,35(1):83-90.
33.Kawanokuchi J,Mizuno T,Takeuchi H,et al.Production of interferon-gamma by microglia[J].Multiple sclerosis,2006, 12(5):558-564.
34.Horn KP,Busch SA,Hawthorne AL,et al.Another barrier to regeneration in the CNS:activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions[J].The Journal of Neuroscience,2008, 28(38):9330-9341.
35.Block ML,Zecca L,Hong JS.Microglia-mediated neurotoxicity:uncovering the molecular mechanisms[J].Nature Reviews Neuroscience,2007,8(1):57-69.
36.Soehnlein O,Lindbom L.Phagocyte partnership during the onset and resolution ofinflammation[J].Nature Reviews Immunology,2010,10(6):427-439.
37.Mills C.M1 and M2 macrophages:oracles of health and disease[J].Critical ReviewsTM in Immunology,2012,32(6): 463-488.
38.Munder M.Arginase:an emerging key player in the mammalian immune system[J].British journal of pharmacology,2009,158(3):638-651.
39.Corraliza IM,Soler G,Eichmann K,et al.Arginase induction by suppressors of nitric oxide synthesis(IL-4,IL-10 and PGE2)in murine bone-marrow-derived macrophages[J]. Biochemicalandbiophysicalresearchcommunications, 1995,206(2):667-673.
40.Cherry JD,Olschowka JA.Neuroinflammation and M2 microglia:the good,the bad,and the inflamed[J].Journal of Neuroinflammation,2014,11(1):98.
(2015-05-25收稿)
R651.2
A
10.3969/j.issn.1000-2669.2015.06.022
謝侃(1990-),男,研究生在讀。E-mail:xkiaen@foxmail.com