• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics analysis of rocket projectile based on intelligent morphing technology

    2015-03-03 07:50:52XUYongjieWANGZhijun
    關(guān)鍵詞:彈箭背風(fēng)面王志軍

    XU Yong-jie, WANG Zhi-jun

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

    徐永杰, 王志軍

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    ?

    Characteristics analysis of rocket projectile based on intelligent morphing technology

    XU Yong-jie, WANG Zhi-jun

    (CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China)

    Nose deflection control is a new concept of fast response control model. The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead. Consequently, aerodynamic control force is generated. This control way has high control efficiency and very good application prospects in the ammunition system. Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment, changes the aerodynamic characteristics in the projectile flight process, produces the corresponding balance angle and sideslip angle resulting in motor overload, adjusts flight moving posture to control the ballistics, finally changes shooting range and improves firing accuracy. In order to study characteristics of self-adaptive control projectile, numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile. The aerodynamic characteristics at different nose delectation angles, different Mach numbers and different angles of attack are obtained and compared. The results show that the nose deflection control has great influence on the head of rocket projectile, and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface, which results in a larger lift. Finally, ballistics experiments are done for verification. The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.

    rocket projectile; intelligent morphing technology; nose deflection; ballistics characteristics

    0 Introduction

    Smartness, intelligence and high mobility of ammunition will be the important development directions of ammunition technology in a long historical period in the future[1-3]. To research and develop active, detective and self-adaptive ballistic correction and autonomous smart attack ammunition by means of various innovative and intelligent control technologies, simple guidance way or ballistic adaptive way has become the research hotspot of national defense science and technology in the world.

    Intelligent morphing technology means that the shape of self-adaptive aircraft changes according to flight mission, flight speed and flight environment. It uses intelligent material or structure to realize active, adaptive and continuous changes in appearance to meet different missions with different aerodynamic layouts, thus performance optimization of aerodynamic and flight is achieved[4-7]. For modern high mobility weapons, it can solve the contradictions of different aerodynamic layouts of the aircrafts designed by intelligent morphing technology and improve economic efficiency and operational capability.

    Human beings are dedicated to development of lighter and more intelligent missiles now and even for the future. Research on creative and intelligent control technology has very important significance and practical value, where external ballistics plays a key role in this modern missile control technology.

    1 Modeling

    1.1 Geometrical model

    The 3D model of simplified standard fin stabilized rocket projectile is shown in Fig.1, where lengthL=600.0 mm, and diameterD=90.0 mm. The rocket projectile with nose deflection angleδis shown in Fig.2.

    Fig.1 Standard fin stabilized rocket projectile

    Fig.2 Rocket projectile with nose deflection angle

    1.2 Mass properties

    The trajectory correction models for rocket projectiles with different nose deflection angles, including 0°, 2°, 4°, 6°, 8° and 10°, are established. The mass properties of each model are shown in Table 1.

    Table 1 Mass properties

    1.3 Aerodynamic force analysis

    According to ballistic theory[8-9], in the flight process of projectile, regardless of the spinning, in order to measure the effects from each force and resultant force, all the forces and moments are simplified as the centroid of projectile. For illustrating conveniently, it is shown in Fig.3.

    Fig.3 Diagram for simplifying aerodynamic forces

    1)Rxis drag and expressed as

    whereCxis drag coefficient andSMis reference area (m2).

    2)Ryis lift and expressed as

    whereCyis drag coefficient andSMis reference area (m2).

    3)Mzis static moment and expressed as

    wheremzis moment coefficient.

    2 Ballistic flight flow field simulation

    Mach numbers in simulation are 0.8, 1.0, 1.2, 2.0 and 3.0, respectively, involving subsonic, transonic and supersonic speed ranges; and nose deflection angles contains 0°, 2°, 4°, 6°, 8° and 10°. The dynamics parameters such as flow field velocity and pressure, drag coefficient, lift coefficient and pitching moment coefficient, are obtained by simulation. In computational procedure, single equation model Spalart-Allmaras is used for turbulence model[10-13], which only solves a transport equation about the eddy viscosity and obtains good results involving wall limit flow problem and inverse pressure gradient of boundary layer problem. It is commonly used for solving aerodynamic problems of aircraft, flow around airfoil, flow field analysis, and so on.

    2.1 Pressure field analysis

    Typical simulation results of pressure field distribution are shown in Fig.4. Fig.4(a) is the pressure nephogram and Fig.4(b) is the pressure contour line.

    Fig.4 Pressure field distribution

    As shown in Fig.4, the pressure on projectile increases with the increase of deflection angle. For nose deflection angle of 10°, there is a mutation pressure due to its unsmooth surface. The greater the deflection angle is, the more obvious the mutation pressure is.

    The warhead is the most stressful part of the whole projectile, whereby ballistic cap is the most stressful part in the warhead. Its pressure grows with the increase of Mach number and the pressure region has a tendency to gradually expand and gradually move to the rear end of rocket.

    When air flows through the pressure region, there is an inflection point of pressure on the shoulder of the rocket, then gas expansion wave emerges. At the same time, a low pressure area emerges in the area near the bottom of the projectile, and it becomes smaller and smaller when Mach number increases, and the speed difference is more and more obvious. The reason is that the rocket empennage impedes the air flow, consequently gas choking phenomenon appears in the empennage leading edge and dilatational wave appears in the empennage trailing edge, finally the interaction leading edge and trailing edge flow field form tail flow field.

    In addition, it can be seen that the pressure flow field distribution is asymmetric, and the asymmetry intensifies that because of the existence of nose deflection angle, in front of the shoulder, with the increase of deflection angle, the pressure coefficient on the windward side is larger than that on the leeward side. On the back of the shoulder, with the increase of deflection angle, the pressure coefficient diminishes on the windward side and increases on the leeward side, and the pressure coefficient on the windward side is less than that on the leeward side.

    2.2 Velocity field analysis

    Typical simulation results of pressure field distribution are shown in Fig.5. Fig.5(a) is the pressure nephogram and Fig.5(b) is the pressure contour line.

    As shown in Fig.5, a high pressure area emerges around warhead in the flight process of external ballistics, and vortex area and stress concentration are around tail.

    Deflection angle has important influence on tail flow field. The larger the deflection angle is, the greater impact it has. Circle flow field changes a lot because of the warhead deflection angle. With the increase of deflection angle, the rocket overall speed slows down. The head velocity is low, and the low speed region caused by warhead is larger and moves to rear end of the rocket.

    Fig.5 Velocity field distribution

    The larger the deflection angle is, the greater impact it has on the warhead flow field structure and the less impact it has on the downstream flow field. The tail flow field asymmetry increases with the increment of deflection angle. The greater the deflection angle is, the greater warhead disturbance impact it has on the tail flow field. High speed area emerges on the warhead and expansion wave emerges on the shoulder at the same time.

    There is also a speed-jump on the shoulder windward side because of the existence of attack angle, and the larger Mach number, the larger speed-jump area. The fluid velocity is low in the empennage leading-edge area. Choking phenomenon occurs because of its retardation, and a series of smaller spirals also emerge in the tail flow field due to the speed differences caused by projectile disturbance.

    2.3 Aerodynamic characteristics analysis

    Calculation of drag coefficient is shown in Fig.6, and the changing laws of all the models are consistent and the curves change smoothly.

    Under the condition of the same Mach number, when the attack angle is 0°, aerodynamic drag coefficient changes smaller with the change of nose deflection angle. By comparing a large amount of simulation data, rocket projectile’s aerodynamic performance is poor in subsonic and transonic velocity ranges and aerodynamic lift and control torque are limited very much in subsonic velocity range.

    Fig.6 Drag coefficient when attack angle is 0°

    Simulations of lift coefficient and control moment coefficient are shown in Fig.7.

    Lift coefficient and additional control torque change obviously when the attack angle is 2° and aerodynamic performance changes significantly. Aerodynamic lift and control moment caused by nose deflection angle are objective and the smaller nose deflection angle can produce large aerodynamic control force.

    Control mode of nose deflection can provide greater aerodynamic lift and torque control than rocket projectile without nose deflection angle. Lift coefficient ratio and control moment coefficient ratio of rocket projectile with different nose deflection angles are shown in Table 2.

    Fig.7 Aerodynamic coefficient when attack angle is 2°

    Table 2 Calculation results of coefficient ratio

    In supersonic velocity range, nose deflection angle is 10°. And it can provide the aerodynamic lift 2.64 times and control moment 15.28 times as much as that without nose deflection angle.

    3 Experiment

    To improve rocket projectile design, the experiments for ballistic correction of rocket projectile with nose deflection angle of 5° was conducted. There are 5 ballistic correction rocket projectiles prepared for the flying experiment[14-15]. The arrangement for testing is shown in Fig.8.

    Fig.8 Arrangement for testing

    The distance of 200 m was intercepted in the shooting range direction and the distance between the aiming point and fall point was determined as transverse correction range, marked as ΔX.

    In order to get convenient verification, the nose deflection angle was set toward to the same launch direction and the distance between aiming point and fall point was measured as the horizontal correction range caused by nose deflection angle. The experimental results are shown in Table 3. The results show that at the velocity of 151.06 m/s and nose deflection angle being of 5°, the ballistic correction for rocket projectile can obtain horizontal correction range of 0.43 m on the average.

    Table 3 Horizontal correction value

    4 Conclusions

    From the simulation calculation and ballistic experiment on deflectable nose rocket projectile, the following conclusions can be obtained:

    1) Large number of aerodynamic simulations show that using nose deflection angle can achieve desired aerodynamic lift, aerodynamic drag and additional torque control. Furthermore, it can correct ballistic trajectory effectively and realize rocket projectile maneuvering flight.

    2) With rocket projectile ballistic correction as fine pneumatic control characteristics in the supersonic velocity range and limited aerodynamic performance in subsonic velocity range. Nose deflection has greater influence on warhead flow field structure and smaller impact on the downstream.

    3) With the increase of nose deflection angle, the pressure on the rocket body increases, especially the pressure mutation on the area around the shoulder of the rocket. The flow field changes dramatically and the pressure becomes bigger with the deflection angle being larger. The expansion waves emerge on the shoulder and low pressure area at the bottom of the projectile. The asymmetry of the flow field is bigger and different pressures on the windward and leeward surfaces increase, which result in larger lift.

    4) Flight test shows that flying control method of nose deflection is feasible and reliable, thus it can be used for engineering research in the further.

    [1] YIN Jian-ping, WANG Zhi-jun. Ammunition theory. Beijing: Beijing Institute of Technology Press, 2014.

    [2] ZHANG Bo, WANG Shu-shan, CAO Meng-yu, et al. Impacts of deflection nose on ballistic trajectory control law. Mathematical Problems in Engineering, 2014.

    [3] GAO Ting-xin. Study of aerodynamic characteristics of migraine control. In: Proceedings of Aviation Aircraft Development and Aerodynamics Seminar, Hangzhou, 2006.

    [4] ZHANG Tong, ZHAO Xiao-li. Analysis of trajectory correction projectile and its key technology.Cruise Missile, 2014, 24(5): 38-42.

    [5] Landers M G, Hall L H, Auman L M, et al. Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 1.

    [6] XIA Bin, ZHOU Liang. Trajectory correction projectile and analysis on the key technologies for the trajectory correction process. National Defense Science & Technology, 2013, 34(3): 27-33.

    [7] Vaughn, M E, Auman L M. Assessment of a productivity-oriented cfd methodology for designing a hypervelocity missile. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 23-29.

    [8] HAN Zi-peng. Exterior ballistics of projectile and rockets. Beijing: Beijing Institute of Technology Press, 2014.

    [9] XU Ming-you. Advanced external ballistics. Beijing: Higher Education Press, 2003.

    [10] YU Wen-jie. Study of aerodynamic characteristics for a fin-stabilized projectile with a deflectable nose control. Nanjing: Nanjing University of Science&Technology, 2010.

    [11] WANG Fei, WU Guo-dong, WANG Zhi-jun. Numerical calculation of aerodynamic characteristics of shell with attack angle at the shell head. Journal of North China Institute of Technology, 2005, 26(3): 177-179.

    [12] WEIi Fang-hai, WANG Zhi-jun, YIN Jian-ping. Numerical calculation of aerodynamic characteristics of shell with an angle of warhead. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 553-558.

    [13] DONG Er-bao. Research on realization mechanism and some key technologies of smart morphing aircraft structures. Anhui: University of Science and Technology of China, 2010.

    [14] XU Yu-xin, WANG Shu-shan. Armor-piercing experiment on fragment against sandwich plate with fiber reinforced composite cores. Acta Materiae Compositae Sinica, 2012, 29(3): 72-78.

    [15] XU Yu-xin, WANG Shu-shan. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel. Journal of Vibration and Shock, 2011, 30(5): 192-195.

    基于智能變形技術(shù)的火箭彈特性分析

    偏轉(zhuǎn)頭部控制是一種新概念快速響應(yīng)的控制方式。 彈頭部相對(duì)于彈軸進(jìn)行局部偏轉(zhuǎn), 并且在彈頭的迎風(fēng)面和背風(fēng)面形成壓力差從而產(chǎn)生空氣控制力, 在彈藥系統(tǒng)里, 這是一個(gè)高效并具有良好應(yīng)用前景的控制方式。 基于智能材料和結(jié)構(gòu)的彈箭頭部智能變形驅(qū)動(dòng)機(jī)構(gòu)可以使彈箭獲得額外的控制力和控制力矩, 改變彈丸在飛行過(guò)程中的空氣動(dòng)力特性, 在彈箭飛行過(guò)程中會(huì)產(chǎn)生附加的平衡角、 側(cè)滑角, 進(jìn)而產(chǎn)生機(jī)動(dòng)過(guò)載, 控制飛行姿態(tài)和飛行彈道, 并在最后時(shí)限提高彈丸的射擊精確度。 為了研究自適應(yīng)控制彈箭的特性, 利用流體力學(xué)軟件對(duì)尾翼穩(wěn)定的火箭彈進(jìn)行了數(shù)值模擬。 獲得不同頭部偏角、 不同馬赫數(shù)和不同攻角情況下的彈箭空氣動(dòng)力學(xué)特性。 結(jié)果表明, 偏轉(zhuǎn)頭部控制對(duì)彈箭的頭部具有較大的影響, 并且引起流場(chǎng)的不對(duì)稱性。 彈頭部迎風(fēng)面和背風(fēng)面的壓力差為彈箭提供較大的升力。 最后, 做彈道試驗(yàn)驗(yàn)證了仿真的研究結(jié)果。 研究結(jié)果可以為自適應(yīng)彈箭的設(shè)計(jì)及優(yōu)化提供理論基礎(chǔ), 并為智能彈藥的研究提供新思路和新方法。

    火箭彈; 智能變形技術(shù); 頭部偏轉(zhuǎn); 彈道特性

    XU Yong-jie, WANG Zhi-jun. Characteristics analysis of rocket projectile based on intelligent morphing technology. Journal of Measurement Science and Instrumentation, 2015, 6(3): 205-211. [

    徐永杰, 王志軍

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.001]

    XU Yong-jie (yongqiang515@126.com)

    1674-8042(2015)03-0205-07 doi: 10.3969/j.issn.1674-8042.2015.03.001

    Received date: 2015-05-15

    CLD number: TJ415 Document code: A

    猜你喜歡
    彈箭背風(fēng)面王志軍
    TSCL-SQL:Two-Stage Curriculum Learning Framework for Text-to-SQL
    王志軍 油畫(huà)作品
    3D模型在彈箭拆裝實(shí)訓(xùn)課程教學(xué)實(shí)踐過(guò)程的應(yīng)用
    旋轉(zhuǎn)尾翼彈馬格努斯效應(yīng)數(shù)值模擬
    偏轉(zhuǎn)頭彈箭飛行特性
    非均勻等離子體Ka-Band傳輸性能中繼法優(yōu)化研究
    高超聲速風(fēng)洞子母彈大迎角拋殼投放試驗(yàn)
    高壓輸電鐵塔塔身背風(fēng)面風(fēng)荷載遮擋效應(yīng)研究
    Optimization of projectile aerodynamic parameters based on hybrid genetic algorithm
    Study on the impact of particle perturbation on yaw characteristics of aircraft at high angles of attack
    亚洲国产日韩一区二区| 亚洲精品中文字幕在线视频| 亚洲精品中文字幕在线视频| 赤兔流量卡办理| 国产成人精品在线电影| 亚洲精品日韩在线中文字幕| 后天国语完整版免费观看| 777米奇影视久久| 免费在线观看日本一区| 麻豆乱淫一区二区| 精品人妻在线不人妻| 男人舔女人的私密视频| 成人国产一区最新在线观看 | 亚洲伊人久久精品综合| 国产成人免费无遮挡视频| 99国产精品99久久久久| 免费在线观看影片大全网站 | 麻豆av在线久日| 操美女的视频在线观看| 久久ye,这里只有精品| 人人妻人人添人人爽欧美一区卜| 美女福利国产在线| 亚洲 欧美一区二区三区| av片东京热男人的天堂| 男女下面插进去视频免费观看| 捣出白浆h1v1| 女人被躁到高潮嗷嗷叫费观| 欧美人与性动交α欧美软件| 国产成人a∨麻豆精品| 99国产精品99久久久久| 99久久综合免费| 国产精品人妻久久久影院| 777米奇影视久久| 中文字幕色久视频| 久久久国产一区二区| 18禁裸乳无遮挡动漫免费视频| 美女主播在线视频| 国产高清videossex| 免费在线观看视频国产中文字幕亚洲 | 校园人妻丝袜中文字幕| 建设人人有责人人尽责人人享有的| 国产一区有黄有色的免费视频| 欧美人与善性xxx| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 王馨瑶露胸无遮挡在线观看| 黄色 视频免费看| 另类亚洲欧美激情| 亚洲国产欧美一区二区综合| av天堂久久9| 老司机影院成人| 亚洲伊人色综图| 亚洲av日韩精品久久久久久密 | 在现免费观看毛片| 久热这里只有精品99| 成人亚洲欧美一区二区av| 午夜老司机福利片| 精品卡一卡二卡四卡免费| 国产免费视频播放在线视频| 亚洲欧美精品综合一区二区三区| kizo精华| 成人黄色视频免费在线看| 精品一区在线观看国产| 亚洲精品国产区一区二| 国产三级黄色录像| 日本vs欧美在线观看视频| 久久久久久久久免费视频了| 欧美成人精品欧美一级黄| 捣出白浆h1v1| 精品久久久久久电影网| 免费日韩欧美在线观看| 十八禁高潮呻吟视频| 在线精品无人区一区二区三| 亚洲激情五月婷婷啪啪| 欧美久久黑人一区二区| 丰满饥渴人妻一区二区三| 美女午夜性视频免费| 亚洲av日韩在线播放| 日本vs欧美在线观看视频| 欧美日韩一级在线毛片| 国产免费福利视频在线观看| 久久99一区二区三区| 视频区欧美日本亚洲| 夫妻性生交免费视频一级片| 男女之事视频高清在线观看 | 精品一区在线观看国产| 亚洲av片天天在线观看| 美女国产高潮福利片在线看| 欧美成人午夜精品| 国产日韩欧美亚洲二区| 少妇精品久久久久久久| 日本91视频免费播放| 中文字幕亚洲精品专区| 国产免费现黄频在线看| 国产成人av教育| 国产成人av激情在线播放| 国产片特级美女逼逼视频| 美女扒开内裤让男人捅视频| 熟女少妇亚洲综合色aaa.| 国产av国产精品国产| 黄色 视频免费看| 亚洲第一av免费看| 欧美日韩综合久久久久久| 欧美精品一区二区免费开放| 国产精品免费大片| 欧美日韩亚洲国产一区二区在线观看 | www.999成人在线观看| 日本a在线网址| 欧美亚洲 丝袜 人妻 在线| 丰满饥渴人妻一区二区三| 黑人巨大精品欧美一区二区蜜桃| 国产精品二区激情视频| 一区二区三区精品91| 午夜老司机福利片| 高清av免费在线| 国产精品99久久99久久久不卡| 精品亚洲成国产av| 天天躁狠狠躁夜夜躁狠狠躁| 免费观看av网站的网址| 黄色片一级片一级黄色片| 搡老乐熟女国产| 大片免费播放器 马上看| 一区二区三区激情视频| 热re99久久精品国产66热6| 狠狠精品人妻久久久久久综合| 女人被躁到高潮嗷嗷叫费观| 韩国精品一区二区三区| 美女午夜性视频免费| 国产又色又爽无遮挡免| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲国产一区二区在线观看 | 亚洲激情五月婷婷啪啪| 中文字幕另类日韩欧美亚洲嫩草| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区黑人| 久久99一区二区三区| 人人妻人人爽人人添夜夜欢视频| 一区二区日韩欧美中文字幕| 日韩 欧美 亚洲 中文字幕| av视频免费观看在线观看| 亚洲精品在线美女| 性高湖久久久久久久久免费观看| 男女边摸边吃奶| 可以免费在线观看a视频的电影网站| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 国产免费现黄频在线看| 精品熟女少妇八av免费久了| 丰满少妇做爰视频| 久久精品国产a三级三级三级| 成年动漫av网址| 亚洲成色77777| 最新在线观看一区二区三区 | 国产主播在线观看一区二区 | 宅男免费午夜| 亚洲第一av免费看| 在线观看免费高清a一片| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区国产| 纯流量卡能插随身wifi吗| 天堂俺去俺来也www色官网| 国产男女内射视频| 制服诱惑二区| 伊人亚洲综合成人网| 亚洲人成网站在线观看播放| 国产一区二区激情短视频 | 久久狼人影院| 午夜福利一区二区在线看| tube8黄色片| 国产又爽黄色视频| 深夜精品福利| 国产一区二区激情短视频 | 少妇被粗大的猛进出69影院| 久久天堂一区二区三区四区| 九草在线视频观看| 精品免费久久久久久久清纯 | 自线自在国产av| 黑人猛操日本美女一级片| 色精品久久人妻99蜜桃| 九草在线视频观看| 亚洲,欧美,日韩| 建设人人有责人人尽责人人享有的| 亚洲情色 制服丝袜| 日韩av不卡免费在线播放| 亚洲国产欧美一区二区综合| 天堂中文最新版在线下载| 亚洲国产看品久久| 人人妻人人爽人人添夜夜欢视频| 麻豆乱淫一区二区| 热re99久久国产66热| 久久亚洲精品不卡| 日韩电影二区| 啦啦啦在线免费观看视频4| 久久人人爽av亚洲精品天堂| 交换朋友夫妻互换小说| 看十八女毛片水多多多| 国产一区二区三区综合在线观看| 高清视频免费观看一区二区| 国产精品一区二区精品视频观看| 国语对白做爰xxxⅹ性视频网站| 两人在一起打扑克的视频| 电影成人av| 国产免费福利视频在线观看| 亚洲av电影在线进入| 亚洲国产精品一区二区三区在线| 欧美乱码精品一区二区三区| av国产精品久久久久影院| 国产成人免费观看mmmm| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 日韩一区二区三区影片| 国产精品久久久久久精品古装| 亚洲天堂av无毛| 少妇裸体淫交视频免费看高清 | 欧美变态另类bdsm刘玥| 人成视频在线观看免费观看| 一本一本久久a久久精品综合妖精| 国产黄色免费在线视频| av天堂久久9| 久久 成人 亚洲| 一级毛片我不卡| 搡老岳熟女国产| 日韩精品免费视频一区二区三区| 美女视频免费永久观看网站| 亚洲精品国产一区二区精华液| 女人精品久久久久毛片| 国产熟女欧美一区二区| 久久精品成人免费网站| 观看av在线不卡| a级毛片在线看网站| 美女高潮到喷水免费观看| 日本黄色日本黄色录像| 美女午夜性视频免费| 日韩,欧美,国产一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲成av片中文字幕在线观看| videosex国产| 久久精品aⅴ一区二区三区四区| 人妻一区二区av| 免费人妻精品一区二区三区视频| 成年人黄色毛片网站| 精品一区在线观看国产| 国产一级毛片在线| 女性生殖器流出的白浆| 热99久久久久精品小说推荐| 黑丝袜美女国产一区| 亚洲精品日韩在线中文字幕| 精品一区二区三区av网在线观看 | 欧美日韩亚洲综合一区二区三区_| 日本一区二区免费在线视频| 丰满少妇做爰视频| 91老司机精品| 亚洲激情五月婷婷啪啪| 亚洲成人免费av在线播放| 亚洲国产最新在线播放| 久久久精品94久久精品| 午夜福利视频精品| 丝袜脚勾引网站| 一级毛片我不卡| 丰满饥渴人妻一区二区三| 99久久99久久久精品蜜桃| 一本大道久久a久久精品| 日韩中文字幕视频在线看片| 成人国语在线视频| 亚洲欧洲国产日韩| 一级片'在线观看视频| 丝袜脚勾引网站| 久热这里只有精品99| 黄色视频不卡| 99热国产这里只有精品6| 咕卡用的链子| 蜜桃在线观看..| 国产91精品成人一区二区三区 | 国产在视频线精品| 国产精品.久久久| 精品一区二区三区四区五区乱码 | 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看| 狂野欧美激情性xxxx| 91老司机精品| 国产精品国产av在线观看| 亚洲专区中文字幕在线| 国产精品一区二区在线观看99| 99精国产麻豆久久婷婷| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 午夜福利,免费看| 永久免费av网站大全| 色综合欧美亚洲国产小说| 伊人久久大香线蕉亚洲五| 99国产综合亚洲精品| 免费在线观看黄色视频的| 最近手机中文字幕大全| 免费在线观看完整版高清| 国产国语露脸激情在线看| 美女福利国产在线| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产综合久久久| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播 | 免费观看a级毛片全部| 久久久久国产精品人妻一区二区| 三上悠亚av全集在线观看| 老汉色av国产亚洲站长工具| 各种免费的搞黄视频| 国产精品久久久久久精品电影小说| 日本91视频免费播放| www.av在线官网国产| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利影视在线免费观看| 熟女av电影| 成人亚洲精品一区在线观看| 精品久久久久久电影网| 丰满少妇做爰视频| 宅男免费午夜| 久久久久精品国产欧美久久久 | 97精品久久久久久久久久精品| 人妻一区二区av| 色婷婷av一区二区三区视频| 青青草视频在线视频观看| 男女午夜视频在线观看| 99国产综合亚洲精品| 老司机午夜十八禁免费视频| 水蜜桃什么品种好| 国产男女超爽视频在线观看| 久久99热这里只频精品6学生| 99久久人妻综合| 亚洲av日韩在线播放| 欧美乱码精品一区二区三区| 午夜影院在线不卡| 成人亚洲精品一区在线观看| 18禁裸乳无遮挡动漫免费视频| 多毛熟女@视频| 我的亚洲天堂| 久久国产精品男人的天堂亚洲| av网站免费在线观看视频| 日韩中文字幕视频在线看片| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲 | 建设人人有责人人尽责人人享有的| 亚洲欧美激情在线| 久久人妻福利社区极品人妻图片 | 亚洲第一青青草原| 国产97色在线日韩免费| 自线自在国产av| 日韩欧美一区视频在线观看| 日韩人妻精品一区2区三区| 久久人人爽av亚洲精品天堂| 18禁观看日本| 欧美黑人欧美精品刺激| 一级毛片 在线播放| 日韩 亚洲 欧美在线| 国产精品久久久av美女十八| 国产极品粉嫩免费观看在线| 一边摸一边抽搐一进一出视频| 国产欧美亚洲国产| 国产成人91sexporn| 手机成人av网站| 十八禁网站网址无遮挡| 亚洲激情五月婷婷啪啪| av国产精品久久久久影院| 黄色 视频免费看| 男女免费视频国产| 性少妇av在线| 99热全是精品| 黄片小视频在线播放| 18禁裸乳无遮挡动漫免费视频| 天天躁日日躁夜夜躁夜夜| 国产欧美日韩一区二区三区在线| 国产极品粉嫩免费观看在线| 久久久久国产精品人妻一区二区| 波野结衣二区三区在线| 国产片内射在线| 啦啦啦啦在线视频资源| 伊人亚洲综合成人网| 久久久久久亚洲精品国产蜜桃av| 手机成人av网站| 亚洲av电影在线进入| 国产日韩一区二区三区精品不卡| 国产精品麻豆人妻色哟哟久久| 热99久久久久精品小说推荐| 香蕉国产在线看| 最近手机中文字幕大全| 国产在线免费精品| 黄色片一级片一级黄色片| 久久久久网色| av有码第一页| 91国产中文字幕| 一边亲一边摸免费视频| 91字幕亚洲| 亚洲中文av在线| 午夜久久久在线观看| 国产高清videossex| 国产精品熟女久久久久浪| 精品少妇黑人巨大在线播放| 亚洲av成人精品一二三区| 少妇 在线观看| 欧美在线黄色| 欧美日韩视频精品一区| av国产精品久久久久影院| 国产精品一区二区精品视频观看| 女人久久www免费人成看片| 国产极品粉嫩免费观看在线| 中文乱码字字幕精品一区二区三区| 精品人妻在线不人妻| 香蕉丝袜av| 国产97色在线日韩免费| 午夜福利视频在线观看免费| 精品人妻在线不人妻| 视频在线观看一区二区三区| av福利片在线| 色精品久久人妻99蜜桃| 自线自在国产av| 亚洲人成77777在线视频| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区久久| 天天躁狠狠躁夜夜躁狠狠躁| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人| 国产精品人妻久久久影院| 欧美日韩av久久| 国产精品久久久久久精品古装| 97在线人人人人妻| 亚洲专区中文字幕在线| 国产亚洲欧美在线一区二区| 中文字幕人妻熟女乱码| 99久久综合免费| 真人做人爱边吃奶动态| 国产爽快片一区二区三区| 午夜福利乱码中文字幕| 色婷婷av一区二区三区视频| 亚洲精品日本国产第一区| 国产精品.久久久| 亚洲,一卡二卡三卡| 午夜视频精品福利| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 如日韩欧美国产精品一区二区三区| 曰老女人黄片| 久久毛片免费看一区二区三区| 日本a在线网址| 久久久久久久精品精品| h视频一区二区三区| 国产有黄有色有爽视频| 欧美大码av| 欧美在线黄色| 18禁裸乳无遮挡动漫免费视频| 亚洲专区国产一区二区| 99国产综合亚洲精品| 大片电影免费在线观看免费| 欧美日韩av久久| 18禁国产床啪视频网站| √禁漫天堂资源中文www| 亚洲精品国产区一区二| 女性生殖器流出的白浆| 精品欧美一区二区三区在线| 美女国产高潮福利片在线看| 国产又爽黄色视频| 操出白浆在线播放| 国产精品免费视频内射| 久久人妻福利社区极品人妻图片 | 精品亚洲成国产av| 久久性视频一级片| 国产精品免费视频内射| 电影成人av| 日日摸夜夜添夜夜爱| 亚洲男人天堂网一区| 中文字幕最新亚洲高清| 亚洲欧美中文字幕日韩二区| 国产精品av久久久久免费| 国产在视频线精品| 久久精品人人爽人人爽视色| 精品久久蜜臀av无| 悠悠久久av| 永久免费av网站大全| 人人妻人人添人人爽欧美一区卜| 好男人电影高清在线观看| 久9热在线精品视频| 97精品久久久久久久久久精品| 少妇裸体淫交视频免费看高清 | 久久精品国产a三级三级三级| 91精品三级在线观看| 69精品国产乱码久久久| 真人做人爱边吃奶动态| 曰老女人黄片| 国产欧美日韩一区二区三 | 欧美精品高潮呻吟av久久| 男人操女人黄网站| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 男人操女人黄网站| 亚洲国产最新在线播放| 岛国毛片在线播放| 黄色a级毛片大全视频| 午夜福利一区二区在线看| 午夜激情久久久久久久| 日本91视频免费播放| 国产在线视频一区二区| 久久人妻熟女aⅴ| 午夜视频精品福利| 午夜91福利影院| 丝袜美足系列| 乱人伦中国视频| 国产主播在线观看一区二区 | 国产亚洲精品久久久久5区| 操美女的视频在线观看| 午夜视频精品福利| 亚洲av国产av综合av卡| 久久精品国产综合久久久| 亚洲精品一二三| 久久精品亚洲av国产电影网| 在线观看免费高清a一片| 男女床上黄色一级片免费看| 久久久精品国产亚洲av高清涩受| 老司机影院成人| 欧美日本中文国产一区发布| 日本a在线网址| 久久热在线av| 极品少妇高潮喷水抽搐| 亚洲激情五月婷婷啪啪| 国产成人a∨麻豆精品| 男人添女人高潮全过程视频| 人妻 亚洲 视频| 欧美激情高清一区二区三区| 高清av免费在线| 三上悠亚av全集在线观看| 国产成人系列免费观看| 嫁个100分男人电影在线观看 | 亚洲情色 制服丝袜| 国产成人欧美在线观看 | 蜜桃在线观看..| 久久久久视频综合| 成人午夜精彩视频在线观看| 啦啦啦视频在线资源免费观看| a级片在线免费高清观看视频| 一区二区av电影网| 免费在线观看影片大全网站 | 一级黄片播放器| 在线观看免费午夜福利视频| 国产深夜福利视频在线观看| 大话2 男鬼变身卡| 青青草视频在线视频观看| 欧美 日韩 精品 国产| 在线观看免费日韩欧美大片| 一边摸一边做爽爽视频免费| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 少妇精品久久久久久久| 狠狠婷婷综合久久久久久88av| 国产成人欧美在线观看 | 中文字幕高清在线视频| 久久免费观看电影| 日日摸夜夜添夜夜爱| 欧美精品一区二区大全| 亚洲专区中文字幕在线| 亚洲精品国产色婷婷电影| 乱人伦中国视频| 日韩一本色道免费dvd| 亚洲欧美激情在线| 久久天躁狠狠躁夜夜2o2o | 天堂8中文在线网| 国产亚洲av高清不卡| 汤姆久久久久久久影院中文字幕| 久久久久久久久免费视频了| 久久久久精品人妻al黑| 欧美另类一区| 精品视频人人做人人爽| 国产欧美亚洲国产| 亚洲黑人精品在线| 日韩 亚洲 欧美在线| 纵有疾风起免费观看全集完整版| www.熟女人妻精品国产| 飞空精品影院首页| 99国产精品一区二区蜜桃av | 一区在线观看完整版| 国产精品三级大全| 国产日韩欧美亚洲二区| 国产欧美日韩精品亚洲av| 亚洲av电影在线观看一区二区三区| 亚洲精品在线美女| 久久精品久久久久久噜噜老黄| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看 | 日日夜夜操网爽| 欧美人与善性xxx| 久久青草综合色| 国产亚洲av片在线观看秒播厂| 国产色视频综合| 侵犯人妻中文字幕一二三四区| 国产精品国产三级专区第一集| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 成年av动漫网址| 两人在一起打扑克的视频| 欧美日韩黄片免| 国产成人精品久久二区二区91| 高潮久久久久久久久久久不卡| 十八禁高潮呻吟视频| 波野结衣二区三区在线| 9191精品国产免费久久| 国产成人精品久久二区二区91| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 久久精品久久久久久久性| 美女主播在线视频| 国产亚洲一区二区精品| 久久人妻熟女aⅴ| 后天国语完整版免费观看| 中文乱码字字幕精品一区二区三区| 亚洲精品一二三|