• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      AClass of Limit Theorems for DelayedAverages of Negatively Dependent Random Variables

      2015-03-08 01:56:30WANGZizhenYANPengfeiHUSongLVWenhua
      關(guān)鍵詞:愛華安徽學(xué)報

      WANG Zizhen,YAN Pengfei,HU Song,LV Wenhua

      (1.School of Mathematics and Statistics,Shandong University at Weihai,Weihai 264209,China;2.School of Mathematics&Physics Science and Engineering,Anhui University of Technology,Ma'anshan 243032,China;3.School of Mathematics and Finance,Chuzhou University,Chuzhou 239000,China)

      Let(an)n∈Nbe a sequence of real numbers and(kn)n∈Nbe a sequence of positive integers.The numbersare called the(forward)delayed first arithmetic means[1].The limiting properties for such delayed average have been studied by many researchers.For examples,Shepp[2]investigated some limiting properties ofρn,f(n)for mutually independent Bernoulli sequence and obtained some profound results.By using the limiting behavior of delayed average,Chow[3]found necessary and sufficient conditions for the Borel-summability of i.i.d.random variables and also obtained very simple proofs of a number of well-known results such as the Hsu-Robbins-Spitzer-Katztheorem.Lai[4]studied the analogues of the law of the iterated logarithm for delayed sums of independent random variables.

      Bozorgnia,Patterson and Taylor[5]mentioned that in many stochastic models,the assumption that random variables are independent is not plausible.Increases in some random variables are often related to decreases in other random variables so an assumption of negative dependence is more appropriate than that of independence.Lehmann[6]investigated various concepts of positive and negative dependence in the bivariate case.Recently,Jian[7]and Hu[8]discussed the limit property of moving average for a class of dependent random variables.In this paper,we study analogues of the law of large numbers for delayed sums of negatively dependent random variables.We give the upper and lower bounds for delayed averages of the form(logn)for identically distributed ND(negatively dependent)r.v.'s when the moment conditionis imposed with somep>1.

      1 Definitions and Propositions

      Definition 1[9]A random variableXis said to be Sub-Gaussian(SG)r.v.if there exists a nonnegative real numberαsuch that for each real numbert

      The number,τ(X)=will be called the Gaussian standard of the random

      variableX.It is evident thatXwill be a Sub-Gaussian random variable if and only if τ(X)< ∞.Definition 2 The random variablesX1,…,Xnare said to be ND if we have

      for allX1,…,Xn∈ R.An infinite sequence(Xn)n∈Nis said to be ND if every finite subsetX1,…,Xnis ND.

      Proposition 1 Let(Xn)n∈Nbe mean zero ND r.v.’s with| |Xn≤dn,n>1,Then,for everyt>1,k,l∈Nwe have

      Let(cn)n∈Rbe a sequence of positive real numbers,for everyn,j∈ N,denote

      Proposition 2 LetX,(Xn)n∈Nbe identically distributed ND r.v.’s.Then,for everyt> 0,we have

      Proposition 3 LetX,(Xn)n∈Nbe identically distributed ND r.v.’s.Then,for every ε > 0,we have

      Proposition 4 LetX,(Xn)n∈Nbe identically distributed ND r.v.’s.IfEeδ|X|< ∞ ,for some δ> 0.Then for every ε>0,we have

      2 Main Results and Proofs

      Let(Xn)n∈Nbe a sequence be a random variables.Letγ > 0,and consider the“delayed sum”where[·]is the usual greatest integer function.

      Theorem 1 Let(Xn)n∈Nbe a sequence of ND Sub-Gaussian r.v.’s with τ(Xn)≤ αn.

      1)Tn,nγis a Sub-Gaussian r.v.with

      3)Ifαj=α,j=1,2,…,then for some

      Proof

      1)By reference[10],we have

      hence,Tn,nγis a Sub-Gaussian r.v.and

      2)For eachε>0by reference[10],we have

      3)And also

      Theorem 2 Let(Xn)n∈Nbe a sequence of ND r.v.’s satisfyingP[a ≤ Xn≤ b]=1andEXn=0,for eachn,then for every

      Proof

      Since Xn|≤max{| a|,|b|} a.s.,hence by [10],(Xn)n∈Nis a sequence of Sub-Gaussian r.v.’s with τ(Xn)≤2((m ax{| a|,|b|})).Thus by Theorem 1,for everyβ >1/2,we have

      Theorem 3 Let(Xn)n∈Nbe a sequence of ND r.v.’s withEXn=0,EXn= σ2n>0,n=1,2,…,and suppose there exists a positive constantHso that for allm≥2,

      Proof

      By Proposition 1,references[10-11]and Markov’s inequality for everywe have

      Hence

      Hence

      and for eachε′>α≥ε>0,we have

      Theorem 4 Let(Xn)n∈Nbe a sequence of ND r.v.’sandIf,for everyε>0,then,we have

      Proof

      By reference[10],and Markov’s inequality for everyε>0andt>0,we have

      and by the assumption,for everyε>0,

      Theorem 5 LetX,(Xn)n∈Nbe identically distributed ND r.v’s.IfEeδ|X|< ∞ for someδ>0.Then,for every ε>0,we have

      Proof

      Theorem 6 LetX,(Xn)n∈Nbe identically distributed ND r.v’sandc>2eEX2.Then

      Proof

      From(32),we have

      Theorem 7 LetX,(Xn)n∈Nbe identically distributed ND r.v’s.For somep>1,letg(x)=sgnx|x|1/p.Further let t1,t2∈[0,+∞],and assume thatEetg(X)<∞fort∈(-t1,t2),Eetg(X)<∞fort?[-t1,t2],andEX=μ .Then

      and

      Proof

      First,we prove the following result.Lett1,t2>0be given so thatEe-t1g(X)<∞andEe-t2g(X)<∞.In particular,this impliesE|X|<∞ and,without loss of generality,we assumeEX=0.Then

      It suffices to pro the inequality for the upper limit.We use the notationLx=max{1,logx}and letan=(Ln)p.Fix s2∈(0,t2),we decomposeXjintoThen

      Since1≤(log(n+(logn)p)p/(logn)p→1 as n→∞,it suffices to consider onlynlarge enough that for some∈(s2,t2):

      Now observe thatEX′j≤0for allj∈N,EX2<∞ andE(X2e)<∞.Note that

      WhereH(x)=max{1,ex}.Which yields forj=n+1,…,n+[(logn)p]and

      Hence we obtain for anyx>0:

      which yields a convergent series ifSinces2∈(0,t2)was arbitrary,this proves

      The same proof yields the following variant of Theorem 8:

      Theorem 8 LetX,(Xn)n∈Nbe identically distributed ND r.v’s.For somep>1,letg(x)=sgnx{x}1/p.Further let γ≥1,t1,t2∈[0,+∞],and assume thatEetg(X)<∞fort∈(-t1,t2),Eetg(X)=∞fort?[-t1,t2],andEX=μ.Then

      and

      [1]ZygmundA.Trigonometric Series 1[M].[S.l.]:Cambridge University Press,1959:80.

      [2]Shepp LA.First passage time for a particular Gaussian process[J].TheAnnals of Mathematical Statistics,1971,42(3):946-951.

      [3]Chow Y S.Delayed sums and Borelsummability of independent,identically distributed random variables[J].Bulletin of the Institute of MathematicsAcademia Sinica,1973,1(2):207-220.

      [4]Lai T L.Limit Theorems for Delayed Sums[J].TheAnnals of Probability,1974,2(3):432-440.

      [5]Bozorgnia A,Patterson R F,Taylor R L.Limit theorems for dependent random variables[J].Lithuanian Mathematical Journal,1974,14(4):1639-1650.

      [6]Lehmann E L.Some concepts of dependence[J].TheAnnals of Mathematical Statistics,1966,37(5):1137-1153.

      [7]簡旭,吳玉,范愛華.關(guān)于獨立同分布隨機序列的若干極限定理[J].安徽工業(yè)大學(xué)學(xué)報:自然科學(xué)版,2014,31(2):209-211.

      [8]胡松,汪忠志.END隨機序列滑動平均的若干極限定理[J].安徽工業(yè)大學(xué)學(xué)報:自然科學(xué)版,2013,30(1):84-87.

      [9]Stout W F.Almost Sure Convergence[M].[S.l.]:Academic Press,1974.

      [10]Petrov V V.Limit Theorems in Probability Theory[M].[S.l.]:Oxford Science Publication,1995.

      [11]Chareka P,Chareka O,Kennendy S.Locally sub-Gaussian random variables and the strong law of large numbers[J].The Atlantic Electronic Journal of Mathematics,2006(1):75-81.

      猜你喜歡
      愛華安徽學(xué)報
      致敬學(xué)報40年
      第一次拔牙
      神奇的光
      安徽醫(yī)改自我完善主動糾錯
      安徽藥采如何“三步走”
      安徽 諸多方面走在前列
      安徽為什么選擇帶量采購
      在廈金胞張愛華孝親牽起兩岸情
      海峽姐妹(2016年2期)2016-02-27 15:15:48
      學(xué)報簡介
      學(xué)報簡介
      五寨县| 社会| 土默特左旗| 清原| 武定县| 南京市| 文水县| 老河口市| 镇赉县| 安仁县| 桦南县| 资中县| 睢宁县| 聊城市| 韶山市| 自贡市| 台前县| 山东省| 芜湖市| 霍林郭勒市| 通河县| 双鸭山市| 苍山县| 秦安县| 成安县| 克东县| 砀山县| 德州市| 延长县| 墨竹工卡县| 桦甸市| 石台县| 江阴市| 江安县| 新兴县| 宝丰县| 建宁县| 孙吴县| 油尖旺区| 石屏县| 东莞市|