韓小琴,何中全
(西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,四川 南充 637009)
一類廣義變分不等式解的存在性及其算法
韓小琴,何中全
(西華師范大學(xué)數(shù)學(xué)與信息學(xué)院,四川 南充 637009)
摘要:利用變分不等式的古典算法,在Hilbert空間中討論了一類廣義變分不等式問題(GVIP),證明了GVIP解的存在性,給出了一個新的迭代算法,得到了GVIP解的強(qiáng)收斂定理.
關(guān)鍵詞:廣義變分不等式;解的存在性;迭代算法;強(qiáng)收斂性
變分不等式是非線性分析理論的重要組成部分,在力學(xué)、微分方程、控制論、數(shù)理經(jīng)濟(jì)、對策論、優(yōu)化、分線性規(guī)劃等領(lǐng)域中都有非常廣泛的應(yīng)用,因此,討論變分不等式解的存在性及逼近解的算法等問題非常重要.最近,Wu等在Banach空間中介紹了一種新的廣義f-投影算子[1-2],用于解決MVI問題.文獻(xiàn)[3]對自反Banach空間上的廣義投影算子做了深入研究,Li等運(yùn)用廣義f-投影算子證明了逆變分不等式問題IMVI逼近解的收斂性[4].受上述工作的啟發(fā),本文對廣義f-投影算子做了推廣,介紹了廣義φ-投影算子,證明了一類廣義變分不等式問題GVIP解的存在性,并且給出了這類問題的一個新迭代算法,得到了GVPI解的強(qiáng)收斂定理.
1預(yù)備知識
i) 關(guān)于第一變元下半連續(xù),關(guān)于第二變元凸且連續(xù);
iii) φ(x,y)=-φ(y,x),?x,y∈K.
本文考慮廣義變分不等式問題(GVIP):求x∈K,使得〈F(x),y-x〉+φ(x,y)≥0,?y∈K.記GVIP的解集為S*.如沒有特殊要求,本文將在以上條件下討論GVIP.
下面介紹一些相關(guān)知識.
簡稱F是L-Lipschitz連續(xù)的.
2廣義φ-投影算子
3解的存在性
定理1對?α>0,x∈S*當(dāng)且僅當(dāng)Rα(x)=0.
當(dāng)F為強(qiáng)單調(diào)映射時,GVIP有唯一解[1].
4廣義φ-投影算法及其收斂性
算法1對任意給定的x0∈H,計算e(xn,αn)和xn+1:
這里αn>0.為了獲得算法1的收斂性,參照文獻(xiàn)[4],給出下面定理.
〈v-(u-αF(u)),w-v〉+αφ(v,w)≥0.
(1)
由式(1)得:
〈F(u)-e(u,α),αe(u,α)-α*e(u,α*)〉+φ(v,w)≥0,
(2)
〈F(u)-e(u,α*),α*e(u,α*)-αe(u,α)〉+φ(w,v)≥0.
(3)
式(2)+式(3)得
〈e(u,α*)-e(u,α),αe(u,α)-α*e(u,α*)〉≥0.
(4)
由式(4)得
(5)
上述兩式相加,得〈x*-x+αe(x,α),F(x)-F(x*)-e(x,α)〉≥0,即
〈x-x*-αe(x,α),F(x*)-F(x)+e(x,α)〉≥0.
(6)
因F強(qiáng)制,則
證畢.
證明因xn+1=xn-e(xn,αn),x*∈S*,則xn+1-x*=xn-x*-e(xn,αn).由定理2和定理3知
參考文獻(xiàn):
[1] Wu K Q, Huang N J. The generalizedf-projection operator with an application[J]. Bull Aust Math Soc, 2006,73(2):307-317.
[2] Wu K Q,Huang N J.Properties of the generalizedf-projection operator and its applications in Banach space[J].Comput Math Appl,2007,54(3):399-406.
[3] Li J L.The generalized projection operator on reflexive Banach spaces and its applications[J].Journal of Mathematical Analysis and Applications,2005,306(1):55-71.
[4] Li X,Li X S,Huang N J.A generalizedf-projection algorithm for inverse mixed variational inequalities[J].Optimization Letters,2014,8(3):1063-1076.
[5] Wardrop J G.Some theoretical aspects of road traffic research[M]. London:Inst Civil Engineers Proc,1952:325-378.
[6] Solodov M V. Merit functions and error bounds for generalized variation inequalities[J].Journal of Mathematical Analysis and Applications,2003,287(2):405-414.
Existence and Algorithm of the Solutions for a Class of Generalized Variational Inequalities
HAN Xiaoqin, HE Zhongquan
(College of Mathematics and Information, China West Normal University,Nanchong 637009,China)
Abstract:Using the classical algorithm for generalized variational inequalities, a class of generalized variational inequalities (GVIP) is studied in the Hilbert space, the existence of solutions for GVIP is improved, a new iterative algorithm is given, simultaneously, and a strong convergence theorem of the solutions for GVIP is obtained.
Key words:generalized variational inequalities; existence of solution; iterative algorithm; strong convergence
通信作者:何中全(1955—),男,教授,主要從事非線性分析研究.E-mail:lingjianshanshui@163.com
基金項目:教育部科學(xué)技術(shù)重點(diǎn)項目(211163).
收稿日期:2014-12-05
文章編號:1674-232X(2015)03-0319-04
中圖分類號:O177.91MSC2010:49J40;47J20
文獻(xiàn)標(biāo)志碼:A
doi:10.3969/j.issn.1674-232X.2015.03.016