蔡 溶, 傅文甫
(1. 中國科學院 理化技術研究所, 北京 100190; 2. 中國科學院大學, 北京 100049)
論 文
基于配合物前驅(qū)體的CuO原位制備與電催化產(chǎn)氧活性研究
蔡 溶1,2, 傅文甫1*
(1. 中國科學院 理化技術研究所, 北京 100190; 2. 中國科學院大學, 北京 100049)
合成得到了含有N,N,N′,N′-四羥乙基乙二胺(THEED)配體的Cu(Ⅱ)配合物[Cu(THEED)(H2O)]SO4,通過質(zhì)譜、元素分析以及X-射線單晶衍射測定了它的組成和晶體結構,并用之作為電催化產(chǎn)氧催化劑的前驅(qū)體。在電解含有配合物的堿性NaOAc/NaOH溶液時可檢測到氧氣產(chǎn)生,并發(fā)現(xiàn)有黑色薄膜附著于陽極表面。利用掃描電子顯微鏡(SEM)、能量色散X射線(EDX)、X射線衍射(XRD)和X射線光電子能譜(XPS)確定該薄膜的主要成分是2 μm大小的無定形CuO顆粒。通過實驗證明,CuO為真正的電催化水氧化催化劑,它具有較高活性和穩(wěn)定性。在無Cu(Ⅱ)、0.10 mol/L NaOAc/NaOH溶液(pH=12.4)中,固定催化電壓為1.35 V(相對于標準氫電極電壓),催化電流密度可維持1.5 mA/cm2近6 h不變;7.5 h產(chǎn)生氧氣97 μmol,法拉第效率95%。
N,N,N′,N′-四羥乙基乙二胺;Cu(Ⅱ)配合物;CuO;電催化;水氧化
化石燃料的使用導致了嚴重的環(huán)境污染和溫室效應[1],因而尋找新的、對環(huán)境友善的能源勢在必行[2]。通過電解水獲取氫氣和氧氣是理想的途徑之一,但水氧化半反應是實現(xiàn)水分解的瓶頸[3,4]。至今已有許多此類反應的過渡金屬催化劑被報道,主要是基于釕[5,6]、銥[6,7]、錳[8]、鈷[9-11]、鎳[12-14]和鐵[15]的配合物。但尋找廉價易得、活性高并且穩(wěn)定性好的催化劑仍面臨諸多挑戰(zhàn)。
銅是一種來源廣泛的非貴金屬,而且銅對生物體毒性較小。近幾年,基于銅構建的水氧化催化劑開始受到關注[16]。自2012年Mayer等人首次報道了銅聯(lián)吡啶化合物在堿性條件下催化電解水產(chǎn)氧[17]之后,銅鹽與四聚甘氨酸原位生成的配合物[18],以及在碳酸鈉溶液中的銅鹽[19]均被證明有催化作用。2014年,杜平武等人通過在堿性溶液中電解銅的二甲氨基吡啶化合物獲得具有電催化產(chǎn)氧活性的CuO[20]。2015年,孫立成等又報道了銅鹽在硼酸緩沖體系中電沉積產(chǎn)生具有催化產(chǎn)氧作用的Cu-Bi薄膜[21]。
研究表明商業(yè)CuO并無催化活性[20],而使用Cu鹽原位制備的CuO活性和穩(wěn)定性都低于由Cu配合物制備的CuO[19,20]。為獲得廉價易得的產(chǎn)氧催化劑,我們使用商業(yè)化試劑N,N,N′,N′-四羥乙基乙二胺(THEED)和無水硫酸銅制備得到配合物[Cu(THEED)(H2O)]SO4。它在堿性水溶液中具有良好的溶解性,可以有效地避免Cu(OH)2沉淀析出。本文采用[Cu(THEED)(H2O)]SO4作為前驅(qū)體,在配合物晶體結構確定的基礎上,通過陽極表面電沉積方法原位得到具有較高穩(wěn)定性和電催化活性的CuO,同時實現(xiàn)了電催化的水氧化。
1.1 儀器與試劑
儀器: CHI660C電化學工作站(上海辰華儀器公司);APEXII型FT-ICR電噴霧質(zhì)譜儀;EURO EA元素分析儀;Hitachi UV-3010紫外-可見吸收光譜儀;Hitachi S-4800掃描電子顯微鏡;D8 focus X射線衍射儀;Rigaku R-AXIS RAPID IP X-ray單晶衍射儀;X射線光電子能譜儀(PHI Quantera SXM);Ocean Optics optical probe氧氣監(jiān)測探針。
試劑:N,N,N′,N′-四羥乙基乙二胺(Aldrich公司);無水CuSO4、NaOAc、NaOH均購于北京化工廠,用于化學反應和測試時未經(jīng)進一步處理直接使用。所有用于實驗的水均是Milli-Q超純水(> 18 MΩ)。
1.2 [Cu(THEED)(H2O)]SO4配合物的合成將5.0 mmol的無水硫酸銅溶于10 mL乙醇和水(體積比1∶1)中,在攪拌下加入5.0 mmol的THEED。室溫攪拌3 h后,旋干溶劑得粗產(chǎn)物。于乙醇中重結晶得到純品,產(chǎn)率為90%。ESI-MS(H2O,m/z):396.0602 [M-H2O + H]+,149.5506[M-H2O-SO4]2+。Anal.Calcd. for[Cu(THEED)(H2O)]SO4:C, 29.02;H, 6.33;N, 6.77 %. Found: C, 27.91;H, 6.49;N, 6.49 %。
1.3 電化學測試
1.3.1 循環(huán)伏安測試
用玻璃碳電極(面積0.07 cm2)或ITO導電玻璃(25 mm×10 mm×1.1 mm)作為工作電極,0.1 mol/L NaOAc/NaOH作電解質(zhì)溶液,將掃描速度固定為100 mV/s,分別記錄不同pH值(9.0~13.0)和不同配合物濃度(0.2~1.0 mmol/L)的循環(huán)伏安(CV)曲線。
1.3.2 控制電壓電解
控制電壓電解采用三電極系統(tǒng):ITO導電玻璃作為工作電極;Ag/AgCl作參比電極;Pt片(10 mm×10 mm)作對電極。電解液為pH=12.4的0.1 mol/L NaOAc/NaOH溶液。通過施加不同的催化電壓,記錄5 min時的電流讀數(shù),并繪制電流密度與過電位的關系曲線(Tafel曲線)。
1.4 產(chǎn)氧測試和法拉第效率的計算
電化學池選用全密封雙通道H型光電化學池,陽極室和陰極室通過玻璃砂芯分隔。陽極室裝有工作電極、參比電極(Ag/AgCl)和實時氧氣監(jiān)測探針。陰極室裝有鉑片作對電極。取pH=12.4的0.1 mol/L NaOAc/NaOH溶液作為電解液分別加入陰極室和陽極室,并向陽極室中加入[Cu(THEED)(H2O)]SO4配成1.0 mmol/L的溶液。通N2氣20 min排除電化學池中的氧氣后,將電化學池密封。施加1.35 V(相對于標準氫電極)電壓,同時使用氧氣監(jiān)測探針對電化學池頂部的氧氣含量進行檢測。通過法拉第定律計算出理論產(chǎn)氧量和法拉第效率。
1.5 活性CuO的表征
使用掃描電子顯微鏡(SEM,Hitachi-4800場發(fā)射掃描電子顯微鏡,電壓5.0 kV)對所形成的活性CuO膜進行表面形貌表征,并用能量色散X射線(EDX)進行元素分析。X射線衍射(XRD)采用Bruker D8 Focus X射線衍射儀,用于活性膜的晶體結構分析。多功能光電子能譜儀(XPS,PHI Quantera SXM)確定Cu元素的價態(tài)及存在形式。
2.1 銅配合物的晶體結構
甲醇和水(1∶1)作為溶劑,采用乙醚擴散法培養(yǎng)銅配合物的晶體。通過X射線單晶衍射分析測定其結構(CCDC號:1049629),晶體結構參數(shù)列于表1中。X射線研究表明配合物呈八面體構型。以Cu為中心,THEED上的2個N原子、3個O原子和1個水分子中的O原子與Cu配位(圖1)。
表1 [Cu(THEED)(H2O)]SO4晶體參數(shù)
aR1=∑||Fo|-|Fc||∑|Fo|,wR2={∑[w(Fo2-Fc2)2]/∑[w(Fo2)2]}1/2
圖1 [Cu(THEED)(H2O)]2+的晶體結構圖Crystal structure of [Cu(THEED)(H2O)]2+
2.2 電化學測試
2.3 電催化的氧產(chǎn)生
控制電壓為1.35 V,電解溶有1.0 mmol/L[Cu(THEED)(H2O)]SO4的NaOAc/NaOH溶液(0.1 mol/L, pH=12.4)。電解過程中可以觀察到在ITO電極表面不斷有氣泡生成,并有黑色固體在其表面富集。隨著時間的延長,ITO電極表面的黑色物質(zhì)逐漸增加,相應的電流密度也從0.3 mA/cm2增加到1.4 mA/cm2(圖3a)。據(jù)此我們推斷黑色物質(zhì)的累積有助于電催化反應的進行。經(jīng)過5 h的電解共產(chǎn)生氧氣30 μmol,法拉第效率為81 %(圖3b)。
圖2 [Cu(THEED)(H2O)]SO4在不同條件下的循環(huán)伏安圖0.10 mol/L NaOAc/NaOH,玻璃碳電極(S= 0.07 cm2)(a)1.0 mmol/L [Cu(THEED)(H2O)]SO4,不同pH值的循環(huán)伏安曲線;(b)pH = 12.4,不同濃度[Cu(THEED)(H2O)]SO4的循環(huán)伏安曲線;(c)催化劑濃度與1.3 V處電流的關系;(d)1.0 cm2 ITO玻璃電極,1.0 mmol/L [Cu(THEED)(H2O)]SO4,pH = 12.4,多次循環(huán)伏安曲線CVs of [Cu(THEED)(H2O)]SO4 in different conditions0.10 mol/L NaOAc/NaOH, on a glassy carbon electrode (S=0.07 cm2)(a)CVs of 1.0 mmol/L of [Cu(THEED)(H2O)]SO4 at various pH, (b) [Cu(THEED)(H2O)]SO4 at various concentrations at pH=12.4, (c) the relationship between the catalyst concentrations and catalytic currents at 1.3 V, (d)multiple CVs at a 1.0 cm2 ITO glass, 1.0 mmol/L [Cu(THEED)(H2O)]SO4 at pH=12.4
2.4 活性CuO膜的表征
用去離子水小心沖洗附著在ITO玻璃上的黑色薄膜,然后將其置于真空干燥箱中干燥過夜。SEM顯示活性CuO膜的表面形貌類似于Co-Pi產(chǎn)氧催化劑[22]:球狀小顆粒相互堆積成簇附著于ITO電極表面,顆粒大小約為2 μm(圖4a)。EDX結果顯示這些黑色顆粒的組成元素以Cu和O為主(圖4b)。未檢測到C和N則表明配體和電解質(zhì)均未對活性物質(zhì)的組成產(chǎn)生影響。因此,以[Cu(THEED)(H2O)]SO4作為前驅(qū)體產(chǎn)生的活性物質(zhì)既不同于6,6′-二羥基-2,2′-聯(lián)吡啶銅電沉積產(chǎn)生的多聚或寡聚物[23],也不同于銅鹽在硼酸緩沖溶液中產(chǎn)生的Cu-Bi膜[21]。事實上,它更類似于用銅二甲氨基吡啶配合物作為前驅(qū)體制備的活性CuO[20]。圖4c為活性膜的XRD圖。我們只檢測到了ITO的特征衍射峰但沒有觀察到CuO的衍射峰,所以活性物質(zhì)應該是無定形的。在銅的高分辨XPS圖中(圖4d),933.6和953.6 eV分別對應Cu 2p3/2和Cu 2p1/2的結合能。由此判定Cu的化合價為+2價,主要組成是CuO,并伴隨有Cu(OH)2兩個主峰之間的衛(wèi)星峰可進一步證明CuO的存在[20,24,25]。
圖3 控制電壓電解[Cu(THEED)(H2O)]SO4并產(chǎn)氧控制電壓1.35 V,電解1.0 mmol/L [Cu(THEED)(H2O)]SO4,pH = 12.4,0.10 mol/L NaOAc/NaOH溶液(a)電流密度時間曲線;(b)時間響應產(chǎn)氧曲線
圖4 活性CuO的表征(a)SEM圖;(b)EDX圖;(c)XRD 圖;(d)Cu 2p的XPS圖
2.5 活性CuO的性質(zhì)與產(chǎn)氧研究
為研究CuO膜的催化活性,我們進行了循環(huán)伏安測試和控制電壓電解實驗。實驗均在不含Cu(Ⅱ)、pH=12.4、0.1 mol/L的NaOAc/NaOH溶液中進行。
循環(huán)伏安測試如圖5a所示,不同于[Cu(THEED)(H2O)]SO4溶液(圖2d),0.78 V的位置上出現(xiàn)了一個新的不可逆還原峰;-0.13 V處出現(xiàn)了新的氧化峰。根據(jù)文獻可將-0.13 V處的氧化峰歸屬于Cu(Ⅱ/Ⅰ)[23]。在該條件下,活性CuO的過電位約為500 mV。經(jīng)過50次循環(huán),電流值下降了10%。主要原因在于循環(huán)過程中CuO出現(xiàn)部分剝落的情況。同時,由于電解過程中并未攪拌,所以電極附近pH值的降低也是電流減小的原因之一。
圖5b是活性CuO膜的Tafel曲線:當過電位在0.3~0.6 V之間時,電流密度指數(shù)隨過電位線性變化,Tafel斜率為147 mV/decade。當過電位超過0.6 V后,增加電壓,電流不再明顯增大。設置催化電壓為1.35 V,催化電流密度可維持在1.5 mA/cm2近6 h不變(圖5c),其穩(wěn)定性要遠遠高于Cu鹽在碳酸鈉溶液中形成的不穩(wěn)定薄膜(15 min溶解于碳酸溶液中)[19]。電解7.5 h共產(chǎn)生氧氣97 μmol,法拉第效率為95 %(圖5d)。
圖5 CuO膜的活性0.10 mol/L NaOAc/NaOH,pH = 12.4(a)附著有CuO的ITO電極第1次和第50次循環(huán)的伏安曲線;(b)過電位與電流密度關系曲線(Tafel 曲線),內(nèi)圖為附著有CuO的ITO電極照片;1.35 V電壓(c)電解附著有CuO的ITO和空白ITO電極;(d)時間響應產(chǎn)氧曲線
本文以廉價易得的無水CuSO4和商業(yè)化試劑THEED為原料,通過簡單的方法合成了在水中具有良好溶解性的[Cu(THEED)(H2O)]SO4配合物。電解溶有[Cu(THEED)(H2O)]SO4的堿性溶液,可以在陽極上原位制備具有產(chǎn)氧催化活性的CuO膜。研究表明使用[Cu(THEED)(H2O)]SO4作為催化劑前驅(qū)體可以有效的避免堿性條件下Cu(OH)2沉淀的產(chǎn)成。使用上述方法原位生成的CuO可以在堿性條件下高效地電催化水氧化。在pH=12.4的溶液中,其過電位約500 mV, 法拉第效率高達95%。與此同時,該催化劑具有良好的穩(wěn)定性。經(jīng)過長時間的電解,催化電流密度能保持不變。
[1] Lewis N S,Nocera D G. Powering the planet: chemical challenges in solar energy utilization[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2006, 103: 15729-15735.
[2] 李秋葉,金振聲. 可見光“全”分解水的類納光電化學(PEC)電池模型[J]. 影像科學與光化學,2015, 33(2): 99-107. Li Q Y, Jin Z S. Nano photoelectrochemical cell-like model for visible-light-responded overall splitting of water[J].ImagingScienceandPhotochemistry, 2015, 33(2): 99-107.
[3] Eisenberg R, Gray H B. Preface on making oxygen[J].InorganicChemistry, 2008, 47: 1697-1699.
[4] K?rk?s M D, Verho O, Johnston E V, kermark B. Artificial photosynthesis: molecular systems for catalytic water oxidation[J].ChemicalReviews, 2014, 114(24): 11863-12001.
[5] Gersten S W,Samuels G J, Meyer T J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer[J].JournaloftheAmericanChemicalSociety, 1982, 104: 4029-4030.
[6] Lee Y, Suntivich J, May K J, Perry E E, Shao-Horn Y. Synthesis and activities of rutile IrO2and RuO2nanoparticles for oxygen evolution in acid and alkaline solutions[J].JournalofPhysicalChemistryLetters, 2012, 3: 399-404.
[7] Blakemore J D, Mara M W, Kushner-Lenho M N, Schley N D, Konezny S J, Rivalta I, Negre C F A, Snoeberger R C, Kokhan O, Huang J, Stickrath A, Tran L A, Parr M L, Chen L X,Tiede D M, Batista V S, Crabtree R H, Brudvig G W. Characterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors[J].InorganicChemistry, 2013, 52: 1860-1871.
[8] Dismukes G C, Brimblecombe R, Felton G A N, Pryadun R S, Sheats J E, Spiccia L, Swiegers G F. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis[J].AccountsofChemicalResearch, 2009, 42: 1935-1943.
[9] Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+[J].Science, 2008, 321:1072-1075.
[10] Han A L, Wu H T, Sun Z J, Jia H X, Du P W. Facile deposition of nanostructured cobalt oxide catalysts from molecular cobaloximes for efficient water oxidation[J].PhysicalChemistryChemicalPhysics, 2013, 15:12534-12538.
[11] Han A L, Wu H T, Sun Z J, Jia H X, Yan Z P, Ma H, Liu X, Du P W. Green cobalt oxide (CoOx) film with nanoribbon structures electrodeposited from the BF-2annulated cobaloxime precursor for efficient water oxidation[J].ACSAppliedMaterials&Interfaces, 2014,6:10929-10934.
[12] Dinc? M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2010, 107: 10337-10341.
[13] Singh A, Chang S L Y, Hocking R K, Bach U, Spiccia L. Highly active nickel oxide water oxidation catalysts deposited from molecular complexes[J].Energy&EnvironmentScience, 2013, 6: 579-586.
[14] Wang D,Ghirlanda G, Allen J P. Water oxidation by a nickel-glycine catalyst[J].JournaloftheAmericanChemicalSociety, 2014, 136: 10198-10201.
[15] Fillol J L,Codol mez L, Pla J J, Costas M. Efficient water oxidation catalysts based on readily available iron coordination complexes[J].NatureChemistry, 2011, 3: 807-813.
[16] Li T T, Cao S, Yang C, Chen Y, Lv X J, Fu W F. Electrochemical water oxidation by in situ-generated copper oxide film from [Cu(TEOA)(H2O)2][SO4] complex[J].InorganicChemistry, 2015, 54: 3061-3067.
[17] Barnett S M, Goldberg K I, Mayer J M. A soluble copper-bipyridine water-oxidation electrocatalyst[J].NatureChemistry, 2012, 4: 498-502.
[18] Zhang M T, Chen Z F, Kang P, Meyer T J. Electrocatalytic water oxidation with a copper(Ⅱ) polypeptide complex[J].JournaloftheAmericanChemicalSociety, 2013, 135: 2048-2051.
[19] Chen Z F, Meyer T J. Copper(Ⅱ) catalysis of water oxidation[J].AngewandteChemieInternationalEdition, 2013, 52: 700-703.
[20] Liu X, Jia H X, Sun Z J, Chen H Y, Xu P, Du P W. Nanostructured copper oxide electrodeposited from copper(Ⅱ) complexes as an active catalyst for electrocatalytic oxygen evolution reaction[J].ElectrochemistryCommunication, 2014, 46: 1-4.
[21] Yu F S, Li F, Zhang B B, Li H, Sun L C. Efficient electrocatalytic water oxidation by a copper oxide thin film in borate buffer[J].ACSCatalysis, 2015, 5: 627-630.
[22] Surendranath Y, Dincǎ M, Nocera D G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts[J].JournaloftheAmericanChemicalSociety, 2009, 131: 2615-2620.
[23] Zhang T, Wang C, Liu S B, Wang J L, Lin W B. A biomimetic copper water oxidation catalyst with low overpotential[J].JournaloftheAmericanChemicalSociety, 2014, 136: 273-281.
[24] Du J L, Chen Z F, Ye S R, Wiley B J, Meyer T J. Copper as a robust and transparent electrocatalyst for water oxidation[J].AngewandteChemieInternationalEdition, 2015, 54: 2073-2078.
[25] Casella I G, Gatta M. Anodic electrodeposition of copper oxide/hydroxide films by alkaline solutions containing cuprous cyanide ions[J].JournalofElectroanalyticalChemistry, 2014, 494(2000): 12-20.
Highly Active CuO Water Oxidation Catalyst Electrodeposited from a Copper(Ⅱ) Complex
CAI Rong1,2, FU Wenfu1*
(1.TechnicalInstituteofPhysicsandChemistry,ChineseAcademyofSciences,Beijing100190,P.R.China;2.UniversityofChineseAcademyofSciences,Beijing100049,P.R.China)
Cu(II) complex containing N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine and water ligands, [Cu(THEED)(H2O)]SO4, was synthesized and structurally characterized by electrospray ionization mass spectrometry, elemental analysis and X-ray crystal analysis. Electrocatalytic investigation in basic NaOAc/NaOH solution with the complex found that a black film on the surface of anodic electrode was produced. Oxygen was formed and detected by GC analysis. The film was characterized by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray powder diffraction and X-ray photoelectron spectroscopy. The experimental results revealed that the major component of the black solid is amorphous CuO. Further studies proved that [Cu(THEED)(H2O)]SO4is a precursor, while CuO is the real water oxidation catalyst with high activity and stability. The catalytic performance of the film is demonstrated by longer term electrolysis at pH 12.4 and 1.35 Vvsnormal hydrogen electrode.The current density was retaining at 1.5 mA/cm2at least 6 hours; about 97 μmol oxygen was produced after a 7.5 h electrolysis and 95% Faradaic efficiency was achieved.
N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine; Cu(Ⅱ) complex; CuO; eletrocatalysis; water oxidation
太陽能燃料專刊
國家自然科學基金項目(21471155)資助
10.7517/j.issn.1674-0475.2015.05.403
1674-0475(2015)05-0403-08
2015-04-14收稿, 2015-05-26錄用
*通訊作者, E-mail: fuwf@mail.ipc.ac.cn
*Corresponding author, E-mail: fuwf@mail.ipc.ac.cn