• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      植物OST1基因功能研究進(jìn)展

      2015-04-07 13:03陳妮妮沈曉艷王增蘭
      湖北農(nóng)業(yè)科學(xué) 2015年3期
      關(guān)鍵詞:信號(hào)轉(zhuǎn)導(dǎo)植物

      陳妮妮++沈曉艷++王增蘭

      摘要:植物在生長(zhǎng)過(guò)程中會(huì)遭受各種逆境脅迫,環(huán)境脅迫會(huì)引起植物體內(nèi)一系列的信號(hào)反應(yīng),其中脫落酸(ABA)信號(hào)途徑是一條重要的脅迫應(yīng)答途徑。作為ABA信號(hào)通路中的蛋白質(zhì)激酶之一,氣孔開(kāi)放因子1(Stomatal opening factor 1,OST1)在植物逆境應(yīng)答反應(yīng)中扮演重要角色。因此,研究OST1基因在植物逆境應(yīng)答中的功能有助于闡述植物耐逆分子機(jī)制。從OST1的相互作用因子及其在信號(hào)通路中的調(diào)控作用等方面進(jìn)行闡述,對(duì)其介導(dǎo)的逆境應(yīng)答機(jī)制進(jìn)行了系統(tǒng)總結(jié)。

      關(guān)鍵詞:植物;逆境脅迫;OST1基因功能;信號(hào)轉(zhuǎn)導(dǎo)

      中圖分類號(hào):Q789 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2015)03-0513-04

      DOI:10.14088/j.cnki.issn0439-8114.2015.03.001

      Advances in Function of OST1 Gene in Plants

      CHEN Ni-ni, SHEN Xiao-yan, WANG Zeng-lan

      (Shandong Key Lab of Plant Stress Research/College of Life Sciences,Shandong Normal University, Jinan 250014, China)

      Abstract: Plants are subjected to all kinds of stresses in the process of growth. Environmental stresses can make plants to produce a series of signal transduction. Signal pathway of abscisic acid (ABA) is an important stress response pathway. Stomatal opening factor 1 (OST1), one of protein kinases in ABA signaling pathway, plays a pivotal role in plant. Studying the function of OST1 gene in plants will help to elaborate the molecular mechanisms of plant stress tolerance. Interacting factors of OST1 and its regulatory roles in the signal pathway were reviewed. The mechanisms of OST1 in stress response of plants were summarized.

      Key words: plant;adversity stress;OST1 gene function;signal transduction

      植物的生長(zhǎng)發(fā)育過(guò)程會(huì)受到多種逆境脅迫的影響,而植物在進(jìn)化過(guò)程中形成了應(yīng)對(duì)高溫、低溫、高鹽、干旱等環(huán)境脅迫的保護(hù)機(jī)制。蛋白激酶和蛋白磷酸酶通過(guò)催化蛋白質(zhì)磷酸化和去磷酸化來(lái)參與細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)途徑,如參與ABA信號(hào)途徑等,從而在非生物脅迫應(yīng)答中起到非常重要的作用[1,2]。

      蔗糖非酵解型蛋白激酶[SNF1 (Sucrose non-fermenting-1)-related protein kinase,SnRK]是一類廣泛存在于植物中的Ser/Thr類蛋白激酶,參與植物體內(nèi)包括ABA信號(hào)途徑在內(nèi)的多種信號(hào)途徑的轉(zhuǎn)導(dǎo),在植物的抗逆境反應(yīng)中起著非常重要的作用[3,4]。氣孔開(kāi)放因子1(Stomatal opening factor 1,OST1,即SnRK2E或SnRK2.6)屬于SnRK2激酶家族,通過(guò)對(duì)其保守區(qū)域和作用位點(diǎn)以及上游和下游調(diào)控因子等的分析,剖析了其在響應(yīng)脅迫反應(yīng)中ABA依賴及ABA不依賴途徑中的作用[5-7]。近幾年通過(guò)對(duì)其調(diào)控網(wǎng)絡(luò)的研究還發(fā)現(xiàn),OST1在植物碳源及能源供應(yīng)[8]以及ABA調(diào)控開(kāi)花周期過(guò)程[9]中發(fā)揮作用,以此來(lái)調(diào)節(jié)植物的生長(zhǎng)和發(fā)育。

      1 OST1在脅迫響應(yīng)中的調(diào)控機(jī)制

      1.1 ABA依賴的調(diào)控途徑

      ABA作為高等植物中普遍存在的一種植物激素能調(diào)控多種生理相關(guān)反應(yīng),比如開(kāi)花時(shí)間、果實(shí)成熟以及對(duì)逆境脅迫如干旱、鹽堿等的反應(yīng)[10-14]。其中,OST1作為ABA信號(hào)途徑的重要組分,參與ABA調(diào)控的逆境脅迫信號(hào)途徑。

      1.1.1 OST1活性受ABA信號(hào)途徑中的上游因子調(diào)控 研究發(fā)現(xiàn),OST1在正常情況下是由ABA信號(hào)途徑中的負(fù)調(diào)控因子PP2Cs(Ser/Thr protein phosphatases type 2C)抑制的[15-17]。PP2Cs家族A包括HAB1、ABI1、ABI2、PP2CA等蛋白質(zhì)。Yoshida等[7]對(duì)abi1-1和aba2-1突變體株系的研究發(fā)現(xiàn),只有abi1-1突變體抑制ABA依賴的OST1活性。通過(guò)酵母雙雜交等試驗(yàn),證明ABI1是通過(guò)與OST1 C-末端區(qū)域Ⅱ結(jié)合,使OST1激酶活性區(qū)域的Ser/Thr殘基脫磷酸化失活[18]。不過(guò)通過(guò)對(duì)PP2Cs家族成員HAB1及ABI2的研究,發(fā)現(xiàn)兩者都有調(diào)控OST1激酶活性方面的功能[15,19]。那么OST1活性是如何被ABA信號(hào)途徑調(diào)控的,Park等[20]通過(guò)酵母雙雜交等試驗(yàn)發(fā)現(xiàn)ABA與PYR/PYL家族結(jié)合會(huì)抑制PP2Cs。Nishimura等[21]的研究也表明PYR/PYL/RCAR與PP2Cs成員中的ABI1的互作最強(qiáng),并且發(fā)現(xiàn)pyr1/pyl1/pyl2/pyl4 四突變體對(duì)ABA調(diào)控的氣孔開(kāi)閉不敏感。之后進(jìn)一步的研究發(fā)現(xiàn)在ABA調(diào)控低濕度、高CO2等逆境脅迫過(guò)程中PYR/PYL/RCAR與ABA結(jié)合,兩者構(gòu)成的復(fù)合物與PP2Cs相互作用,抑制了其去磷酸化活性,從而使OST1磷酸化激活[18,22-26]。endprint

      1.1.2 OST1對(duì)下游質(zhì)膜蛋白的調(diào)控 OST1在響應(yīng)脅迫途徑中受ABA信號(hào)激活后,作用于下游的SLAC1和KAT1離子通道或NADPH氧化酶,通過(guò)調(diào)控保衛(wèi)細(xì)胞內(nèi)的離子含量來(lái)調(diào)節(jié)氣孔的關(guān)閉,以此對(duì)逆境脅迫做出反應(yīng)[27-29]。

      Geiger等[30]對(duì)干旱脅迫下的ABA信號(hào)途徑進(jìn)行研究,通過(guò)BiFC分析OST1相互作用因子SLAC1及ABI1,并在爪蟾卵母細(xì)胞中共表達(dá)SLAC1和OST1,證明OST1磷酸化并激活SLAC1。Xue等[26]研究高CO2脅迫下OST1誘導(dǎo)氣孔關(guān)閉的過(guò)程,并建立了CO2調(diào)控SLAC1導(dǎo)致氣孔關(guān)閉的模型:CO2在細(xì)胞內(nèi)轉(zhuǎn)化成HCO3-,激活A(yù)BA信號(hào)途徑,誘導(dǎo)PYR/PYL/RCAR激活OST1,OST1使下游SLAC1磷酸化激活,使氣孔關(guān)閉。Vahisalu等[27]研究表明在臭氧脅迫下,ABA誘導(dǎo)ROS活性氧的產(chǎn)生,ROS激活的OST1使SLAC1 N-末端磷酸化,激活S-型離子通道,促進(jìn)保衛(wèi)細(xì)胞陰離子外排,引起質(zhì)膜去極化,激活外排K+通道,使得保衛(wèi)細(xì)胞K+外排,離子的流失使得保衛(wèi)細(xì)胞膨壓下降,導(dǎo)致氣孔關(guān)閉。但ROS激活OST1的機(jī)制還需要進(jìn)一步研究??傊诔粞?、低濕度、高CO2等脅迫條件下OST1可以通過(guò)磷酸化而激活SLAC1,促進(jìn)保衛(wèi)細(xì)胞Cl-外排,引起氣孔關(guān)閉[25,31,32]。

      對(duì)于ABA信號(hào)通路中OST1對(duì)KAT1的調(diào)控,Sato等[28]通過(guò)LC-MS/MS分析證明KAT1的Thr306和Thr308為其磷酸化位點(diǎn)。通過(guò)對(duì)其單突變體的研究,并在爪蟾卵母細(xì)胞和酵母中檢測(cè)KAT1的活性,證明Thr306是KAT1保持活性必需的,并且是OST1使KAT1發(fā)生磷酸化引起氣孔關(guān)閉的位點(diǎn)。之后的進(jìn)一步研究證明OST1在應(yīng)對(duì)多種逆境脅迫時(shí)通過(guò)磷酸化抑制KAT1活性,從而抑制K+的轉(zhuǎn)運(yùn),以此調(diào)節(jié)氣孔關(guān)閉[18,25,33]。

      除了對(duì)離子通道的調(diào)控,OST1還可以直接使NADPH氧化酶之一的AtRbohF磷酸化[18,34]。Sirichandra等[29]通過(guò)質(zhì)譜分析,AtRbohF NADPH氧化酶的Ser174和Ser13由OST1磷酸化,并通過(guò)YFP及GFP等試驗(yàn)證明OST1與AtRbohF相互作用,進(jìn)而可以形成OST1誘導(dǎo)ROS產(chǎn)生的通路,即OST1通過(guò)對(duì)下游AtRbohF NADPH氧化酶的激活,產(chǎn)生ROS。而Vahisalu等[27]研究發(fā)現(xiàn)ROS可以通過(guò)某種途徑激活OST1,并促進(jìn)OST1對(duì)SLAC1的激活,引起氣孔關(guān)閉。

      1.1.3 OST1對(duì)轉(zhuǎn)錄因子的調(diào)控 OST1在逆境應(yīng)答過(guò)程中,除了對(duì)膜蛋白的調(diào)控外,還有其他調(diào)節(jié)途徑,如對(duì)轉(zhuǎn)錄因子b-ZIP及SNAC1等的調(diào)控。

      轉(zhuǎn)錄因子b-ZIP包括ABF2、ABF3等,Sirichandra等[35]研究OST1及ABF的相互作用,發(fā)現(xiàn)保衛(wèi)細(xì)胞的細(xì)胞核中的OST1可以直接使ABF3磷酸化。Fujii等[36]通過(guò)in-gel激酶活性分析,證明SnRK2蛋白激酶(包括OST1)具有ABA依賴的激活A(yù)REB/ABF的作用,從而在ABA響應(yīng)逆境脅迫及調(diào)控植物生長(zhǎng)發(fā)育的過(guò)程中具有一定影響[37-40]。

      SNAC1在植物中被廣泛研究,受干旱、鹽漬等逆境脅迫誘導(dǎo),并受多種脅迫相關(guān)基因的調(diào)控[41-43]。Vilela等[44]在擬南芥ost1突變體中異位表達(dá)玉米中的擬南芥OST1同源基因ZmOST1,植株恢復(fù)對(duì)干旱響應(yīng)的氣孔關(guān)閉的表型。Vilela等[44]進(jìn)一步的研究發(fā)現(xiàn)ZmOST1使ZmSNAC1轉(zhuǎn)錄因子磷酸化,并且對(duì)其定位和穩(wěn)定性具有一定的影響,同時(shí)ZmSNAC1結(jié)合在ZmOST1的ABA-box區(qū)域,與PP2Cs形成競(jìng)爭(zhēng),參與ABA信號(hào)途徑,證明玉米中ABA信號(hào)途徑下游ZmOST1激活ZmSNAC1轉(zhuǎn)錄因子,啟動(dòng)滲透脅迫相關(guān)基因表達(dá),進(jìn)而對(duì)逆境脅迫進(jìn)行調(diào)控。

      1.2 ABA不依賴的調(diào)控途徑

      經(jīng)過(guò)多年的研究發(fā)現(xiàn),OST1同時(shí)還存在不依賴ABA的調(diào)控機(jī)制,比如滲透脅迫。Yoshida等[7]對(duì)abi1-1、abi2-1和aba2-1擬南芥突變體株系進(jìn)行滲透脅迫處理,發(fā)現(xiàn)OST1-GFP依然表達(dá),證明了在滲透脅迫條件下OST1的激活可以不需要ABA的參與。另外,OST1的兩個(gè)區(qū)域是被激活的位點(diǎn):區(qū)域Ⅱ和區(qū)域Ⅰ。區(qū)域Ⅰ是滲透脅迫條件下不依賴ABA的調(diào)控機(jī)制必需的,該區(qū)域促進(jìn)OST1磷酸化,進(jìn)而調(diào)控氣孔關(guān)閉。

      2 OST1在植物生長(zhǎng)發(fā)育中的作用

      ABA不僅在植物脅迫應(yīng)答中發(fā)揮作用,還具有調(diào)控植物生長(zhǎng)發(fā)育(比如種子成熟、根莖生長(zhǎng)等)的重要作用[10]。近幾年的研究發(fā)現(xiàn),OST1作為ABA信號(hào)通路中的重要成員參與植物生長(zhǎng)發(fā)育的調(diào)控。比如OST1通過(guò)對(duì)轉(zhuǎn)錄因子b-ZIP的調(diào)控而啟動(dòng)種子成熟和休眠中相關(guān)基因的表達(dá)來(lái)影響植物生長(zhǎng)發(fā)育[37-40]。Wang等[9]在擬南芥snrk2.2/2.3/2.6突變體中表達(dá)SnRK2.6而恢復(fù)FLC的表達(dá),而ABFs同樣促進(jìn)FLC的表達(dá)。Wang等[9]認(rèn)為OST1通過(guò)對(duì)b-ZIP的調(diào)控來(lái)促進(jìn)下游FLC的表達(dá),以此參與ABA對(duì)開(kāi)花周期的調(diào)控過(guò)程。

      Zheng等[8]對(duì)擬南芥OST1的研究發(fā)現(xiàn)OST1具有調(diào)控植物生長(zhǎng)和種子生成等過(guò)程中碳源供應(yīng)的功能。對(duì)擬南芥snrk2.6突變體研究發(fā)現(xiàn)OST1基因的失活導(dǎo)致擬南芥種子中油料的合成下降7%~25%,種子干重的下降幅度大于24%[8]。而對(duì)過(guò)表達(dá)OST1擬南芥植株的研究發(fā)現(xiàn),生長(zhǎng)22 d的過(guò)表達(dá)植株比野生型植株葉中可溶性糖的含量增加34.7%。OST1可能的作用機(jī)理:OST1在葉的維管組織中表達(dá),通過(guò)調(diào)控蔗糖-6-磷酸合酶的活性來(lái)調(diào)控蔗糖代謝,進(jìn)而調(diào)控光合作用和碳的固定[8]。固定的碳源可以用于種子中不飽和脂肪酸等的合成,進(jìn)而提高種子干重。Zheng等[8]的研究還發(fā)現(xiàn),在種子形成和幼苗生長(zhǎng)中OST1增強(qiáng)ABA的敏感性,由此得出OST1在植物生長(zhǎng)發(fā)育中的重要作用。endprint

      3 展望

      目前對(duì)于OST1結(jié)構(gòu)的研究已經(jīng)相對(duì)全面,對(duì)其功能上的研究也頗有進(jìn)展。從最初的只對(duì)干旱脅迫應(yīng)答的研究,到目前的對(duì)低光照、O3和高濃度CO2等逆境應(yīng)答的研究中,均反映出OST1在脅迫應(yīng)答中的重要作用。PYR/PYL/RCAR及PP2Cs對(duì)于OST1的調(diào)控以及OST1對(duì)下游離子通道及轉(zhuǎn)錄因子等的調(diào)控揭示了其在逆境應(yīng)答及調(diào)控植物生長(zhǎng)發(fā)育中的分子調(diào)節(jié)機(jī)制。但OST1的調(diào)控網(wǎng)絡(luò)非常復(fù)雜,其調(diào)控機(jī)制以及其是否與脅迫應(yīng)答中的其他蛋白激酶相互影響還有待進(jìn)一步研究。

      參考文獻(xiàn):

      [1] GMEZ-CADENAS A, VERHEY S D, HOLAPPA L D, et al. An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers[J]. Proc Natl Acad Sci USA, 1999,96(4):1767-1772.

      [2] GOSTI F,BEAUDOIN N,SERIZET C,et al.ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling[J]. Plant Cell, 1999,11(10):1897-1910.

      [3] BOUDSOCQ M,BARBIER-BRYGOO H,LAURIERE C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J].J Biol Chem, 2004,279(40):41758-41766.

      [4] KOBAYASHI Y, YAMAMOTO S, MINAMI H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell, 2004,16(5):1163-1177.

      [5] BELIN C, DE FRANCO P O, BOURBOUSSE C, et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells[J]. Plant Physiol, 2006,141(4):1316-1327.

      [6] MUSTILLI A C, MERLOT S, VAVASSEUR A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. Plant Cell, 2002,14(12):3089-3099.

      [7] YOSHIDA R, UMEZAWA T, MIZOGUCHI T, et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis[J]. J Biol Chem, 2006,281(8):5310-5318.

      [8] ZHENG Z, XU X, CROSLEY R A, et al. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis[J]. Plant Physiol, 2010,153(1):99-113.

      [9] WANG Y, LI L, YE T, et al. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis[J]. J Exp Bot,2013,64(2):675-684.

      [10] FINKELSTEIN R R, GAMPALA S S L, ROCK C D. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell, 2002,14(Suppl 1):S15-S45.

      [11] HETHERINGTON A M. Guard cell signaling[J]. Cell, 2001,107(6):711-714.

      [12] HIMMELBACH A,YANG Y,GRILL E. Relay and control of abscisic acid signaling[J].Curr Opin Plant Biol,2003,6(5):470-479.endprint

      [13] NEMHAUSER J L, HONG F, CHORY J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J]. Cell, 2006,126(3):467-475.

      [14] ZHU J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Bio, 2003,6(5):441-445.

      [15] SUN H L, WANG X J, DING W H, et al. Identification of an important site for function of the type 2C protein phosphatase ABI2 in abscisic acid signalling in Arabidopsis[J]. J Exp Bot, 2011,62(15):5713-5725.

      [16] RUBIO S, RODRIGUES A, SAEZ A, et al. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid[J]. Plant Physiol, 2009,150(3):1345-1355.

      [17] MA Y, SZOSTKIEWICZ I, KORTE A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009,324(5930):1064-1068.

      [18] JOSHI-SAHA A, VALON C, LEUNG J. Abscisic acid signal off the STARting block[J]. Mol Plant, 2011,4(4):562-580.

      [19] VLAD F, RUBIO S, RODRIGUES A, et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis[J]. Plant Cell, 2009,21(10):3170-3184.

      [20] PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009,324(5930):1068-1071.

      [21] NISHIMURA N, SARKESHIK A, NITO K, et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis[J]. Plant J, 2010,61(2):290-299.

      [22] FUJII H, CHINNUSAMY V, RODRIGUES A, et al. In vitro reconstitution of an abscisic acid signalling pathway[J]. Nature, 2009,462(7273):660-664.

      [23] ACHE P, BAUER H, KOLLIST H, et al. Stomatal action directly feeds back on leaf turgor: New insights into the regulation of the plant water status from non-invasive pressure probe measurements[J]. Plant J, 2010,62(6):1072-1082.

      [24] CUTLER S R, RODRIGUEZ P L,F(xiàn)INKELSTEIN R R,et al. Abscisic acid: Emergence of a core signaling network[J]. Annu Rev Plant Biol, 2010,61:651-679.

      [25] MERILO E,LAANEMETS K,HU H,et al.PYR/RCAR receptors contribute to ozone-,reduced air humidity-,darkness-, and CO2-induced stomatal regulation[J]. Plant Physiol, 2013, 162(2):1652-1668.

      [26] XUE S, HU H, RIES A, et al. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell[J]. EMBO J, 2011,30(8):1645-1658.endprint

      [27] VAHISALU T, PUZORJOVA I, BROSCHE M, et al. Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1[J]. Plant J, 2010,62(3):442-453.

      [28] SATO A, SATO Y, FUKAO Y, et al. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase[J]. Biochem J, 2009,424(3):439-448.

      [29] SIRICHANDRA C, GU D, HU H C, et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase[J]. FEBS Lett, 2009,583(18):2982-2986.

      [30] GEIGER D, SCHERZER S, MUMM P, et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair[J]. Proc Natl Acad Sci USA, 2009,106(50):21425-21430.

      [31] WANG Y, PAPANATSIOU M, EISENACH C, et al. Systems dynamic modeling of a guard cell Cl- channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration[J]. Plant Physiol, 2012,160(4):1956-1967.

      [32] LAANEMETS K, BRANDT B, LI J, et al. Calcium-dependent and -independent stomatal signaling network and compensatory feedback control of stomatal opening via Ca2+ sensitivity priming[J]. Plant Physiol, 2013,163(2):504-513.

      [33] KOLLIST H, JOSSIER M ,LAANEMETS K. Anion channels in plant cells[J]. FEBS Journal, 2011,278(22):4277-4292.

      [34] KWAK J M, MORI I C, PEI Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. EMBO J, 2003,22(11):2623-2633.

      [35] SIRICHANDRA C, DAVANTURE M, TURK B E, et al. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover[J]. PLoS One, 2010, 5(11):e13935.

      [36] FUJII H, VERSLUES P E , ZHU J K. Identifi cation of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. Plant Cell, 2007,19(2):485-494.

      [37] NAKASHIMA K, FUJITA Y, KANAMORI N, et al. Three Arabidopsis SnRK2 protein kinases,SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3,involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant Cell Physiol, 2009,50(7):1345-1363.

      [38] YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. Plant J, 2010,61(4):672-685.endprint

      [39] FUJITA Y,NAKASHIMA K,YOSHIDA T,et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J]. Plant Cell Physiol, 2009,50(12):2123-2132.

      [40] FUJITA Y, YOSHIDA T, YAMAGUCHI-SHINOZAKI K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants[J]. Physiol Plant, 2013,147(1):15-27.

      [41] NAKASHIMA K, TRAN L S, VAN NGUYEN D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant J, 2007,51(4):617-630.

      [42] OOKA H, SATOH K, DOI K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003,10(6):239-247.

      [43] HU H, DAI M, YAO J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci USA, 2006,103(35):12987-12992.

      [44] VILELA B, MORENO-CORTES A, RABISSI A, et al. The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor[J]. PLoS One, 2013, 8(2):e58105.endprint

      猜你喜歡
      信號(hào)轉(zhuǎn)導(dǎo)植物
      Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
      植物的防身術(shù)
      把植物做成藥
      益氣活血方對(duì)破裂型腰椎間盤(pán)突出大鼠p38MAPK 信號(hào)轉(zhuǎn)導(dǎo)通路的影響
      將植物穿身上
      脊髓背角MCP-1-JAK2/STAT3信號(hào)轉(zhuǎn)導(dǎo)參與大鼠2型糖尿病神經(jīng)病理性痛的機(jī)制研究
      植物罷工啦?
      植物也瘋狂
      益心解毒方對(duì)大鼠心肌細(xì)胞內(nèi)活性氧水平及信號(hào)轉(zhuǎn)導(dǎo)通路的影響
      從肺腸ERK信號(hào)轉(zhuǎn)導(dǎo)通路的變化探討“肺與大腸相表里”
      乐清市| 贵阳市| 三门峡市| 建宁县| 桃园市| 曲阜市| 临沂市| 贡觉县| 新巴尔虎右旗| 定西市| 张家港市| 肇源县| 噶尔县| 甘南县| 荔浦县| 安平县| 石狮市| 喜德县| 麻阳| 全椒县| 若尔盖县| 望谟县| 中宁县| 九龙城区| 正蓝旗| 福州市| 临湘市| 长宁县| 永昌县| 镇巴县| 乐都县| 酒泉市| 山西省| 涿鹿县| 古田县| 桐城市| 霍邱县| 明溪县| 台东县| 铜川市| 团风县|