薛茗月覃英鳳李健葉高杰湛志華
(1. 廣西師范大學(xué)化學(xué)與藥學(xué)學(xué)院 藥用資源化學(xué)與藥物分子工程教育部重點(diǎn)實(shí)驗(yàn)室,桂林 541004;2. 桂林師范高等??茖W(xué)校,桂林 541001)
基于信號(hào)放大技術(shù)的適體生物傳感器研究進(jìn)展
薛茗月1,2覃英鳳1李健1葉高杰1湛志華2
(1. 廣西師范大學(xué)化學(xué)與藥學(xué)學(xué)院 藥用資源化學(xué)與藥物分子工程教育部重點(diǎn)實(shí)驗(yàn)室,桂林 541004;2. 桂林師范高等專科學(xué)校,桂林 541001)
信號(hào)放大技術(shù)因其能實(shí)現(xiàn)低濃度分子檢測(cè),靈敏度高而在多個(gè)研究領(lǐng)域發(fā)展非常迅速。而適體作為識(shí)別分子已成功應(yīng)用于多種生物傳感器平臺(tái),在醫(yī)療診斷、環(huán)境檢測(cè)、生化分析中顯示出良好的應(yīng)用前景。近年來(lái),以適體為識(shí)別元件的生物傳感器越來(lái)越受到人們的關(guān)注。綜述了近3年來(lái)基于信號(hào)放大技術(shù)的適體生物傳感器研究新發(fā)展。
信號(hào)放大技術(shù);適體;生物傳感器
DIO: 10.13560/j.cnki.biotech.bull.1985.2015.01.010
隨著生物學(xué)研究領(lǐng)域的不斷拓展,常會(huì)遇到一些不能直接擴(kuò)增的待測(cè)分子,但又由于其濃度較低而無(wú)法檢測(cè),因而信號(hào)放大技術(shù)對(duì)不能進(jìn)行直接擴(kuò)增的低濃度待測(cè)分子的檢測(cè)顯得尤為重要。核酸分子體外擴(kuò)增是生物技術(shù)研究的重要手段。隨著科學(xué)的發(fā)展和研究目的的不同,出現(xiàn)了越來(lái)越多的核酸分子體外擴(kuò)增技術(shù),如納米材料放大技術(shù),剪切酶放大技術(shù)、滾環(huán)擴(kuò)增放大技術(shù)等[1-4]。這類信號(hào)技術(shù)在各類研究中起著重要的作用,廣泛應(yīng)用于生物技術(shù)分析和研究領(lǐng)域。
生物傳感器是以將具有生物活性功能單元作為生物敏感元件,識(shí)別目標(biāo)分子,通過(guò)換能器,將生物化學(xué)反應(yīng)能轉(zhuǎn)換成電信號(hào)的一種分析測(cè)試裝置。生物傳感器一般有兩個(gè)主要組成部分:其一是生物分子識(shí)別元件(感受器),具有分子識(shí)別能力,如酶、抗體、組織切片、細(xì)胞、細(xì)胞膜、細(xì)胞器、核酸及有機(jī)物分子等;其二是信號(hào)轉(zhuǎn)換器(換能器),主要有電化學(xué)、光學(xué)檢測(cè)元件、熱敏電阻、場(chǎng)效應(yīng)晶體管、壓電石英晶體及表面等離子共振器件等,它們可以將生物識(shí)別事件轉(zhuǎn)換為可檢測(cè)的信號(hào)。基于核酸適體作為生物識(shí)別元素的生物傳感器被稱為適體生物傳感器,是一種能夠連續(xù)和可逆地進(jìn)行分子識(shí)別的裝置,也可以視作信息采集和處理鏈中的一個(gè)邏輯元件。根據(jù)檢測(cè)信號(hào)不同,適體生物傳感器分為電化學(xué)適體生物傳感器、光學(xué)適體生物傳感器等。適體傳感器已經(jīng)在蛋白質(zhì)組學(xué)、病毒檢測(cè)、疾病診斷、環(huán)境檢測(cè)方面得到了應(yīng)用,與適體及其相對(duì)應(yīng)的抗體傳感器相比,適體傳感器在靈敏性、穩(wěn)定性、重復(fù)性均優(yōu)于抗體傳感器。本文從近3年的研究中闡述信號(hào)放大技術(shù)在適體生物傳感器的應(yīng)用。
核酸適體是新近發(fā)展起來(lái)的一類由指數(shù)富集配基系統(tǒng)進(jìn)化技術(shù)(SELEX)篩選產(chǎn)生的單鏈DNA或RNA片段,能特異性地結(jié)合小分子、蛋白質(zhì)、多肽、有機(jī)物、金屬離子等各種配體[5],已廣泛應(yīng)用于多種生物傳感器平臺(tái),在醫(yī)療診斷、環(huán)境檢測(cè)、生化分析中顯示出良好的應(yīng)用前景。與抗體作為識(shí)別元件相比,核酸適體以下優(yōu)點(diǎn):(1)靶物質(zhì)廣泛。由于核酸適體不僅具有類似抗體對(duì)目標(biāo)分子高親和力和高特異性、結(jié)構(gòu)簡(jiǎn)單、分子量小和易合成等優(yōu)點(diǎn),而且具有反應(yīng)速度快、可反復(fù)使用和長(zhǎng)期保存等優(yōu)點(diǎn),所以在十幾年來(lái)得以迅速的發(fā)展,篩選出的核酸適體所識(shí)別的靶物質(zhì),從無(wú)機(jī)離子、氨基酸,到多肽、蛋白質(zhì),甚至整個(gè)細(xì)胞,涉及范圍非常廣泛。(2)高親和性和高特異性。(3)穩(wěn)定性好,可重復(fù)性。核酸適體不僅具有良好的穩(wěn)定性,而且可在不同溫度、鹽濃度、變性劑等條件下反復(fù)變性和復(fù)性,進(jìn)行重復(fù)利用。(4)體外篩選、化學(xué)合成。核酸適體的制備不依賴于動(dòng)物或細(xì)胞,而是通過(guò) SELEX 技術(shù)體外篩選出來(lái)的,篩選出的適體可以通過(guò)化學(xué)合成生產(chǎn),純度高、組成確定,幾乎消除了適體制備的批間誤差,較單抗制備更快速、更廉價(jià)。因此,基于核酸適體的生物傳感器發(fā)展非常迅速[6,7]。
2.1 電化學(xué)適體生物傳感器
電化學(xué)方法因其具有靈敏度高,測(cè)量?jī)x器簡(jiǎn)單,測(cè)量費(fèi)用低,響應(yīng)快速等特點(diǎn)[8,9],而被廣泛地應(yīng)用于核酸適體傳感器的開(kāi)發(fā)。基于信號(hào)放大技術(shù)的適體電化學(xué)生物傳感器主要用于金屬離子[10]、小分子[11]、癌細(xì)胞[12,13]、凝血酶[14-16]等物質(zhì)的檢測(cè)。Pavlov和Willner 等[17]基于核酸適體功能化金納米粒子的放大,制備了高靈敏檢測(cè)凝血酶的核酸適體傳感器。Rius研究組[18]通過(guò)用凝血酶適體修飾單壁碳納米管的表面,利用固體接觸電位適體傳感也實(shí)現(xiàn)了凝血酶的檢測(cè),該方法所測(cè)得的檢測(cè)限為80 nmol/L,檢測(cè)范圍為10-7-10-6mol/L之間。Jiang和Yuan等[19]設(shè)計(jì)了一個(gè)超靈敏的電化學(xué)適體傳感器體系來(lái)檢測(cè)凝血酶,他們利用高鐵血紅素/G-四鏈體、HRP-DNAzyme和用辣根過(guò)氧化物酶修飾FeTe納米棒的三重信號(hào)放大技術(shù)和夾心法來(lái)進(jìn)行凝血酶的超靈敏檢測(cè)。實(shí)驗(yàn)所測(cè)得的檢測(cè)限為0.5 pmol/L,檢測(cè)范圍為1 pmol/L-20 nmol/L之間。Dong和Chen等[20]將15個(gè)堿基的凝血酶適配體固定在玻璃表面,利用夾心式結(jié)構(gòu),將標(biāo)記有硫化鎘/碳球復(fù)合物的具有29個(gè)堿基的凝血酶適配體連接到玻璃片上,采用方波溶出伏安法檢測(cè)鎘離子的量對(duì)凝血酶進(jìn)行高靈敏檢測(cè),測(cè)得的檢測(cè)限為6.0×10-17mol/L,該信號(hào)放大方法克服了signal-on和signal-off法可能出現(xiàn)假陽(yáng)性結(jié)果的不足,提高了檢測(cè)的準(zhǔn)確度。
2.2 光學(xué)適體生物傳感器
根據(jù)不同的光學(xué)方法和檢測(cè)材料,光學(xué)生物適體傳感器可分成許多種類。光學(xué)適體生物傳感器主要有光度適體生物傳感器、化學(xué)發(fā)光適體生物傳感器、熒光適體生物傳感器、熒光偏振適體生物傳感器等類型。
2.2.1 光度適體生物傳感器 光度適體生物傳感器是基于適體與靶分子結(jié)合作用前后吸光度的變化或最大吸收波長(zhǎng)(顏色)的改變進(jìn)行檢測(cè)的適體生物傳感器?;谛盘?hào)放大技術(shù)的光度適體生物傳感器主要是利用金納米粒子(AuNPs)實(shí)現(xiàn)信號(hào)放大。AuNPs能夠應(yīng)用于光度適體生物傳感器的主要依賴于其獨(dú)特的表面等離子體共振[21]。近年來(lái),基于其他放大技術(shù)或其與AuNPs與結(jié)合的光度適體生物傳感器研究[22-25]已經(jīng)有報(bào)道。光度適體生物傳感器可用于金屬離子[26-28]、小分子[29-31]、核酸[32]、蛋白質(zhì)[33]、DNA[34]等物質(zhì)的檢測(cè)。
Yang等[35]利用比色傳感器對(duì)赭曲霉毒素A(OTA)進(jìn)行了測(cè)定。采用未修飾的AuNPs基于構(gòu)象變化產(chǎn)生AuNPs的聚集,通過(guò)肉眼觀察到AuNPs的顏色變化從紅到藍(lán),從而實(shí)現(xiàn)了對(duì)OTA的測(cè)定,實(shí)驗(yàn)所得的檢測(cè)限為20 nmol/L,檢測(cè)范圍為20-625 nmol/L 之間。 Zhou研究組[36]基于AuNPs的光度適體傳感器實(shí)現(xiàn)了對(duì)As(III)的檢測(cè)。利用適體與As(III)之間的特異性相互作用形成,陽(yáng)離子聚合物即As(III)的適體復(fù)合物使得AuNPs聚集,出現(xiàn)顯著的顏色變化,該方法具有高的選擇性,測(cè)得的檢測(cè)限為5.3 ppb。Erickson研究組[37]基于AuNPs與AgNPs的多種比色法實(shí)現(xiàn)了對(duì)卡波濟(jì)氏肉瘤的檢測(cè)。
2.2.2 化學(xué)發(fā)光適體生物傳感器 化學(xué)發(fā)光分析法具有靈敏度高、線性范圍寬、響應(yīng)快、操作方便等優(yōu)點(diǎn),并與多學(xué)科相交叉,研究和應(yīng)用領(lǐng)域越來(lái)越廣泛?;诤怂徇m體作為生物識(shí)別元素的化學(xué)發(fā)光生物傳感器被稱為化學(xué)發(fā)光適體生物傳感器。近年來(lái),基于信號(hào)放大技術(shù)的化學(xué)發(fā)光(CL)及化學(xué)發(fā)光共振能量轉(zhuǎn)移(CRET)已廣泛用于研究的報(bào)道[38-41]屢見(jiàn)不鮮?;瘜W(xué)發(fā)光適體生物傳感器可用于DNA[42-44]、蛋白質(zhì)[45]、金屬離子[46]等其他物質(zhì)如氨[47]、尿酸[48]的檢測(cè)。
Zhang研究組[49]基于交聯(lián)催化劑鏈置換反應(yīng)(CC-SDR)指數(shù)擴(kuò)增技術(shù)實(shí)現(xiàn)了對(duì)實(shí)際樣品中microRNA(miRNA)的超靈敏檢測(cè)。指數(shù)擴(kuò)增過(guò)程中不需要聚合酶和切刻內(nèi)切酶,所得到miRNA的檢測(cè)限低至0.68 fmol/L。該方法具有良好的特異性并成功地應(yīng)用于實(shí)際樣品的分析,這是第一次將化學(xué)發(fā)光分析法用于miRNA檢測(cè),這給miRNA分析提供了一個(gè)新的超靈敏及信號(hào)放大的檢測(cè)平臺(tái)。Ronit和Willner等[50]報(bào)道了一系列基于CL適體傳感器的平臺(tái)用于血管內(nèi)皮生長(zhǎng)因子(VEGF)的分析。基于高鐵血紅素/G-四鏈體催化誘導(dǎo)VEGF的CL適體傳感器檢測(cè)VEGF,檢測(cè)限為18 nmol/L;基于高鐵血紅素/ G-四鏈體催化兩個(gè)適體亞基誘導(dǎo)VEGF的CL適體傳感器檢測(cè)VEGF,檢測(cè)限為2.6 nmol/L;基于半導(dǎo)體納米材料QDs-高鐵血紅素/G-四鏈體超分子結(jié)構(gòu)誘導(dǎo)VEGF的CRET適體傳感器檢測(cè)VEGF,檢測(cè)限為875 pmol/L。此外,基于Exo III循環(huán)放大信號(hào)技術(shù)他們還進(jìn)行了VEGF分析的研究,所得檢測(cè)限為5 pmol/L,此方法可用于人血清樣品中VEGF的分析。
2.2.3 熒光適體生物傳感器 熒光適體傳感器是基于適體與目標(biāo)分子作用前后熒光信號(hào)的變化來(lái)檢測(cè)目標(biāo)分子。基于熒光適體生物傳感器的研究已廣泛應(yīng)用于蛋白質(zhì)[51-54]、DNA[55,56]、金屬離子[57,58]、MicroRNA[59]、高鐵血紅素[60]等物質(zhì)的分析檢測(cè)。He和Yu等[61]研究了基于SDA信號(hào)放大的熒光適體傳感器檢測(cè)可卡因的新方法。他們?cè)O(shè)計(jì)了有兩個(gè)可卡因適體識(shí)別序列的新的發(fā)夾探針和單鏈探針,可檢測(cè)低至2 nmol/L的可卡因,此方法與先前報(bào)道的可卡因適體傳感器相比,具有靈敏度高、選擇性好和成本低的優(yōu)點(diǎn)。Ma和Shi等[62]報(bào)道了基于RCA信號(hào)放大的熒光適體傳感器也對(duì)可卡因進(jìn)行了檢測(cè)。他們基于RCA信號(hào)放大與磁珠分離減小背景信號(hào),最后得到可卡因的檢測(cè)限為0.48 nmol/L 。此方法為許多蛋白質(zhì)和小分子的高靈敏度檢測(cè)提供一個(gè)新的平臺(tái)。此外,Zhang和Sun研究組[63]、Zhu和Xu研究組[64]分別報(bào)道了基于熒光適體傳感器檢測(cè)凝血酶的新方法,得到的凝血酶的檢測(cè)限均為100 pmol/L。
因發(fā)展簡(jiǎn)單、快速、低成本、靈敏度高、選擇性好的基于信號(hào)放大技術(shù)的適體生物傳感器在醫(yī)療診斷、環(huán)境監(jiān)測(cè)等領(lǐng)域有著十分重要的意義。在近年來(lái)的發(fā)展中,基于信號(hào)放大技術(shù)的研究也已經(jīng)取得了一定的成就,利用信號(hào)放大技術(shù)方法檢測(cè)具有更高的靈敏度。根據(jù)目前研究現(xiàn)狀可以預(yù)見(jiàn),今后利用信號(hào)放大技術(shù)構(gòu)建新的傳感檢測(cè)平臺(tái)及探索新的檢測(cè)機(jī)理的研究將會(huì)更多,通過(guò)多種信號(hào)放大技術(shù)相結(jié)合、以及開(kāi)發(fā)新的信號(hào)放大技術(shù),以實(shí)現(xiàn)更高靈敏度和多種目標(biāo)的同時(shí)檢測(cè)將成為趨勢(shì)。因此,隨著新材料新技術(shù)的發(fā)展,必將為信號(hào)放大技術(shù)的發(fā)展開(kāi)辟更加廣闊的應(yīng)用前景。
[1]Yin BC, Liu YQ, Ye BC. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification[J]. J Am Chem Soc, 2012, 134(11):5064- 5067.
[2]Liu YQ, Zhang M, Yin BC, Ye BC. Attomolar ultrasensitive microRNA detection by DNA-scaff olded silver-nanocluster probe based on isothermal ampli fication[J]. Anal Chem, 2012, 84:5165-5169.
[3]Zhao YX, Qi L, Chen F, et. al. Ultrasensitive and selective detection of nicotinamide adenine dinucleotide by target-triggered ligationrolling circle amplification[J]. Chem Commun, 2012, 48:3354-3356.
[4]Wen YQ, Xu Y, Mao X, et al. DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva[J]. Anal Chem, 2012, 84:7664-7669.
[5]Taton TA, Mueie RC, Mirkin CA, et al. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures[J]J Am Chem Soc, 2000, 122:6305-6306.
[6]Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers[J]. Biosensors and Bioelectronics, 2005, 20:2424-2434.
[7]De-los-Santos-Alvarez N, Lobo-Castan MJ, Miranda-Oridieres AJ,et al. Aptamers as recognition elements for label-free analytical devices[J]. Trends in Analytical Chemistry, 2008, 27:437-446.
[8]Shen L, Chen Z, Li Y, et al. A chronocoulometric aptamer sensor for adenosine monophosp-hate[J]. Chemical Communications, 2007,21:2169-2171.
[9]Zhang SS, Xia JP, Li XM. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles[J]. Analytical Chemistry, 2008, 80(22):8382-8388.
[10]Tang SR, Tong P, Li H, et al. Ultrasensitive electrochemical detection of Pb2+based on rolling circle amplication and quantum dots tagging[J]. Biosensors and Bioelectronics, 2013, 42:608-611.
[11] Yang XH, Zhu JQ, Wang Q, et al. A label-free and sensitive supersandwich electrochemical biosensor for small molecule detection based on target-induced aptamer displacement[J]. Anal Methods,2012, 4:2221.
[12] Zhu Y, Chandra P, Shim YB. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine Au nanoparticle aptamer bioconjugate[J]. Anal Chem, 2013, 85:1058-1064.
[13] Chen JH, Zhang J, Guo Y, et al. An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme[J]. Chem Commun, 2011, 47:8004-8006.
[14] Bai LJ, Yuan R, Chai YQ, et al. Direct electrochemistry and electrocatalysis of aglucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin[J]. Chem Commun, 2012, 48:10972-10974.
[15]Liu XR, Li Y, Zheng JB, et al. Carbon nanotube-enhanced electrochemical aptasensor for the detection of thrombin[J]. Talanta, 2010, 81:1619-1624.
[16]Jiang LP, Yuan R, Chai YQ, et al. Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene[J]. Analyst, 2012, 137:2415.
[17]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin[J]. Journal of the American Chemical Society, 2004, 126(38):11768-11769.
[18]Duzgun A, Maroto A, Mairal T, et al. Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins[J]. Analyst, 2010, 135:1037-1041.
[19]Jiang LP, Yuan R, Chai YQ, et al. An ultrasensitive electrochemical aptasensor for thrombin based on the triplex-amplification of hemin/ G-quadruplex horseradish peroxidase-mimicking DNAzyme and horseradish peroxidase decorated FeTe nanorods[J]. Analyst,2013, 138:1497-1503.
[20]Dong XY, Mi XN, Zhao WW, et al. CdS nanoparticles functionalized colloidal carbon particles:preparation, characterization and application for electrochemical detection of thrombin[J]. Biosens Bioelectron, 2011, 26:3654-3659.
[21]Zhao WA, Chiuman W, Brook MA, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation[J]. Chem Bio Chem, 2007, 8:727-731.
[22]Xie XJ, Xu W, Liu XG. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification[J]. Accounts of Chenmical Research, 2011, 45(9):1511-1520.
[23]Cui L, Ke GL, Zhang WY, et al. A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification[J]. Biosens Bioelectron, 2011, 26:2796-2800.
[24]Tang LH, Liu Y, Ali MM, et al. Colorimetric and ultrasensitive bioassay based on a dual-amplication system using aptamer and DNAzyme[J]. Anal Chem, 2012, 84:4711- 4717.
[25]Waldeisen JR, Wang T, Ross BM, et al. Disassembly of a core satellite nanoassembled substrate for colorimetric biomolecular detection[J]. ACS Nano, 2011, 5(7):5383-5389.
[26]Wang Y, Yang F, Yang XR. Colorimetric biosensing of mercury(II)ion using unmodified gold nanoparticle probes and thrombinbinding aptamer[J]. Biosensors Bioelectronics, 2010, 25:1994-1998.
[27]Mazumdar D, Liu JW, Lu G, et al. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates[J]. Chem Commun, 2010, 46:1416-1418.
[28]Lin CY, Yu CJ, Lin YH, et al. Colorimetric sensing of silver(I)and mercury(II)ions based on an assembly of tween 20-stabilized gold nanoparticles[J]. Anal Chem, 2010, 82:6830-6837.
[29]Lin YH, Chen CE, Wang CY, et al. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Agcatechol interaction[J]. Chem Commun, 2011, 47:1181-1183.
[30]Liu DB, Wang Z, Jiang XY. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules[J]. Nanoscale, 2011, 3:1421-1433.
[31]Katiyar N, Selvakumar LS, Patra S, et al. Gold nanoparticles based colorimetric aptasensor for theophylline[J]. Anal Methods, 2013,5:653-659.
[32]Fu RZ, Li TH, Lee SS, et al. DNAzyme molecular beacon probes for target-induced signal-amplifying colorimetric detection of nucleic acids[J]. Anal Chem, 2011, 83:494-500.
[33]Li J, Fu HE, Wu LJ, et al. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe[J]. Anal Chem, 2012, 84:5309-5315.
[34]Jian JW, Huang CC. Colorimetric detection of DNA by modulation of thrombin activity on gold nanoparticles[J]. Chem Eur J, 2011,17:2374-2380.
[35]Yang C, Wang Y, Marty JL, Yang XR. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator[J]. Biosens Bioelectron, 2011, 26:2724-2727.
[36]Wu YG, Zhan SS, Wang FZ, et al. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III)in aqueous solution[J]. Chem Commun, 2012, 48:4459-4461.
[37] Mancuso M, Jiang L, Cesarman E, Erickson D. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles[J]. Nanoscale, 2013, 5:1678-1686.
[38] Liu XQ, Freeman R, Golub E, Willner I. Chemiluminescence and chemiluminescence resonance energy transfer(CRET)aptamer sensors using catalytic hemin/G-quadruplexes[J]. ACS Nano,2011, 5(9):7648-7655.
[39] Lee JS, Joung HA, Kim MG, Park CB. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay[J]. ACS Nano, 2012, 6(4):2978-2983.
[40] Chen H, Li RB, Li HF, et al. Plasmon-assisted enhancement of the ultraweak chemiluminescence using Cu/Ni metal nanoparticles[J]. J Phys Chem C, 2012, 116:14796-14803.
[41] Huang Y, Zhao SL, Liu YM, et al. An amplified single-walled carbon nanotube-mediated chemiluminescence turn-on sensing platform for ultrasensitive DNA detection[J]. Chem Commun,2012, 48:9400-9402.
[42] Freeman R, Liu XQ, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer(CRET)detection of DNA,metal ions, and aptamer substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots[J]. J Am Chem Soc,2011, 133:11597-11604.
[43] Huang Y, Zhao SL, Chen ZF, et al. An amplified chemiluminescence aptasensor based on bi-resonance energy transfer on gold nanoparticles and exonuclease III-catalyzed target recycling[J]. Chem Commun, 2012, 48:11877-11879.
[44] Luo M, Chen X, Zhou GH, et al. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidasemimicking DNAzyme[J]. Chem Commun, 2012, 48:1126-1128.
[45] Qin GX, Zhao SL, Huang Y, et al. Magnetic bead-sensing-platformbased chemiluminescence resonance energy transfer and its immunoassay application[J]. Anal Chem, 2012, 84:2708 -2712.
[46] Li T, Wang EK, Dong SJ. Lead(II)-induced allosteric G-quadruplex DNA zyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+detection[J]. Anal Chem,2010, 82:1515-1520.
[47] Chen H, Li HF, Lin JM. Determination of ammonia in water basedon chemiluminescence resonance energy transfer between peroxymonocarbonate and branched NaYF4:Yb3+/Er3+nanoparticles[J]. Anal Chem, 2012, 84:8871-8879.
[48] Yu JH, Ge L, Huang JD, et al. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid[J]. Lab Chip, 2011, 11:1286-1291.
[49] Bi S, Zhang JL, Hao SY, et al. Exponential amplification for chemiluminescence resonance energy transfer detection of microrna in real samples based on a cross-catalyst strand-displacement network[J]. Anal Chem, 2011, 83:3696-3702.
[50] Freeman R, Girsh J, Jou AF, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor(VEGF)[J]. Anal Chem, 2012, 84:6192-6198.
[51] Feng KJ, Kong RM, Wang H, et al. A universal amplified strategy for aptasensors:enhancing sensitivity through allosterytriggered enzymatic recycling amplification[J]. Biosensors and Bioelectronics, 2012, 38:121-125.
[52] Xue LY, Zhou XM, Xing D. Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification[J]. Anal Chem, 2012, 84:3507-3513.
[53] Zheng AX, Wang JR, Li J, et al. Nicking enzyme based homogeneous aptasensors for amplification detection of protein[J]. Chem Commun, 2012, 48:374-376.
[54] He Y, Lin Y, Tang HW, Pang DW. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin[J]. Nanoscale, 2012, 4:2054-2059.
[55] Zhao XH, Ma QJ, Wu XX, Zhu X. Graphene oxide-based biosensor for sensitive fluorescence detection of DNA based on exonuclease III-aided signal amplification[J]. Analytica Chimica Acta, 2012,727:67-70.
[56] Xu LG, Zhu YY, Ma W, et al. Sensitive and specific DNA detection based on nicking endonuclease-assisted fluorescence resonance energy transfer amplification[J]. J Phys Chem C, 2011, 115:16315-16321.
[57] Zhao YX, Qi L, Yang WJ, et al. Amplified fluorescence detection of Pb2+using Pb2+- dependent DNAzyme combined with nicking enzyme-mediated enzymatic recycling amplification[J]. Chin J Anal Chem, 2012, 40(8):1236-1240.
[58] Sarkar S, Bose R, Jana S, et al. Doped semiconductor nanocrystals and organic dyes:an efficient and greener FRET system[J]. J Phys Chem Lett, 2010, 1:636-640.
[59] Tu YQ, Li W, Wu P, et al. Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection[J]. Anal Chem,2013, 85:2536-2542.
[60] Shi Y, Huang WT, Luo HQ et al. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin[J]. Chem Commun, 2011, 47:4676-4678.
[61] He JL, Wu ZS, Zhou H, et al. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine[J]. Anal Chem, 2010, 82:358-1364.
[62] Ma CP, Wang WS, Yang Q, et al. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads[J]. Biosensors and Bioelectronics, 2011, 26:3309-3312.
[63] Zhang YW, Sun XP. A novel fluorescent aptasensor for thrombin detection:using poly(m-phenylenediamine)rods as an effective sensing platform[J]. Chem Commun, 2011, 47:3927-3929.
[64] Zhu SY, Han S, Zhang L, et al. A novel fluorescent aptasensor based on single-walled carbon nanohorns[J]. Nanoscale, 2011, 3:4589-4592.
(責(zé)任編輯 狄艷紅)
Advance Based on Signal Amplification Technology with Aptamer Biosensor
Xue Mingyue1,2Qin Yingfeng1Li Jian1Ye Gaojie1Zhan Zhihua2
(1. Key Laboratory for the Chemistry and Molecular Engineering of Medical Resources(Ministry of Education of China),College of Chemistry and Pharmaceutical Sciences,Guangxi Normal Univeisitv,Guilin 541004;2. Guilin Normal College,Guilin 541001)
Signal amplification technology has grown immensely in many fields because of its high accuracy and sensitivity at low concentrations. As a recognized molecule, aptamer has been used on many biosensors, and also has shown a good prospect in medical diagnosis,environmental monitoring and biological analysis. In recent years, biosensors with aptamer as recognized molecule has attracted more and more attention. The new research development of aptamer biosensors based on signal amplification technology in nearly three years was summarized especially.
signal amplification technology;aptamer;biosensor
2013-12-05
廣西教育廳科研項(xiàng)目(2013YB285,2014JGA290),桂林師范高等專科學(xué)校項(xiàng)目(GLSZ201214)
薛茗月,女,博士研究生,研究方向:電分析及生化分析;E-mail:xmy818@163.com
湛志華,男,博士,副教授,研究方向:電分析化學(xué);E-mail:zzhu302@sohu.com