• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of a curved bed on the discharge equation in a spillway with a breast wall*

    2015-04-20 05:53:12NGUYENCongThanhWANGLingling王玲玲TANGHongwu唐洪武
    關(guān)鍵詞:洪武

    NGUYEN Cong-Thanh, WANG Ling-ling (王玲玲), TANG Hong-wu (唐洪武)

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: thanhctt.dhxd@gmailcom

    Introduction

    Orifice spillways are widely used for controlling and measuring discharge in hydropower projects or irrigation systems[1]. The breast wall spillways, a type of orifice spillways, are often applied to release the flood and the sediment disposal in a reservoir[2]. The accurate estimation of the discharge capacity of breast wall spillways is very important from an operational,environmental and economic point of view in hydraulic engineering. The discharge capacity of orifice spillways could be obtained by using experimental, analytical[3]or numerical methods[4]. Ansar and Chen[5]used the dimensional analysis and the field flow measurements collected from 90 prototype gated spillways in South Florida, the Unite States, to obtain a single generalized equation under all flow conditions. However, this equation has a limitation that it can only be used for spillways with similar geometries, that is, the approaching and exiting channels. Ansar and Juan[6]also, based on the dimensional analysis, proposed a submerged vertical gated spillway and compared it with some existing ones. Bijankhan et al.[7], based on the Buckingham theorem and the incomplete self similarity (ISS), obtained a new stage-discharge relationship for the sluice gate with radial gates. In the case of the Ogee spillway with radial gates,Mazumdar and Indroniel[8]introduced a pressure correction factorCpas a function of both the head and the gated openings while showing a discrepancy between theoretical and experimental values of discharge. In these and other similar studies, the analytical method and the dimensional analysis were combined with the measured data to deduce a discharge prediction formula for the orifice spillways. However, the effect of the crest downstream profile on the variation of the mean pressure and the discharge capacity of theorifice spillway were not duly considered. In fact, the discharge capacity of the breast wall spillway depends on many factors, such as the water head, the orifice opening, the friction loss, and, especially, the mean vertical pressure distribution at the outlet section of the orifice opening[9].

    The flow through the breast wall spillways is a rapidly varied flow and is influenced by centripetal or centrifugal force depending on the convex or concave nature of the bottom, which is normal to the direction of the flow. Moreover, the pressure changes rapidly with great pressure gradient from the beginning to the end of the curve[10]. Therefore, the mean pressure over the cross-section may be smaller or larger than the hydrostatic pressure. Its distribution is in a curve form that depends on the velocity, the curvature of the downstream profile, the flow depth, and the orifice opening, etc.. The effect of a curved bed on the mean pressure distribution over the cross-section was studied,such as by Dewals et al.[11], Castro-Oscar[12]and Anh and Hosoda[13]. Recently, Castro-Orgaz and Dey[14]obtained a generalized depth-averaged channel flow equation for an arbitrary curved bed and an equation for the pressure distribution in they-direction normal to the channel bed in an one-dimensional problem.However, these equations are very difficult to solve without further hypotheses. As a result, these equations may only be applicable for the gradually varied unsteady and the steady flows or for constant slope channels. On the other hand, the flow through the spillway with a breast wall experiences an abrupt transition from the subcritical upstream to the supercritical downstream of the breast wall, which indicates that there might be an unsatisfactory mean vertical pressure distribution if the above theories are applied.

    Fig.1 The scheme to determine the discharge capacity and the mean pressure distribution at the outlet section of the free breast wall spillway

    Although the discharge capacity of orifice spillways has been widely studied, experimentally, theoretically and numerically, the flow through spillways with a breast wall has not received enough attention.As mentioned previously, there are abundant discharge calculations while there are few studies of the deviation of the mean pressure from the hydrostatic pressure and its influence on the discharge capacity of orifice spillways. This paper studies the effect of a convex crest profile on the mean pressure distribution,especially, the deviation of the mean hydrodynamic pressure from the hydrostatic pressure, and applies these results to the discharge calculation of the breast wall spillways by conducting experiments. Based on the measured data, the multi linear regression and the least squares method are applied to obtain a discharge prediction formula for the flow in this field.

    1. General discharge capacity prediction formula of the spillway with a breast wall

    The computational scheme for a spillway with a breast wall is shown in Fig.1. The datum is set equal to the crest elevation. According to White[15], the incompressible steady-flow energy equation, with no shaft work and negligible viscous work, including the friction loss between sections 0-0 and C-C for the streamline dz, is as follows

    in which,Hois the total head,zis the elevation above the datum plane (upward from the origin of the spillway),pis the mean static pressure value at the elevationz(at the cross-section C-C),gis the gravitational acceleration,γis the specific weight of the water,LhandDhare the length and the hydraulic diameter of the orifice openingD, respectively,k′ is the total head loss coefficient between two sections,bis the average width at the section C-C. The other symbols are shown in Fig.1. Integrating Eq.(1) over the section C-C with the assumption that

    the total headHois obtained as

    where ∑Kis the total minor head loss coefficient andfis the Darcy friction factor between two sections.αis the kinetic energy correction. According to Eq.(2), we have

    in which,∏andZo=Ho-∏denote the average potential energy at the outlet section C-C and the water head effect of the orifice flow, respectively. The discharge coefficientCodis determined by

    The general discharge capacity of a spillway with a breast wall,Q, is determined by

    whereA=bDis the area of the orifice corresponding to the orifice openingD. According to Eq.(6), the discharge coefficientCodand the mean pressure distribution over the cross-section C-C must be known before the discharge capacity of the spillway with a breast wall can be calculated. In an actual case, based on some hydraulic and geometric considerations of the spillways, the value of ∑Kandfcould be determined[15]. Therefore, only the mean pressure distributionp(z)/γover the cross-section C-C needs to be found. In other word, thep(z)/γvalue plays an important role in the discharge calculation of the flow in this field. This distribution affects considerably the accuracy of the discharge calculation according to Eq.(6). This study considers the flow through the spillway with a breast wall with the convex bottom profile in a parabolic profile. The mean pressure distributionp(z)/γis obtained from an experiment in a laboratory flume.

    2. Experiment setup and procedure

    2.1 Experiment setup

    The experiments are conducted in the Hydraulic Structures Laboratory at the National University of Civil Engineering (NUCE), Hanoi, Vietnam. Figure 2 shows the experimental scheme and the spillway model in this study. It consists of a flume, several pumps, a large feeding tank, a model of the breast wall spillway, and a flow circulating system. A series of experiments are conducted in a steel frame flume with two transparent Plexiglas sides, 0.4 m wide, 6 m long and 0.8 m deep. The bottom of the flume is made of stainless steel with a horizontal slope. The breast wall spillway models of Plexiglas of different dimensions are installed and placed at the position of 3 m from the beginning of the stilling tank in the flume.The upstream edge of the breast wall is in line with the upstream edge of the spillway and the downstream edge is in line with the spillway crest axis, as shown in Fig.1.

    Fig.2 The experimental hydraulic model scheme

    The water is pumped from the underground tank to the feeding tank, which supplies the water for the stilling tank, a part of the flume connected by an adjusting valve. The water is fed into the flume from the feeding tank through 0.25 m-diameter pipelines to guarantee that the water level is stable during the ex-periment in the stilling tank. The water surface profile from the upstream to the downstream is measured at the centerline of the flume with a point gauge of an accuracy of ±0 .0001m . Furthermore, the upstream water level of the model is measured at the position 1.5 m from the origin of the spillway toward the upstream. Consequently, the measured water surface is relatively steady during the experiment in the specific cases. The crest pressure and the vertical pressure distribution at the cross-section C-C behind the breast wall are measured by several static tubes, connected to a piezometer board with glass tubes vented to the atmosphere. The piezometer board readings give the average pressures at each pressure tap location. The measurements on this board are within ±0.001m precision. The discharge into the flume is also measured by a rectangular sharp-crested weir located in the gathering tank. The relative uncertainty in the measured discharge is 3%.

    Table 1 Experimental cases and parameters

    2.2 Experimental cases

    Table 1 lists the experimental cases and the fundamental geometric parameters of the spillway with a breast wall models. The spillway models are designed with three design heads (Hd), namely, 0.15 m, 0.2 m,and 0.25 m and with 0.3 m, 0.29 m and 0.35 m in height (Ps), respectively. The spillway’s upstream quadrant profile is in a shape of ellipse, which is similar to the Ogee profile of the free overflow spillway.Namely, the upstream quadrant profile is designed by an equationin this study. The downstream profile of the spillway is fabricated according to a parabolic equationwithφ=0.9. In addition, the breast wall profile is determined by the following equation.The experiments are performed for variations of the water headH, and the orifice openingDfor three spillway models. The measured parameters include the water surface profile, the mean vertical pressure distribution p(zi)at the outlet cross-section C-C andithe dischargeQex.

    Fig.3 The vertical pressure distribution at section C-C in some experimental cases

    3. Results and discussions

    3.1 Mean vertical pressure distribution at section C-C

    During the experiment, the mean vertical pressure distribution at the section C-C (see Fig.1) is measured in each specific case. Figure 3 shows the distribu-tion ofp(z) in some cases. They-axis is the water height upward from the origin of the spillway. As shown in Fig.3, the value ofp(z) depends on the parameters, such as the orifice openingD, the dischargeQand the total headHo. Furthermore, this distribu

    extion could be characterized by the value of the Froude number (, whereVis the average velocity at the section C-C) at the orifice opening. This distribution has a tendency to decrease as theFrnumber of the orifice flow increases. According to Fig.3, the mean pressure at each point in the flow depth is considerably smaller than the hydrostatic pressure (p(z)i/γ<zi). This is consistent with the conclusions of Dewals et al.[11]and Chaudhry for the influence of the centripetal force on the mean vertical pressure in the convex flow. However, their result is valid only for the free and gradually varied flow. Here,the flow is a rapidly varied flow, and one sees a dramatic transition from the subcritical to supercritical states as the flow goes through under the breast wall.Therefore, this mean pressure distributionp(z) may be different from the others.

    3.2 Prediction of the water head effect Zo of the flow through breast wall spillway

    According to Eq.(4), the value of the water head effectZomust be calculated from the average potential energy∏, but this value depends on the integral. Thus, the value ofZois not a fixed value in each specific case. This means that the accurate calculation ofZoplays an important role in the estimation of the discharge capacity for the flow in this study. To calculate the integralin Eq.(3), the mean pressure distribution is assumed as a third order polynomial function for all experimental cases. As a result, this integral can be evaluated, and the value of∏can be calculated by using Eq.(3) in specific cases. Then, the value ofZois also computed asZo=Ho-∏. It is found that the value of the calculated water head effectZodepends on some geometrical parameters, such asHd,D,sP, the downstream profileΦ(x) and the total headHo. Generally, this relationship can be expressed as

    Based on the dimensional analysis[16], Eq.(7) can be written as

    To find this relationship, the multiple linear regression method is applied to correlate the ratio ofto both the hydraulic and geometrical parameters. The general equation can be written as

    in which,c(1)-c(4) are the unknown coefficients of the regression analysis. These coefficients reflect the influence of the dimensionless quantities, such asandon thevalue and can be found by using the experimental data. Based on the least squares method, these unknown coefficients are determined, and a formula for the determination ofis obtained. This equation fits the experime-ntal data with a correlation coefficient,R2=0.98 and the standard error of estimation SEE=0.0168. This result shows that all unknown coefficients are statistically meaningful with the confidence level of 95%.Equation (9) is rewritten again as

    Equation (10) indicates that the contribution ofD/HoinZo/Hois the most significant, whereas the contributions ofHd/HoandP/Hoare smaller. To evaluate the best-fit line and its ability, in terms of the agreement between the experimental data and the prediction values ofZo, an average percentage error term,zε, proposed in Ref.[17], is defined as

    in which,Nis the number of data points,ZoexiandZoesmiare the experimental and estimated values of the water head effectZo, respectively. According to Haddadi and Rahimpour[17], the lower thezεvalue,the greater the accuracy of Eq.(10) and vice versa. The calculated value ofzεis 2.24% for the estimation ofZoin this study. This error is acceptable in hydraulic engineering. Furthermore, a comparison ofZobe-tween Eq.(10) and the experiment is shown in Fig.4,which shows a good agreement (R2=0.998) between the experimental and estimatedZovalues, whereZoOis mean the experimental value,ZoPis mean the computed value. In short, Eq.(10) could be used to estimate the value ofZowithin ±5% in the ranges 0.18≤D/Ho≤ 0.68, 0.35 ≤Hd/Ho≤ 1.57, and 0.69 ≤Ps/Ho≤ 3.27.

    Fig.4 Experimental versus predicted Zo values using Eq.(10)

    3.3 Proposal of the discharge formula and water head effect coefficient

    According to Eq.(10), the discharge formula(Eq.(6)) could be rewritten as follows

    Alternatively, aCZfactor, called the water head effect coefficient, can be defined as

    Hence, the discharge formula (12) becomes

    The proposed discharge formula (Eq.(14)) is in a familiar form in calculating the discharge capacity of the orifice spillway, except the coefficientCZ. This factor depends on some hydraulic and geometric parameters of the spillway and reflects the influence of the mean vertical pressure variation at the outlet crosssection C-C on the value of the water head effector the discharge capacity.

    3.4 Validation of the proposed discharge formula

    Before using the proposed discharge formula to calculate the estimated discharge, the value ofCodneeds to be determined for all cases. Based on the geometrical spillway models, theCodvalue is found in a range of 0.912-0.913 with known parameters,such asand=0.08 (whereis the relative roughness). In short, the value ofcould be taken in average as 0.913 for the discharge calculation in all cases.

    Fig.5 Measured versus computed discharges using Eq.(14)

    The estimated dischargeQeand the average percentage error termεQeare calculated by using Eq.(14)and Eq.(11), respectively. The value ofεQeis 2.26%for the measured dischargeQexfor all experimental cases. Figure 5 shows a close correlation (R2=0.997)between the measured and estimated discharge values,and the computed discharge is within ±5% of the measure one, whereQmis mean the measured value,Qcis mean the computed value. This means that the proposed discharge formula predicts quite accurately the discharge capacity of the flow in this study. However, the mean pressure distributionp(z) must be determined before the calculation as shown in the previous subsection. On the other hand, some assumptions are often made to simplify the discharge calculation for the flow in this field. By assuming the mean pressurep(zi)=0 over section C-C or the mean pressure distributionp(z) in the hydrostatic pressure law,the discharge formula (Eq.(6)) could be rewritten, respectively, as follows:

    whereCod1andCod2are the discharge coefficientsfor Eq.(15) and Eq.(16), respectively. These values could be obtained using a calibration method. The value ofCod1is in a range of 0.6-0.8 and depends onH0/D[18], and the value ofCod2could be assumed to be equal to the value ofCod.

    Fig.6 Measured versus computed discharges using Eq.(15)

    Fig.7 Measured versus computed discharges using Eq.(16)

    Figure 6 and Fig.7 show a deviation between Eq.(15) and Eq.(16) in comparison with the measured data, withR2f1=0.988andR2f2=0.986, the average percentage errorsεQf1=9.72%andεQf2=10.33%,respectively. Moreover, the computed discharge is within ±5 %-20% of the measure ones. Obviously,the big error (20% or even more) in the discharge calculation comes from the above assumptions. On the other hand, the application of the mean pressure variation at the outlet section leads to a more accurate discharge than the others as shown in Fig.5.

    4. Summary and conclusion

    The effect of the mean vertical pressure variation at the outlet section on the discharge capacity of a spillway with a breast wall is studied by experiments in this paper The mean pressure distribution is affected by some hydraulic parameters, such as the total headHo, the orifice openingD, the crest downstream profile. This distribution in turn affects the determination of the water head effectZoor the discharge capacity according to Eq.(6). Based on experimental data, a relationship betweenZo/Hoand the above quantities is established by using the multiple linear regression analysis and the least squares method, and a discharge formula is proposed. With the proposed discharge formula, accurate results (with errors within±5 %) can be obtained with the mean pressure distribution being applied in the determination of theZovalue. Otherwise, with the assumption of the mean pressurep(zi)=0 over the section C-C or the mean pressure in the hydrostatic pressure law, the big error(20% or even more) is obtained in comparison with the experimental data. In short, the proposed discharge formula is more accurate than the others under the conditions of this study. On the other hand, more work should be done under a wider range of hydraulic conditions in future.

    [1] WU Jian-hua, FENG Shu-rong and WU Wei-wei et al.Hydraulic characteristics of partial opening of the working gate for a discharge tunnel[J]. Journal of Hydrodynamics, 2007, 19(4): 488-493.

    [2] KHATSURIA R. M. Hydraulica of Spillways and Energy dissipators[M], New York, USA: Marcel Dekker, 2005.

    [3] JAVAN M., and SHAHROKHNIA M. A. Dimensionless Stage–Discharge relationship in radial gates[J].Journal of Irrigation and Drainage Engineering,2006, 132(2): 180-184.

    [4] BHAJANTRI M. R., ELDHO T. I. and DEOLAKIKAR P. B. Numerical investigation of the effects of sluice spillway roof profiles on the hydraulic characteristics[J].International Journal for Numerical Methods in Fluids, 2008, 57(7): 839-859.

    [5] ANSAR M., CHEN Z. Generalized flow rating equations at prototype gated spillways[J]. Journal of Hydraulic Engineering, ASCE, 2009, 135(7): 602-608.

    [6] ANSAR M., JUAN A G. C. Submeged weir flow at prototype gate spillway[C]. World Water and Environmental Resources Congress. Philadelphia, USA,2003.

    [7] BIJANKHAN M., FERRO V. and KOUCHAKZADEH S. New stage-discharge relationships for radial gates[J].Journal of Irrigation and Drainage Engineering,2012, 139(5): 378-387.

    [8] MAZUMDAR S. K., INDRONIEL D. R. Orifice flow in a gated spillway[J]. ISH Journal of Hydraulic Engineering, 1997, 3(2): 44-52.

    [9] NGUYEN Cong-Thanh, HUYNH Ba Ky Thuat. The water haed effect of undersluices as the shape of outlet is curved[J]. Viet Nam Science and Technology Journal of Agricultural and Rural Development,2012, 9(3): 30-34.

    [10] LIU Zhi-ping, ZHANG Dong and ZHANG Hong-Wei et al. Hydraulic characteristics of converse curvature section and aerator in high-head and large discharge spillway tunnel[J]. Science China Technological Sciences,2011, 54(Suppl. 1): 33-39.

    [11] DEWALS B. J., ERPICIM S. and AECHAMBEAU P.et al. Depth-integrated flow modelling taking into account bottom curvature[J]. Journal of Hydraulic Research, 2006, 44(6): 785-795.

    [12] CASTRO-ORGAZ O. Approximate modelling of 2D curvilinear open channel flows[J]. Journal of Hydraulic Research, 2010, 48(2): 213-224.

    [13] ANH T., HOSODA T. Depth-averaged model of openchannel flows over an arbitrary 3d surface and its applications to analysis of water surface profile[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(4): 350-360.

    [14] CASTRO-ORGAZ O., DEY S. One-dimensional channel flow equations with curvature revisited[J]. Journal of Hydraulic Research, 2009, 47(2): 157-166.

    [15] WHITE F. M. Fluid mechanics[M]. 4th edition, New York: McGraw-Hill, 2003.

    [16] WU Jian-hua, CAI Chang-guang and JI Wei et al. Hydraulic characteristics of water-wings for the middlepier of a discharge tunnel[J]. Journal of Hydrodynamics, 2006, 18(5): 567-571.

    [17] HADDADI H., RAHIMPOUR M. A discharge coefficient for a trapezoidal broad-crested side weir in subcritical flow[J]. Flow Measurement and Instrumentation, 2012, 26: 63-67.

    [18] HUSSAIN S., HUSSAIN A. and AHMAD Z. Discharge characteristics of orifice spillway under oblique approach flow[J]. Flow Measurement and Instrumentation,2014, 39: 9-18.

    猜你喜歡
    洪武
    心靜生明月 德高有好風(fēng)
    心靜生明月 德高有好風(fēng)
    書(shū)法
    大江南北(2022年6期)2022-06-16 09:26:34
    書(shū)法作品
    書(shū)法作品
    保健與生活(2022年4期)2022-02-13 20:18:27
    關(guān)于帶電顯示器防人觸電的研究
    書(shū)法作品
    保健與生活(2021年4期)2021-02-22 07:45:25
    春滿人間
    保健與生活(2020年8期)2020-04-28 08:02:50
    Critical velocities for local scour around twin piers in tandem *
    新發(fā)現(xiàn)又一種八十韻本《洪武正韻》
    亚洲欧美一区二区三区黑人 | 亚洲欧美一区二区三区国产| 最近中文字幕高清免费大全6| 国产男人的电影天堂91| 久久免费观看电影| 久久毛片免费看一区二区三区| 国产亚洲av片在线观看秒播厂| 亚洲精品一二三| 18禁国产床啪视频网站| 伊人久久大香线蕉亚洲五| 精品少妇一区二区三区视频日本电影 | 久久久久网色| 国产成人aa在线观看| 人妻系列 视频| 精品99又大又爽又粗少妇毛片| 在线观看人妻少妇| 伊人久久国产一区二区| 亚洲av欧美aⅴ国产| 日韩电影二区| 宅男免费午夜| 在线天堂中文资源库| 中文字幕人妻丝袜一区二区 | 久久精品国产亚洲av涩爱| 久久久久久久久久人人人人人人| 大话2 男鬼变身卡| 国产欧美日韩综合在线一区二区| 五月伊人婷婷丁香| 精品久久久久久电影网| 精品久久久久久电影网| 午夜激情久久久久久久| 国产高清国产精品国产三级| 在线观看免费高清a一片| 亚洲综合精品二区| 国产免费又黄又爽又色| 一级,二级,三级黄色视频| 大片电影免费在线观看免费| 韩国av在线不卡| h视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产男人的电影天堂91| 久久人人爽人人片av| 午夜福利一区二区在线看| 男女免费视频国产| 国产亚洲欧美精品永久| 99久国产av精品国产电影| 老女人水多毛片| 黑丝袜美女国产一区| 久久久精品国产亚洲av高清涩受| 人妻人人澡人人爽人人| 久久精品熟女亚洲av麻豆精品| 寂寞人妻少妇视频99o| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久av不卡| 国产亚洲av片在线观看秒播厂| 国产av码专区亚洲av| 精品久久久久久电影网| 亚洲欧美清纯卡通| 秋霞伦理黄片| 婷婷色麻豆天堂久久| 欧美精品av麻豆av| 啦啦啦啦在线视频资源| 成年人免费黄色播放视频| 亚洲熟女精品中文字幕| 嫩草影院入口| 亚洲国产精品国产精品| 免费看不卡的av| 伦理电影大哥的女人| 最新中文字幕久久久久| 最近手机中文字幕大全| 亚洲国产欧美日韩在线播放| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| 天天操日日干夜夜撸| 高清黄色对白视频在线免费看| 国产熟女欧美一区二区| 亚洲一码二码三码区别大吗| 电影成人av| 日韩人妻精品一区2区三区| 99热国产这里只有精品6| www.熟女人妻精品国产| 国精品久久久久久国模美| 日日摸夜夜添夜夜爱| 我要看黄色一级片免费的| 国产精品国产三级国产专区5o| 日韩av免费高清视频| 成人国语在线视频| 中文字幕最新亚洲高清| 丝袜美足系列| 777久久人妻少妇嫩草av网站| 超碰97精品在线观看| 亚洲第一av免费看| 亚洲精品美女久久av网站| 边亲边吃奶的免费视频| 免费观看在线日韩| 亚洲精品美女久久久久99蜜臀 | 国产av精品麻豆| 女性生殖器流出的白浆| 日本-黄色视频高清免费观看| 伊人亚洲综合成人网| 精品一区二区三区四区五区乱码 | 精品人妻熟女毛片av久久网站| 欧美日韩视频精品一区| 超碰成人久久| 亚洲精品久久成人aⅴ小说| 麻豆av在线久日| 国产精品欧美亚洲77777| 免费黄色在线免费观看| 99国产精品免费福利视频| 看非洲黑人一级黄片| 男男h啪啪无遮挡| 高清在线视频一区二区三区| 精品人妻偷拍中文字幕| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产一区二区 视频在线| 亚洲国产成人一精品久久久| 99国产综合亚洲精品| 大片电影免费在线观看免费| 国产无遮挡羞羞视频在线观看| 免费大片黄手机在线观看| 亚洲av成人精品一二三区| 国语对白做爰xxxⅹ性视频网站| 国产淫语在线视频| 99香蕉大伊视频| 好男人视频免费观看在线| 国产亚洲av片在线观看秒播厂| 天天操日日干夜夜撸| 精品第一国产精品| 国产精品麻豆人妻色哟哟久久| 母亲3免费完整高清在线观看 | 精品一区二区三卡| 黄片无遮挡物在线观看| 最近手机中文字幕大全| a级片在线免费高清观看视频| 波多野结衣一区麻豆| 一二三四中文在线观看免费高清| 精品一区二区三卡| 99热国产这里只有精品6| 午夜福利影视在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一本久久精品| 成年动漫av网址| 超色免费av| 国精品久久久久久国模美| 国产亚洲av片在线观看秒播厂| 母亲3免费完整高清在线观看 | 国产av一区二区精品久久| 国产精品无大码| 大片免费播放器 马上看| 日韩视频在线欧美| 亚洲精品日韩在线中文字幕| 国产免费一区二区三区四区乱码| 国产av一区二区精品久久| 超色免费av| xxx大片免费视频| 青春草亚洲视频在线观看| 国产成人av激情在线播放| 美女福利国产在线| 亚洲一区中文字幕在线| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 91精品三级在线观看| 精品一区二区免费观看| 亚洲五月色婷婷综合| 老汉色av国产亚洲站长工具| 亚洲av福利一区| 三级国产精品片| 国产一区二区激情短视频 | 日韩在线高清观看一区二区三区| 色婷婷av一区二区三区视频| 少妇 在线观看| 久久久久国产网址| 国产精品免费大片| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| √禁漫天堂资源中文www| 国产成人欧美| 亚洲精品aⅴ在线观看| 欧美日韩视频高清一区二区三区二| 国产一级毛片在线| 免费观看av网站的网址| 青春草亚洲视频在线观看| 中文字幕制服av| 99精国产麻豆久久婷婷| 熟女少妇亚洲综合色aaa.| 青春草国产在线视频| 老汉色av国产亚洲站长工具| 国产男人的电影天堂91| 黄色 视频免费看| 免费高清在线观看日韩| 欧美少妇被猛烈插入视频| 亚洲国产欧美日韩在线播放| 亚洲一码二码三码区别大吗| 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 天天躁狠狠躁夜夜躁狠狠躁| 大香蕉久久成人网| 人妻人人澡人人爽人人| 人妻一区二区av| 免费在线观看黄色视频的| 亚洲精品国产av成人精品| 成年女人在线观看亚洲视频| 少妇被粗大猛烈的视频| a 毛片基地| 精品人妻熟女毛片av久久网站| 亚洲av男天堂| 一区二区三区激情视频| 色94色欧美一区二区| 久久久久国产一级毛片高清牌| 一级a爱视频在线免费观看| 久久久久精品人妻al黑| 国产精品免费大片| 亚洲av在线观看美女高潮| 精品福利永久在线观看| 久久 成人 亚洲| 国产日韩欧美在线精品| 欧美日韩一级在线毛片| 人妻少妇偷人精品九色| 成人亚洲欧美一区二区av| 大片电影免费在线观看免费| 黑人巨大精品欧美一区二区蜜桃| 交换朋友夫妻互换小说| 王馨瑶露胸无遮挡在线观看| 国产毛片在线视频| 日韩中文字幕视频在线看片| 女人被躁到高潮嗷嗷叫费观| 男的添女的下面高潮视频| 久久青草综合色| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 日韩,欧美,国产一区二区三区| av免费在线看不卡| 国产精品久久久久久精品古装| 亚洲成色77777| 啦啦啦在线观看免费高清www| 老汉色∧v一级毛片| 国产成人精品无人区| 一区二区三区四区激情视频| 日韩一区二区视频免费看| 69精品国产乱码久久久| 高清欧美精品videossex| kizo精华| 中文精品一卡2卡3卡4更新| 亚洲成人一二三区av| 精品国产乱码久久久久久男人| 一级毛片电影观看| 巨乳人妻的诱惑在线观看| 黄片无遮挡物在线观看| 97人妻天天添夜夜摸| 成年人免费黄色播放视频| 又粗又硬又长又爽又黄的视频| 久久久久久免费高清国产稀缺| 人体艺术视频欧美日本| 啦啦啦在线免费观看视频4| 两个人免费观看高清视频| 一区二区av电影网| 丝袜在线中文字幕| 中文欧美无线码| av女优亚洲男人天堂| videosex国产| 亚洲av男天堂| 99久国产av精品国产电影| 伊人久久国产一区二区| 久久久久久久久久久免费av| 亚洲天堂av无毛| 国产成人av激情在线播放| 97精品久久久久久久久久精品| 成人午夜精彩视频在线观看| 日韩三级伦理在线观看| 亚洲精品一区蜜桃| 久久精品国产自在天天线| 亚洲欧美日韩另类电影网站| 国产成人精品无人区| 王馨瑶露胸无遮挡在线观看| 久久久久精品人妻al黑| 精品一区二区三区四区五区乱码 | 97精品久久久久久久久久精品| 蜜桃在线观看..| 色婷婷av一区二区三区视频| 男人舔女人的私密视频| 看非洲黑人一级黄片| 欧美成人午夜精品| 亚洲av中文av极速乱| 欧美 亚洲 国产 日韩一| 伦理电影大哥的女人| 久久久久久久久免费视频了| 熟女av电影| 啦啦啦在线观看免费高清www| 在线观看www视频免费| 国产在线视频一区二区| 国产欧美日韩综合在线一区二区| 啦啦啦中文免费视频观看日本| 久久99热这里只频精品6学生| 日本欧美国产在线视频| 亚洲第一av免费看| 午夜日本视频在线| 精品第一国产精品| 久久久久久人人人人人| 色94色欧美一区二区| 中国三级夫妇交换| 丝袜脚勾引网站| 日韩在线高清观看一区二区三区| 日本av免费视频播放| 黄色毛片三级朝国网站| 久久久a久久爽久久v久久| 人成视频在线观看免费观看| 欧美少妇被猛烈插入视频| 欧美成人精品欧美一级黄| 狠狠婷婷综合久久久久久88av| 黑人猛操日本美女一级片| 蜜桃国产av成人99| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 超碰成人久久| 久久久精品免费免费高清| 日韩精品有码人妻一区| 国产精品嫩草影院av在线观看| 日本黄色日本黄色录像| 在线观看三级黄色| 亚洲精品在线美女| 久久久久精品人妻al黑| 国产成人91sexporn| 热re99久久国产66热| 少妇 在线观看| av有码第一页| 国产男女内射视频| 亚洲成人一二三区av| 午夜福利在线观看免费完整高清在| 国产亚洲午夜精品一区二区久久| 综合色丁香网| 久久精品国产亚洲av天美| 国产精品一区二区在线观看99| 大片电影免费在线观看免费| 精品99又大又爽又粗少妇毛片| 日韩av在线免费看完整版不卡| 人人澡人人妻人| 高清在线视频一区二区三区| 免费高清在线观看视频在线观看| 性色avwww在线观看| 国产精品国产av在线观看| 亚洲欧美一区二区三区黑人 | 中文字幕精品免费在线观看视频| 欧美激情 高清一区二区三区| 久久这里只有精品19| 亚洲五月色婷婷综合| 叶爱在线成人免费视频播放| 久久人人爽av亚洲精品天堂| 国产成人精品一,二区| 久久精品亚洲av国产电影网| 久久精品国产综合久久久| 成年动漫av网址| 婷婷色综合大香蕉| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 日韩不卡一区二区三区视频在线| 高清欧美精品videossex| 国产精品国产av在线观看| 七月丁香在线播放| 日韩 亚洲 欧美在线| 亚洲人成77777在线视频| 久久久久精品久久久久真实原创| 亚洲色图综合在线观看| 午夜福利乱码中文字幕| 哪个播放器可以免费观看大片| 色视频在线一区二区三区| 涩涩av久久男人的天堂| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看 | 久久免费观看电影| 久久ye,这里只有精品| 亚洲一区中文字幕在线| 不卡视频在线观看欧美| xxx大片免费视频| 国产精品久久久久久久久免| 亚洲av欧美aⅴ国产| 久久热在线av| 久久久a久久爽久久v久久| 亚洲精品日韩在线中文字幕| av在线播放精品| 美女午夜性视频免费| 99香蕉大伊视频| 狂野欧美激情性bbbbbb| 精品人妻熟女毛片av久久网站| 久久精品久久久久久噜噜老黄| 久久午夜福利片| 丁香六月天网| 成人毛片a级毛片在线播放| 日本av手机在线免费观看| 乱人伦中国视频| 人成视频在线观看免费观看| 91精品国产国语对白视频| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 亚洲国产欧美日韩在线播放| 美女福利国产在线| 欧美成人午夜精品| 亚洲第一区二区三区不卡| 精品一区在线观看国产| 如何舔出高潮| 汤姆久久久久久久影院中文字幕| 国产在视频线精品| 国产精品二区激情视频| 国产一区二区在线观看av| 国语对白做爰xxxⅹ性视频网站| 一级爰片在线观看| 亚洲国产精品一区二区三区在线| 国产一区二区 视频在线| 自线自在国产av| 亚洲天堂av无毛| 一区二区三区激情视频| 亚洲精品日韩在线中文字幕| 成年人午夜在线观看视频| 捣出白浆h1v1| 一区二区av电影网| 99热全是精品| 久久精品国产亚洲av高清一级| 欧美精品国产亚洲| 久久久久久久国产电影| 一级,二级,三级黄色视频| 色播在线永久视频| h视频一区二区三区| 免费在线观看黄色视频的| 精品少妇一区二区三区视频日本电影 | 国产精品亚洲av一区麻豆 | 久久精品国产a三级三级三级| 亚洲精品久久久久久婷婷小说| 高清欧美精品videossex| 日本黄色日本黄色录像| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 亚洲av中文av极速乱| 亚洲四区av| 九草在线视频观看| 男女边吃奶边做爰视频| 国产又爽黄色视频| 精品一区二区三区四区五区乱码 | 最黄视频免费看| 又黄又粗又硬又大视频| 久久精品国产鲁丝片午夜精品| 国产在线免费精品| 中文字幕色久视频| 国产爽快片一区二区三区| 国产成人精品无人区| 亚洲色图综合在线观看| 国产又爽黄色视频| 日韩不卡一区二区三区视频在线| 女人被躁到高潮嗷嗷叫费观| 一区在线观看完整版| 亚洲欧美日韩另类电影网站| 人体艺术视频欧美日本| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区| 久久青草综合色| 午夜福利一区二区在线看| 观看av在线不卡| 美女国产高潮福利片在线看| av有码第一页| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 在线观看免费日韩欧美大片| 精品久久久精品久久久| 在线天堂中文资源库| 久久人人爽av亚洲精品天堂| 天天影视国产精品| 91国产中文字幕| 人妻人人澡人人爽人人| 日本黄色日本黄色录像| 国产精品一区二区在线不卡| 韩国精品一区二区三区| 国产 一区精品| 少妇熟女欧美另类| 欧美亚洲 丝袜 人妻 在线| 黄网站色视频无遮挡免费观看| 午夜福利网站1000一区二区三区| 久久精品国产综合久久久| 国产男女超爽视频在线观看| 国产日韩一区二区三区精品不卡| 久久久久久久亚洲中文字幕| 十分钟在线观看高清视频www| 亚洲伊人色综图| 国产极品粉嫩免费观看在线| 人妻系列 视频| 亚洲欧美精品自产自拍| 久久97久久精品| 亚洲精华国产精华液的使用体验| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 熟女少妇亚洲综合色aaa.| 在线观看人妻少妇| 少妇人妻久久综合中文| 欧美成人午夜精品| 成年美女黄网站色视频大全免费| 色视频在线一区二区三区| 国产精品香港三级国产av潘金莲 | av片东京热男人的天堂| 欧美成人午夜精品| 日本免费在线观看一区| 国产精品女同一区二区软件| 欧美在线黄色| 国产熟女午夜一区二区三区| 免费黄色在线免费观看| 高清黄色对白视频在线免费看| 国产精品久久久久久av不卡| 久久亚洲国产成人精品v| 有码 亚洲区| 日韩欧美一区视频在线观看| 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| 日韩三级伦理在线观看| 亚洲精品一区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 久久久国产欧美日韩av| 国产极品粉嫩免费观看在线| 婷婷成人精品国产| av免费观看日本| 精品99又大又爽又粗少妇毛片| 亚洲欧美成人综合另类久久久| 成人二区视频| 免费高清在线观看视频在线观看| 最近2019中文字幕mv第一页| 久久久久久久久久久久大奶| a级毛片黄视频| 午夜福利网站1000一区二区三区| 亚洲欧美清纯卡通| 久久精品国产亚洲av高清一级| www日本在线高清视频| 国产成人精品久久二区二区91 | 中国三级夫妇交换| 韩国精品一区二区三区| 亚洲美女视频黄频| 欧美av亚洲av综合av国产av | 青春草亚洲视频在线观看| 欧美黄色片欧美黄色片| 黑人猛操日本美女一级片| 极品少妇高潮喷水抽搐| 美女主播在线视频| 一边摸一边做爽爽视频免费| 熟女电影av网| 校园人妻丝袜中文字幕| kizo精华| 黑人猛操日本美女一级片| 久久精品国产鲁丝片午夜精品| 欧美日韩视频精品一区| 黄网站色视频无遮挡免费观看| 男女下面插进去视频免费观看| 精品久久久精品久久久| 日本免费在线观看一区| 久久久久网色| 男女啪啪激烈高潮av片| 午夜福利影视在线免费观看| 性高湖久久久久久久久免费观看| 午夜老司机福利剧场| 久久人妻熟女aⅴ| 97在线视频观看| 老熟女久久久| 欧美bdsm另类| 国产无遮挡羞羞视频在线观看| 亚洲av日韩在线播放| 亚洲国产欧美网| 老司机影院毛片| 久久久久久久精品精品| 亚洲欧美精品综合一区二区三区 | 99久久中文字幕三级久久日本| 国产亚洲一区二区精品| 久久久久久久久久久久大奶| 又黄又粗又硬又大视频| 99国产精品免费福利视频| 校园人妻丝袜中文字幕| 色94色欧美一区二区| 人妻人人澡人人爽人人| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| kizo精华| 美女福利国产在线| 男女免费视频国产| 高清欧美精品videossex| 在线天堂最新版资源| 亚洲四区av| 2022亚洲国产成人精品| 日韩制服丝袜自拍偷拍| av又黄又爽大尺度在线免费看| 欧美97在线视频| 9色porny在线观看| 久久亚洲国产成人精品v| 制服人妻中文乱码| 欧美老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 欧美+日韩+精品| 日日摸夜夜添夜夜爱| 国产成人精品久久久久久| 99热全是精品| av福利片在线| 999精品在线视频| 国产精品偷伦视频观看了| 男人舔女人的私密视频| 99香蕉大伊视频| 国产成人欧美| 99热网站在线观看| 另类亚洲欧美激情| 99久久精品国产国产毛片| 精品国产乱码久久久久久小说| 久久久精品免费免费高清| 欧美日韩国产mv在线观看视频| 亚洲天堂av无毛| 国产午夜精品一二区理论片| 一级毛片我不卡| 日韩中字成人| 18禁国产床啪视频网站| 高清欧美精品videossex| 日韩精品有码人妻一区| 亚洲男人天堂网一区| 成年人午夜在线观看视频|