宋運紅,郝立波,楊鳳超,趙東芳
1.中國地質調查局沈陽地質調查中心(沈陽地質礦產研究所),遼寧沈陽110034;
2.吉林大學地球探測科學與技術學院,吉林長春130061
遼東三疊紀弟兄山巖體SHRIMP U-Pb年齡、地球化學特征及其地質意義
宋運紅1,郝立波2,楊鳳超1,趙東芳1
1.中國地質調查局沈陽地質調查中心(沈陽地質礦產研究所),遼寧沈陽110034;
2.吉林大學地球探測科學與技術學院,吉林長春130061
SHRIMP鋯石U-Pb年齡測定表明,遼東半島弟兄山巖體的侵位時代為三疊紀(205.2±2.1 Ma),是華北東部三疊紀花崗巖的一部分.全巖巖石化學分析結果顯示,弟兄山花崗巖具有高SiO2、Al2O3、K2O,低TiO2、Na2O、MnO和CaO的特征,K2O+Na2O變化范圍為7.88%~9.28%,K2O/Na2O≥1.16~1.46;CaO/Na2O=0.08~0.23,鋁指數(shù)A/CNK=0.95~1.10,并且在礦物組合中出現(xiàn)白云母,屬準鋁-過鋁質花崗巖.在SiO2-Zr圖解中,所有樣品點均落在S型花崗巖區(qū)域中.以上特征均顯示該花崗巖為準鋁-過鋁質S型花崗巖.稀土曲線和稀土參數(shù)表現(xiàn)出強烈的輕、重稀土分異特征和明顯的Eu負異常特征,反映源區(qū)巖漿形成后發(fā)生過斜長石或其他富Ca礦物的分離結晶作用,是典型準鋁-過鋁質花崗巖的稀土元素特征.在原始地幔標準化的微量元素蛛網(wǎng)圖上,所有花崗巖均富集Rb、Th,明顯虧損Nb、Ta、Sr和Ti.所有樣品的Rb=133×10-6~360×10-6,絕大多數(shù)樣品高于花崗巖的平均值(200×10-6);Sr(25×10-6~135×10-6)和Ba(48×10-6~507×10-6)明顯低于花崗巖的平均值(Sr 300×10-6,Ba 830×10-6),Ba、Sr虧損反映巖漿經(jīng)歷了較為完全的分離結晶作用;大離子親石元素Rb、Th富集,Nb和Ta虧損顯示陸殼物質為巖漿的源巖.上述特征表明巖漿物質來源于陸源碎屑巖石.結合區(qū)域構造演化歷史,認為弟兄山巖體是庫拉-太平洋板塊向歐亞大陸俯沖的產物,是印支晚期華北巖石圈處于弱伸展狀態(tài)背景的響應.
準鋁-過鋁質S型花崗巖;鋯石SHRIMP U-Pb年齡;弟兄山巖體;遼東半島
花崗巖是構成大陸地殼的重要組成部分,是大陸形成和演化的標志物之一,可形成于各種不同的地球動力學環(huán)境[1-3].地球上大面積出露的花崗巖主要類型為I型和S型.由于花崗巖具有獨特的巖石地球化學特征并且蘊涵著地球動力學的重要信息,因此對大陸地殼生長、巖石圈演化及區(qū)域構造發(fā)展等研究具有至關重要的作用[4-8].
中生代巖漿巖廣泛分布于中國東部地區(qū),在華北克拉通東部,遼東半島發(fā)育著一期三疊紀花崗巖,該期花崗巖代表了印支晚期的巖漿活動,前人對該區(qū)侏羅世花崗巖的研究報道較少[9-10].該期花崗巖的系統(tǒng)研究對重新準確厘定和劃分花崗巖形成的時代和類型,探討遼寧東部乃至中國東北地區(qū)的造山作用,以及印支晚期的地球動力學背景具有重要意義.基于此,在前人研究的基礎上,本文將重點解剖遼東半島弟兄山花崗巖巖體,通過系統(tǒng)的鋯石SHRIMP U-Pb年代學、巖石地球化學研究,對該巖體的形成時代、成因及地質意義加以探討,期望為遼東半島的構造演化提供一定的證據(jù).
遼東半島位于華北陸塊東部,是我國東部中生代巖漿作用較為發(fā)育的地區(qū)之一[11].遼東半島侏羅世侵入巖較為發(fā)育,主要分布于丹東的洼嶺、弟兄山、丁字峪、北堡等地,屬遼東印支旋回近東西向巖漿巖帶重要組成部分之一.
弟兄山巖體分布于丹東市與本溪市交界的弟兄山鎮(zhèn),面積約75 km2,呈巖株狀產出.巖體由二云母二長花崗巖、黑云母花崗巖組成,主體相以中細粒二云母二長花崗巖為主,邊緣過渡為細?!辛:谠颇富◢弾r,侵位于古元古界遼河群大石橋組和高家峪組變質地層中,巖體內部侏羅世雙嶺溝單元捕虜體較多,巖石類型為角閃石閃長巖(圖1).
圖1 遼東半島弟兄山巖體地質簡圖Fig.1 Geological sketch map of the Dixiongshan rock mass in the Liaodong Peninsula1—第四系(Quaternary);2—遼河群蓋縣組(Gaixian fm.of Liaohe gr.);3—遼河群大石橋組(Dashiqiao fm.of Liaohe gr.);4—雙嶺溝黑云母閃長巖(Shuanglinggou biotite diorite);5—弟兄山巖體二長花崗巖(monzogranite of the Dixiongshan rock mass);6—弟兄山巖體黑云母花崗巖(biotite granite of the Dixiongshan rock mass);7—同位素樣品及編號(isotope sample and number)
2.1 巖相學特點
巖石樣品為野外采集的新鮮弟兄山巖體中細粒二云母二長花崗巖和細粒黑云母花崗巖.
二云母二長花崗巖樣品呈肉紅—灰色,中細粒花崗結構,塊狀構造(圖2a).巖相學特征如下:中細?;◢徑Y構,主要由板柱狀斜長石、柱粒狀堿性長石和粒狀石英及微量白云母和黑云母構成.其中長石自形程度高,尤其斜長石高于堿性長石.堿性長石主要見微斜長石、正長石,呈板柱狀及板粒狀,格子雙晶發(fā)育者為微斜長石,無雙晶的為正長石,粒度≤1.5 mm,含量約35%;斜長石發(fā)育聚片雙晶,NP′∧(010)≈10°,屬更長石,含量約30%;石英無色透明,粒狀,干涉色灰白色,明顯波狀消光,粒度≤1.0 mm,含量≥25%.片狀礦物主要為白云母,少量褐色黑云母.白云母,無色,顯閃突起,干涉色鮮艷,粒度≤0.1 mm×0.5 mm,含量4%;黑云母,褐色,黑云母式吸收性,粒度較白云母稍?。?.1 mm× 0.3 mm),含量約1%(圖2b、c).
細粒黑云母花崗巖呈深灰色,細粒結構,塊狀構造.巖相學特征如下:細?;◢徑Y構,主要由40%正長石、35%更長石、20%石英及5%黑云母構成.其中正長石無色,柱粒狀,較潔凈,干涉色灰白色,無雙晶,粒度≤0.5 mm×1.0 mm;斜長石,無色,較自形板柱狀,較潔凈,干涉色灰白色,聚片雙晶清晰,NP′∧(010)≈8°,為更長石,粒度≤0.4 mm×1.2 mm;石英,無色,粒狀,干涉色灰白色,消光較均勻,粒度≤0.5 mm;黑云母,黃褐色、綠褐色,多色性顯著,典型黑云母式吸收性,粒度≤0.4 mm×0.8 mm.
2.2 鋯石SHRIMP U-Pb定年
SHRIMPU-Pb定年樣品取自弟兄山巖體二云母二長花崗巖(T09-1,GPS坐標:124°00′58″E,40°49′45″N),樣品經(jīng)重液分離和磁選后,挑選代表性的鋯石制作樣品靶.進行SHRIMP U-Pb分析前,進行了透、背散射電子像(BSE)及陰極發(fā)光(CL)分析,以確定鋯石顆粒的晶體形態(tài)、內部結構以及標定測年點.遼寧弟兄山巖體鋯石多為淺黃色,個別為淺紫色,金剛光澤,透明—半透明,少數(shù)具淺色或暗色礦物包體,多數(shù)具裂紋或鐵染斑點,晶體多為不規(guī)則粒狀,陰極發(fā)光圖像顯示鋯石具有較典型的巖漿振蕩環(huán)帶結構(生長環(huán)帶),應為巖漿成因,為原巖結晶鋯石.
鋯石的U,Th和Pb同位素組成分析在中國地質科學院地質研究所北京離子探針中心的SHRIMPⅡ上進行,分析流程和原理參見文獻[12-13]的相關描述.應用澳大利亞地調局標準鋯石TEMORA(417Ma)進行元素之間的分餾校正.Pb/U校正公式采用Pb/U=A(UO/U)2[14].應用置于調試靶上的另一標準鋯石SL13(年齡為572 Ma,U含量為238×10-6)標定鋯石的U、Th和Pb含量.應用澳大利亞國立大學PRAWN程序進行數(shù)據(jù)處理[15].普通鉛根據(jù)實測204Pb校正,數(shù)據(jù)點的誤差為1σ.采用206Pb/238U年齡,其加權平均值的誤差為2σ,置信度為95%.
2.3 主微量元素測試
對新鮮的弟兄山巖體巖石樣品進行了主、微量元素測試工作.測試工作在國土資源部東北礦產資源監(jiān)督檢測中心完成.主量元素測試由X射線熒光光譜法測定.測試儀器為飛利浦PW2404X射線熒光光譜儀,分析精度優(yōu)于5%.微量元素利用酸溶法制備樣品并在HR-ICPMS(Element I)電感耦合等離子體質譜測試.分析精度為:當元素含量大于10×10-6,精度優(yōu)于5%;當含量小于10×10-6時,精度優(yōu)于10%.
圖2 遼東半島弟兄山巖體二長花崗巖Fig.2 The monzogranite sampled from the Dixiongshan rock mass in Liaodong Peninsulaa—巖石標本(rock specimen);b—正交偏光(50×)下的顯微鏡照片(microphotograph under orthogonal polarization);c—單偏光(50×)下的顯微鏡照片(microphotograph under polarization)
3.1 鋯石SHRIMP U-Pb年代學
遼東半島弟兄山巖體二云母二長花崗巖的鋯石SHRIMP U-Pb年齡分析結果列于表1.二云母二長花崗巖鋯石呈自形晶,較小,長50~200 μm,長短軸比1.3∶1~5∶1.陰極發(fā)光(CL)圖像顯示鋯石均發(fā)育振蕩環(huán)帶.鋯石微量元素測試數(shù)據(jù)顯示,二云母二長花崗巖鋯石U=343×10-6~1136×10-6,Th=255×10-6~674×10-6,Th/ U=0.50~0.16.二云母二長花崗巖樣品的鋯石Th/U均大于0.1,也表明了鋯石的巖漿成因[16].結合振蕩環(huán)帶和鋯石的U、Th含量可以判斷測試的鋯石均為巖漿鋯石.
二云母二長花崗巖鋯石U-Pb諧和年齡圖上所有數(shù)據(jù)點落在U-Pb諧和線附近(圖3),經(jīng)過普通鉛校正以后,以206Pb/238U計算(誤差為2σ)得到加權平均年齡為(205.2±2.1)Ma,代表巖漿結晶年齡,重新厘定了弟兄山花崗巖的時代應屬于三疊紀,表明其為印支晚期巖漿活動產物.而前人用K-Ar法測得的弟兄山巖體二云母二長花崗巖巖同位素年齡為168 Ma(遼寧省地質礦產調查院大連分院,2000),時代為中侏羅世.
3.2 巖石地球化學
3.2.1 主量元素特征
遼東弟兄山巖體包括二云母二長花崗巖和黑云母花崗巖.本文測定了4件代表性樣品的主、微量元素.主量元素分析表明(表2),弟兄山花崗巖巖石化學成分含量與中國花崗巖平均對比,具富硅、高鉀、貧鋁、低鎂的特點.SiO2含量為69.19%~75.76%(質量分數(shù)).除S911外,其余樣品TiO2含量變化在0.093%~0.2%之間.所有二云母二長花崗巖巖均具有高Al2O3(12.30%~14.28%)和K2O(4.26%~5.10%)含量,低Na2O(3.48%~4.24%),MnO(0.01%~0.06%)和CaO(0.27%~0.87%)含量的特征.FeOt含量變化在1.72%~6.27%之間. A/CNK值0.95~1.10,平均1.04,屬鋁過飽和型.在A/CNK-A/NK鋁飽和指數(shù)圖解(圖4)上,所有點均投在準鋁-過鋁質區(qū)域內.在QAP圖解上樣品全部落入正長花崗巖區(qū)域(圖5).這些地球化學特征顯示,二云母二長花崗巖為準鋁-過鋁質堿性系列.
表1 遼東半島弟兄山巖體二長花崗巖鋯石SHRIMP U-Pb定年數(shù)據(jù)Table 1 SHRIMP zircon U-Pb dating of the monzonitic granite sampled from the the Dixiongshan rock mass in Liaodong Peninsula
圖3 遼東半島弟兄山巖體二長花崗巖SHRIMP U-Pb諧和圖及平均年齡Fig.3 SHRIMP zircon U-Pb concordia diagram and average age of the monzogranite sampled from the Dixiongshan rock mass in Liaodong Peninsula
表2 遼東弟兄山巖體主量元素含量Table 2 Major element contents of the Dixiongshan rock mass in Liaodong Peninsula
3.2.2 微量元素特征
微量元素的分析結果表明(表3),弟兄山二云母二長花崗巖微量元素含量接近黎彤的陸殼豐度,具高Rb、Ba、Hf、Li,低Sr、Ni、Co、V、Nb的特點,原始地幔標準化的微量元素蛛網(wǎng)圖(圖6a)顯示富集La、Nd、Y,虧損U、Nb、Ti的特點.其中Rb/Nb比(7.27~39.14)明顯高于大陸殼的Rb/Nb比(2.2~4.7),暗示陸殼物質對成巖影響較大,導致Rb的含量增加[20].Nb/Ta比0.87~12.01,均值6.31,明顯低于原始地幔的Nb/Ta比(17.5± 2.0)[21].
表3 遼東弟兄山巖體微量元素含量Table 3 Trace element contents of the Dixiongshan rock mass in Liaodong Peninsula
圖4 遼東半島弟兄山巖體花崗巖的A/CNK-A/NK圖解(據(jù)文獻[17])Fig.4 The A/CNK-A/NK diagram of the granite sampled from the Dixiongshan rock mass in Liaodong Peninsula(After References[17])1—二長花崗巖(本文)(monzogranite in the paper);2—黑云母花崗巖(本文)(biotite granite in the paper);3—二長花崗巖(引用)(monzogranite referenced);4—黑云母花崗巖(引用)(biotite granite referenced)
3.2.3 稀土元素特征
稀土元素的分析結果表明(表4),ΣREE為117.68× 10-6~219.75×10-6,平均169.94×10-6,LREE/HREE為4.52~12.56,平均8.13,δEu為0.05~0.82,平均0.46.稀土元素總量變化不明顯,在REE球粒隕石標準化模式圖上,所有樣品均表現(xiàn)為右傾型,(La/Yb)N為3.24~20.45,一致性較好,但又略有差異.稀土曲線(圖6b)和稀土參數(shù)表明輕稀土分餾較強,重稀土分餾弱,屬Eu負異常的輕稀土富集型.上述特征反映物質源于陸源碎屑巖石.
4.1 成巖時代
遼東半島侏羅世侵入巖較為發(fā)育,主要分布于丹東的洼嶺、弟兄山、丁字峪、北堡等地,屬遼東印支—燕山旋回近東西向巖漿巖帶重要組成部分之一.弟兄山巖體是其中典型的三疊紀花崗巖.
遼寧丹東弟兄山巖體由二云母二長花崗巖、黑云母花崗巖組成,區(qū)域分布表現(xiàn)為以中細粒二云母二長花崗巖為中心,邊緣過渡為細?!辛:谠颇富◢弾r.前人用K-Ar法測得的弟兄山巖體二云母二長花崗巖同位素年齡為168 Ma(遼寧省地質礦產調查院大連分院,2000),時代為中侏羅世.本文給出精確的鋯石UPb年代學結果:弟兄山巖體二云母二長花崗巖加權年齡為(205.2±2.1)Ma,可見弟兄山巖體應形成于三疊紀,應為印支晚期巖漿活動產物.
4.2 源區(qū)性質和巖石成因
圖6 遼東半島弟兄山巖體花崗巖的稀土元素配分曲線(a)和微量元素蛛網(wǎng)圖(b)(標準值據(jù)文獻[22])Fig.6 REE distribution patterns(a)and trace element spider diagram(b)for the granite sampled from the Dixiongshan rock mass in Liaodong Peninsula(The standard value is after Reference[22])1—二長花崗巖(本文)(monzogranite);2—黑云母花崗巖(本文)(biotite granite);3—二長花崗巖(引用)(monzogranite referenced);4—黑云母花崗巖(引用)(biotite granite referenced)
表4 遼東弟兄山巖體稀土元素含量Table 4 Rare-earth element contents of the Dixiongshan rock mass in Liaodong Peninsula
弟兄山花崗巖具有高SiO2、Al2O3、K2O,低TiO2、Na2O、MnO和CaO的特征,K2O+Na2O變化范圍為7. 88%~9.282%,K2O/Na2O≥1.16~1.46;CaO/Na2O=0.078~ 0.230,鋁指數(shù)A/CNK=0.95~1.10,屬準鋁-過鋁質花崗巖(圖4),并且在礦物組合中出現(xiàn)白云母(圖2).在A′CF圖解中,所有樣品點基本都在白云母、黑云母、斜長石組成的三角范圍內,僅有1個點在界限附近;在SiO2-Zr圖解中(圖7a),所有樣品點均落在了S型花崗巖區(qū)域中,以上均顯示該花崗巖為S型花崗巖.準鋁-過鋁質反映在造巖礦物上表現(xiàn)為出現(xiàn)較多高Al的原生礦物,如白云母等;具有陸殼重熔型花崗巖的特點[23];里特曼指數(shù)σ=1.89~3.28(σ<3.3,計算公式為σ=[(K2O+Na2O)2]/[SiO2-43]),屬于鈣堿性巖;在Si2OK2O圖解中,樣品落在鉀玄巖系列和高鉀鈣堿性系列區(qū)域內(圖7b).稀土曲線(圖6b)和稀土參數(shù)表現(xiàn)出強烈的輕、重稀土分異特征和明顯的Eu負異常特征(圖6a).反映源區(qū)巖漿形成后發(fā)生過斜長石和其他富Ca礦物的分離結晶作用,是典型準鋁-過鋁質花崗巖的稀土元素特征.在原始地幔標準化的微量元素蛛網(wǎng)圖上,所有花崗巖均富集Rb、Th,明顯虧損Nb、Ta、Sr和Ti(圖6b).所有樣品的Rb=133×10-6~360.3×10-6,絕對大多數(shù)樣品高于花崗巖的平均值(200×10-6);Sr(25.1× 10-6~135.2×10-6)和Ba(48.3×10-6~507×10-6)明顯低于花崗巖的平均值(Sr 300×10-6,Ba 830×10-6),Ba、Sr虧損反映巖漿經(jīng)歷了較為完全的分離結晶作用;大離子親石元素Rb、Th富集,Nb和Ta虧損顯示陸源碎屑巖石為巖漿的源巖.
圖7 遼東半島弟兄山巖體花崗巖的Zr-SiO2判別圖解(a)、A′CF圖解(b)和SiO2-K2O相關圖(c)(據(jù)文獻[24-25])Fig.7 The Zr-SiO2(a),A′CF(b)and SiO2-K2O(c)diagrams of the granite sampled from the Dixiongshan rock mass in Liaodong Peninsula(After References[24-25])1—二長花崗巖(本文)(monzogranite);2—黑云母花崗巖(本文)(biotite granite);3—二長花崗巖(引用)(monzogranite referenced);4—黑云母花崗巖(引用)(biotite granite referenced)
4.3 地質意義
鋯石U-Pb年齡測定表明,弟兄山巖體的侵位時代為三疊紀(205.2±2.1 Ma),是華北東部三疊紀花崗巖的一部分.但是有關該期巖漿活動的地球動力學背景頗有爭議.主要有以下幾種觀點:(1)與古太平洋板塊俯沖作用有關[26-27];(2)是華北克拉通下地殼拆沉作用的產物[28];(3)陸內伸展作用的影響[29].
Barbarin(1999)將A/CNK≥1的準鋁-過鋁質花崗巖分為含白云母過鋁花崗巖類(MPG)和含堇青石過鋁花崗巖類(CPG)[26].其中MPG主要來源于地殼,形成的地球動力學環(huán)境為大陸碰撞,其發(fā)育的構造環(huán)境為橫切厚地殼的橫推剪切逆沖帶[30].弟兄山巖體準鋁-過鋁質S型花崗巖含有白云母,它們的A/CNK=0.95~1.10,平均1.04,屬于典型的含白云母準鋁-過鋁質花崗巖(MPG),主要來源于陸源碎屑巖石.
弟兄山巖體的形成可能與中生代歐亞大陸與古太平洋板塊構造環(huán)境密切相關.遼東半島在晚三疊世以前,跨華北板塊東緣和蒙古海槽兩大構造單元.古生代時期,中亞-蒙古洋板塊向南俯沖于華北板塊之下,形成強烈的火山噴發(fā)和花崗質巖漿侵入.古生代末期至早三疊世末,海槽封閉褶皺,華北板塊與西伯利亞板塊對接,歐亞大陸形成.晚三疊世后開始接受庫拉-太平洋板塊的俯沖,進入環(huán)太平洋構造域發(fā)展階段.白堊紀以后,亞洲大陸東緣的地球動力學環(huán)境發(fā)生了一次明顯的變化.庫拉-太平洋板塊洋脊傾沒后,歐亞大陸東部強烈拉張,地殼進一步隆升,使這里處于拉張應力控制下,大陸邊緣逐漸解體,中國東部大陸邊緣進入“類裂谷大陸邊緣”階段[31].
三疊紀弟兄山S型花崗巖是庫拉-太平洋板塊向歐亞大陸俯沖的產物.由于庫拉-太平洋板塊的俯沖,大陸地殼受擠壓而隆起,相應地產生斷塊運動.由于這里的海洋板塊俯沖速度快,俯沖角度較緩,地殼較薄,因而形成巖漿的深度較淺[31],巖漿作用明顯表現(xiàn)出活化大陸邊緣的特點.綜合弟兄山花崗巖形成時間、空間(圖1)分析,弟兄山巖體應為自侏羅世開始由板塊俯沖引起的東亞大陸邊緣構造過程的響應.弟兄山巖體地球化學特征表明其巖漿來源于地殼,是印支晚期華北巖石圈處于弱伸展狀態(tài)背景的響應.
通過對遼東半島弟兄山巖體花崗巖的巖石學、年代學、元素地球化學和同位素地球化學研究,獲得了如下幾點認識:
(1)弟兄山巖體二云母二長花崗巖SHRIMP U-Pb年齡為(205.2±2.1)Ma,代表巖漿結晶年齡,重新厘定了弟兄山巖體二云母二長花崗巖的時代應屬于三疊紀,應為印支晚期巖漿活動產物.
(2)弟兄山巖體花崗巖礦物特征與地球化學特征表明其屬于殼源準鋁-過鋁質S型花崗巖,并且含有白云母,它們的A/CNK=0.95~1.10,屬于典型的含白云母準鋁-過鋁質花崗巖(MPG),主要來源于陸源碎屑巖石.
(3)結合區(qū)域構造演化歷史以及巖體的源區(qū)性質和成因類型,認為弟兄山巖體是庫拉-太平洋板塊向歐亞大陸俯沖的產物,是印支晚期華北巖石圈處于弱伸展狀態(tài)背景的響應.
致謝:感謝北京離子探針中心在SHRIMP分析過程中給予的幫助.
[1]Barbarin B.Granitoids main petrogenetic classification in relation to originandtectonicsetting[J].Geochemic-alJournal,1990,25:227—238.
[2]Barbarin B.A review of the relationships between granitoid types,their origins and their geodynamic environments[J].Lithos,1999,46:605—626.
[3]Bonin B,Azzouni S A,Bussy F,et al.Alkali-calcic and alkaline postorogenic(PO)granite magmatism:Petrologic constraints and geodynamic settings[J].Lithos,1998,45(1-4):45—70.
[4]Coleman D S,Frost T P,Glazner A F.Evidence from the Lamarck granodiorite for rapid Late Cretaceous crust formation in California[J]. Science,1992,258(5090):1924—1926.
[5]Jahn B M,Griffin W L,Windley B F.Continental growth in the Phanerozoic:Evidence from Central Asia[J].Tectonophysics,2000,328:1—227.
[6]Wu F Y,Sun D Y,Li H M,et al.A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J].Chemical Geology,2002,187:143—173.
[7]Hawkesworth C J,Kemp A I S.Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J].Chemical Geology, 2006,226(3-4):144—162.
[8]Yang J H,Wu F Y,Wilde S A,et al.Mesozoic decratonization of the North China block[J].Geology,2008,36(6):467—470.
[9]Wu F Y,Yang J H,Wilde S A,et al.Geochronology,petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula,NE China[J].Chem Geol,2005,221:127—156.
[10]吳福元,楊進輝,柳小明.遼東半島中生代花崗質巖漿作用的年代學格架[J].高校地質學報,2005,11(3):305—317.
[11]林景仟,譚東娟,遲效國,等.膠遼半島中生代花崗巖[M].北京:地質出版社,1992:1—208.
[12]Williams I S.U-Th-Pb geochronology by ion microprobe[J].Reviews in Economic Geology,1998,7:1—35.
[13]宋彪,張玉海,萬渝生,等.鋯石SHRIMP樣品靶制作、年齡測定及有關現(xiàn)象討論[J].地質論評,2002,48(增刊):26—303.
[14]Claoue-Long J C,Compston W,Roberts J,et al.Two carboniferous ages:A Comparison of SHRIMP zircon dating with conventional zircon ages and40Ar/39Ar analysis[J].SEPN Special Publication,1995,5:3—31.
[15]Williams I S,Buick C I,Cartwright I.An extended episode of Early Mesoproterozoic metamorphic fluid flow in the Reylolds Range,Central Australia[J].Journal of Metamorphic Geology,1996,14:29—47.
[16]Belousova E A,Griffin W L,O Reilly S Y,et al.Igneous zircon:Trace element composition as an indicator of source rock type[J].Contrib Mineral Petrol,2002,143:602—622.
[17]Maniar P D,Piccolli P M.Tectonic discrimination of granitoids[J].Geol Soc Am Bull,1989,101(5):635—643.
[18]Le Maitre R W,Bateman P,Dudek A,et al.A classification of igneous rocks and glossary of terms[M].Oxford:Blackwell,1989:4—8.
[19]Streckeisen A.To each plutonic rock its proper name[J].Earth-Sci Rev, 1979,12:1—33.
[20]Sylvester P J.Post-collisional alkaline granites[J].J Geol,1989,97:261—280.
[21]Green T H.Significance of Nb/Ta as an indicator of geochemical processeinthecrustmantlesystem[J].ChemGeol,1995,120:347—59.
[22]Sun S S,McDonough F.Chemical and isotopic systematics of oceanic basalt:Implications for mantle composition and processes[C]//Saunders A D,Norry M J eds.Magmatism in the Ocean Basins.Spec Publ Geol Soc Lond,1989,42:312—345.
[23]李正輝,柳小明,董云鵬,等.賀蘭山古元古代同碰撞花崗巖地球化學、鋯石U-Pb年代及其地質意義[J].巖石學報,2013,29(7):2405—2415.
[24]李之彤,編.中國北方花崗巖及其成礦作用論文集[C].北京:地質出版社,1991:109—114.
[25]Peccerillo R,Taylor S R.Geochemistry of Eocene calc-alkalinevolcanic rocks from the Kastamonu area,Northern Turkey[J].Contrib Mineral Petrol,1976,58:63—81.
[26]Zhou X M,Li W X.Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J].Tectonophy,2000,326:269—287.
[27]陳斌,田偉,翟明國,等.太行山和華北其它地區(qū)中生代巖漿作用的鋯石U-Pb年代學和地球化學特征及其巖漿成因和地球動力學意義[J].巖石學報,2005,21(1):13—241.
[28]Gao S,Rudnick R L,Yuan H L,et al.Recycling lower continental crust in the North China Craton[J].Nature,2004,432:892—897.
[29]Li X H,Chung S L,Zhou H,et al.Jurassic intraplate magmatism in southern Hunan-eastern Guangxi:40Ar/39Ar dating,geochemistry,Sr-Nd isotopes and implication for the tectonic evolution of SE China[J]. Geological Society,London,Publication,2004,226(1):193—215.
[30]Barbarin B.A review of the relationships between granitoid types,their origins and their geodynamic environments[J].Lithos,1999,46(3):605—626.
[31]王德滋,周全城.巖漿作用與地球動力學芻議——以中國東南沿海為例[J].巖石礦物學雜志,1991(3):12—16.
ZIRCON SHRIMP U-Pb AGE AND GEOCHEMISTRY OF THE TRIASSIC DIXIONGSHAN ROCK MASS IN LIAODONG PENINSULA:Geological Significance
SONG Yun-hong1,HAO Li-bo2,YANG Feng-chao1,ZHAO Dong-fang1
1.Shenyang Institute of Geology and Mineral Resources,CGS,Shenyang 110034,China;
2.College of GeoExploration Science and Technology,Jilin University,Changchun 130026,China
The zircon SHRIMP U-Pb dating result indicates that the Dixiongshan rock mass in Liaodong Peninsula,as a part of the Triassic granites found in the east of North China,was emplaced in the Triassic epoch(205.2±2.1 Ma).The whole rock chemical analysis shows that the Dixiongshan granites are characterized by high SiO2,Al2O3and K2O and low TiO2,Na2O,MnO and CaO,with K2O+Na2O ranging from 7.88%to 9.28%,K2O/Na2O≥1.16-1.46,CaO/Na2O=0.08-0.23, A/CNK=0.95-1.10.Furthermore,muscovite appears in the mineral assemblage,which means the rock mass belongs to metaluminous-peraluminous granite.In the SiO2-Zr diagram,all the sample points fall in the S-type granite area.All the characteristics above suggest that the Dixiongshan granites be of metaluminous-peraluminous S-type.The REE curves and parameters show intense fractionation between LREE and HREE and distinct negative anomaly of Eu,suggesting that a fractional crystallization happened to plagioclase or other Ca-rich minerals after the formation of magma in this area,which are typical REE characteristics for metaluminous-peraluminous granites.In the primitive mantle-normalized trace element spider diagram,all the granites are enriched in Rb and Th,but distinctly depleted in Nb,Ta,Sr and Ti.For all samples,Rb= 133×10-6-360×10-6,most of which are higher than the average value of granites(200×10-6).Sr(25×10-6-135×10-6)and Ba(48×10-6-507×10-6)are obviously lower than the average value of granites(Sr=300×10-6,Ba=830×10-6).The depletion of Ba and Sr reflects the magma experienced a relatively complete fractional crystallization.The enrichment of large ion lithophile elements(LILEs,such as Rb and Th)and the depletion of Nb and Ta indicate that the continental crust is the source rock of magma.The characteristics above show that the magma substance is from the terrigenous clastic rock. Combined with the history of regional geodynamical evolution,it is thought that the Dixiongshan rock mass is a product of the subduction of the Kula-Pacific plate towards Eurasia and response of weak extensional setting of North China lithosphere in the Late Indosinian epoch.
metaluminous-peraluminous S-type granite;zircon SHRIMP U-Pb age;Dixiongshan rock mass;Liaodong Peninsula
1671-1947(2015)05-0444-09
P59;P597
A
2015-03-09;
2015-03-17.編輯:張哲.
中國地質調查局地質調查項目“遼寧鳳城雙嶺子地區(qū)礦產遠景調查”(編號1212011085280).
宋運紅(1983—),女,吉林大學在讀博士研究生,地球化學專業(yè),主要從事地球化學及礦產地質調查工作,通信地址遼寧省沈陽市皇姑區(qū)黃河北大街280號,E-mail//yunhong408@163.com