• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Exact Solutions for Unsteady Riabouchinsky Flow of Couple Stress Fluids

      2015-05-04 09:55:24ZHANGDaoxiangCHENGHang
      關(guān)鍵詞:牛頓流體安徽師范大學(xué)計算機科學(xué)

      ZHANG Dao-xiang, CHENG Hang

      (College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

      Exact Solutions for Unsteady Riabouchinsky Flow of Couple Stress Fluids

      ZHANG Dao-xiang, CHENG Hang

      (College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

      This paper aims to investigate analytical solutions for the Riabouchinsky time-dependent flows of couple stress fluids. By assuming certain forms of the streamfunction, we obtain some exact steady and unsteady solutions. The results show that streamfunction and velocity components are all strongly dependent upon the material parameter of couple stress fluids.

      couple stress fluid; newtonian flow; Riabouchinsky flow

      Classification No: O175 Document code:A Paper No:1001-2443(2015)05-0414-05

      Couple stress fluids, such as blood fluids, lubricants and electro-rheological fluids, are particularly important because of their widespread industrial and scientific applications[1-5]. The main characteristic of couple stress fluids is that the stress tensor is anti-symmetric and their accurate flow behaviour can’t be predicted by the classical Newtonian theory. To obtain exact solutions, a common method is to assume certain physical or geometrical properties of the flow field aprior and solve the equations by this method described by Nemenyi[6]. The flow problems of Newtonian fluid, second-grade fluid and couple stress fluid have been also studied by this method[7-9].

      Taking the streamfunction to be linear in one of the space dimensions, Riabouchinsky[10]investigated the steady caseψ(x,y)=yf(x).Hayatet.al[11-12]gaveanalternateapproachtofindexactsolutionsofRiabouchinskyflowsofasecondgradefluidforsteadyandunsteadycases.Inthispaper,theanalyticalsolutionsforunsteadyRiabouchinskyflowsofcouplestressfluidsareconstructed.Meanwhilethestreamlinesareplottedinsomecasestounderstandtheflowbehavior.

      1 Basic Equations

      The flow of a viscous incompressible non-Newtonian couple stress fluid, neglecting thermal effects and body forces, is governed by (Stokes[1]):

      (1)

      (2)

      Letusconsidertheplanemotionofanunsteadycouplestressflowinwhichthevelocityfieldisoftheform

      (3)

      and the generalized pressurep′andvorticityωfunctionsaredefinedas

      (4)

      (5)

      Substitution of (3), (4) and (5) in equations (1) and (2), and elimination of the generalized pressure by cross differentiation yields

      (6)

      (7)

      Continuity equation (6) implies the existence of a streamfunctionψ(x,y,t)suchthat

      (8)

      Substitutionof(8)in(7)yields:

      (9)

      2 Solutions of Riabouchinsky flows

      2.1 solution of the type ψ=yξ(x,t)

      We consider the plane unsteady flow and examine the solution of (9) of the form:

      ψ=yξ(x,t)

      (10)

      whereξ(x,t)isanarbitraryfunctionofthevariablesx,t.Substituting(10)in(9),weobtainthefollowingequation

      ξxxt-ξxξxx+ξξxxx-ν1ξxxxx+ν2ξxxxxxx=0

      (11)

      inwhichthesubscriptsindicatethederivativeswithrespecttothevariablesx,t.

      Letusconsideraparticularsolutionof(11)oftheform

      ξ(x,t)=-V+F(x+Vt)=-V+F(s)

      (12)

      whereVisaconstantandFsatisfiesthedifferentialequation

      FF?-F′F″-ν1F(4)+ν2F(6)=0

      (13)

      Forthesolutionoftheequation(13)wewrite

      F(s)=δ(1+λeσs)

      (14)

      inwhichδ,λ,σarearbitraryrealconstants.Makinguseof(14)into(13),wehave

      δ=ν1σ-ν2σ3

      (15)

      Thusthestreamfunctionwillbe

      ψ=y[-V+(ν1σ-ν2σ3)(1+λeσ(x+Vt))]

      (16)

      Thevelocitycomponentsbecome

      u(x,y,t)=-V+(ν1σ-ν2σ3)(1+λeσ(x+Vt))

      (17)

      v(x,y,t)=-λy(ν1σ2-ν2σ4)eσ(x+Vt))

      (18)

      Thestreamlineflowforψ=Ω1isgivenbythefunctionalform

      (19)

      Inaddition,whenV=0,thesolutionreducestosteadystatesolution,i.e.ψ=y(ν1σ-ν2σ3)(1+λeσ(x))

      u(x,y,t)=(ν1σ-ν2σ3)(1+λeσ(x))

      (20)

      v(x,y,t)=-λy(ν1σ2-ν2σ4)eσ(x)

      (21)

      Thestreamlineflowforψ=Ω1isgivenbythefunctionalform

      (22)

      Weconsideranothersolutionofthetype

      ψ=yξ(x,t)+η(x,t)

      (23)

      Substitutionof(23)intoequation(9)gives

      yξxxt+ηxxt-(yξx+ηx)ξxx+ξ(yξxxx+ηxxx)-ν1(yξxxxx+ηxxxx)+ν2(yξxxxxxx+ηxxxxxx)=0.(24)

      Fromtheaboveequationweobtainthefollowingdifferentialequationssatisfiedbyξandη.

      ξxxt-ξxξxx+ξξxxx-ν1ξxxxx+ν2ξxxxxxx=0

      (25)

      ηxxt-ηxξxx+ξηxxx-ν1ηxxxx+ν2ηxxxxxx=0

      (26)

      Weobservethatthedifferentialequation(25)forξisthesameastheequation(11)whichsolutionisgivenin(12), (14)and(15).Inaddition,aparticularsolutionof(26)isη=ξ(x,t)andthisfactisusefulforthepurposeofpursuingfurthersolutions.Inparticular,ifξisgivenin(12), (14)and(15),wealsoconsidertheformofη

      η=-V+G(x+Vt)=-V+G(s)

      (27)

      Insertingthesolutionofξand(27)intoequation(26),weget

      -λ(ν1σ3-ν2σ5)eσsK(s)+(ν1σ-ν2σ3)(1+λeσs)K″(s)-ν1K?(s)+ν2K(5)(s)=0

      (28)

      whereK(s)=G′(s).Itisnotedthatthedifferentialequation(28)forKisalinearordinarydifferentialequation.Itisnoteasytoobtainthegeneralsolution,soweconsiderthefollowingspecialcases:

      Case 1. whenν1σ-ν2σ3=0, (28)reducesto

      -ν1K?(s)+ν2K(5)(s)=0

      (29)

      Thesolutionofaboveequationis

      (30)

      Weonlyconsiderν1ν2>0.ThenG(s)willbe

      (31)

      (32)

      (33)

      u(x,y,t)=-V

      (34)

      Thestreamlineflowforψ=Ω2isgivenbythefunctionalform

      (35)

      Figure2demonstratesthestreamlinespatternof(32)forV=1,ν1=0.3,ν2=0.4,t=1andb0=b2=b4=0,b1=b3=1.Ifν2=0,thefluidreducestoaNewtonianfluid.Thenwecangetσ=0andψ=-V-Vy+b0+b1(x+Vt)+b2(x+Vt)2+b3(x+Vt)3.AssumingagainthatV=0,weobtainasteadygeneralsolution.

      ψ=b0+b1x+b2x+b3x

      (36)

      u(x,y)=0

      (37)

      v(x,y)=-b1-2b2x-3b3x

      (38)

      Ifb3≠0,itrepresentsthestreamlinesofPoiseuilleflows.Ifb3=0,b2≠0,itdenotestheSimpleCouetteflowswhosevelocityprofileislinearfunctionofx.Figure3representsthesimpleparallelCouetteflowof(36)forb0=-9,b1=-1,b2=10,b3=0anditiscomposedbyparallellines.

      Case 2. whenσ=1andλ=0, (28)reducesto

      (ν1-ν2)K″(s)-ν1K?(s)+ν2K(5)(s)=0

      (39)

      Thesolutionofaboveequationis

      (40)

      (41)

      (44)

      Thestreamlineflowforψ=Ω3isgivenbythefunctionalform

      Figure4demonstratesthestreamlinespatternof(42)forV=1,ν1=0.3,ν2=0.4,σ=1,t=1andd0=d1=d2=d5=0,d3=d4=1.

      3 Conclusions

      [1] STOKES V K. Couple stress in fluid[J]. The physics of fluids, 1966,9:1709-1715.

      [2] HAYAT T, MUSTAFA M, IQBAL Z, ALSAEDI A. Stagnation-point flow of couple stress fluid with melting heat transfer[J]. Applied Mathematics and Mechanics (English Edition), 2013,34(2):167-176.

      [3] HADJESFANDIARI A R, HAJESFANDIARI A, DARGUSH G F. Skew symmetric couple-stress fluid mechanics[J]. Acta Mechanica, 2015,226:871-895.

      [4] RAMESH K, DEVAKAR M. Effects of heat and mass transfer on the peristaltic transport of MHD couple stress fluid through porous medium in a vertical asymmetric channel[J]. Journal of Fluids, 2015,163832.

      [5] ZHANG D X, FENG S X, LU Z M, LIU Y L.Exact solutions for steady flow of second-grad fluid[J]. Journal of Shanghai University(English Edition), 2009,13(4):340-344.

      [6] NEMENYI P F. Recent developments in inverse and semi-inverse methods in the mechanics of continua[J]. Advances in Applied Mechanics, 1951,2(11):123-151.

      [7] HUI W H, Exact solutions of the 2-dim navier-stokes equations[J]. J Appl Math Phys ZAMP, 1987,38(5):689-702.

      [8] LABROPULU F. A few more exact solutions of a second grade fluid via inverse method[J]. Mechanics Research Communications, 2000,27(6):713-720.

      [9] ZHANG D X, SHI L R. Exact solutions of couple stress fluids, Chinese Quarterly of Mechanics, 2010,31(2):159164.

      [10] Riabouchinsky D. Some considerations regarding plane irrotational motion of a liquid[J]. Compt Rend Hebd Seanc Acad Sci(Paris), 1924,179:1133-1136.

      [11] ALSAEDI A, ALI N, TRIPATHI D, HAYAT T. Peristaltic flow of couple stress fluid through uniform porous medium, Applied Mathematics and Mechanics(English Edition), 2014,35(4):469-480.

      [12] HAYAT T, MOHYUDDIN M R, ASGHAR S. Some inverse solutions for unsteanian fluid[J]. Tamsui Oxford Journal of Mathematical Sciences, 2005,21(1):1-20.

      張道祥,程航.偶應(yīng)力流體的Riabouchinsky型精確解[J].安徽師范大學(xué)學(xué)報:自然科學(xué)版,2015,38(5):414-418.

      偶應(yīng)力流體的Riabouchinsky型精確解

      張道祥, 程 航

      (安徽師范大學(xué) 數(shù)學(xué)計算機科學(xué)學(xué)院,安徽 蕪湖 241000)

      本文目的是研究時間依賴的Riabouchinsky型偶應(yīng)力流體的精確解.通過預(yù)設(shè)流函數(shù)的特定形式,我們獲得了流體運動的定常和非定常解.結(jié)果表明,偶應(yīng)力流體的速度場強烈地依賴于流體的物質(zhì)參數(shù).

      偶應(yīng)力流體;牛頓流體;Riabouchinsky流

      10.14182/J.cnki.1001-2443.2015.05.002

      date:2014-09-03

      Supported by National Nature Science Foundation of China(10302002);the Foundation of Outstanding Young Talent in University of Anhui Province of China(2011SQRL022ZD).

      Biography: Daoxiang Zhang(1979-), male, born at Tianchang, Anhui, associate professor, major in stability of differential equations and fluid mechanics.

      猜你喜歡
      牛頓流體安徽師范大學(xué)計算機科學(xué)
      非牛頓流體
      《安徽師范大學(xué)學(xué)報》(人文社會科學(xué)版)第47卷總目次
      什么是非牛頓流體
      少兒科技(2019年3期)2019-09-10 07:22:44
      探討計算機科學(xué)與技術(shù)跨越式發(fā)展
      區(qū)別牛頓流體和非牛頓流體
      Hemingway’s Marriage in Cat in the Rain
      淺談計算機科學(xué)與技術(shù)的現(xiàn)代化運用
      電子制作(2017年2期)2017-05-17 03:55:01
      重慶第二師范學(xué)院計算機科學(xué)與技術(shù)專業(yè)簡介
      首款XGEL非牛頓流體“高樂高”系列水溶肥問世
      《安徽師范大學(xué)學(xué)報( 自然科學(xué)版) 》2016 年總目次
      昌黎县| 广州市| 阿瓦提县| 从化市| 肥西县| 信阳市| 三江| 屏山县| 且末县| 贵州省| 肃宁县| 沙洋县| 石阡县| 罗源县| 宕昌县| 上虞市| 宝坻区| 汽车| 积石山| 西乌珠穆沁旗| 视频| 奉贤区| 米易县| 治县。| 湖南省| 图们市| 澜沧| 淳化县| 泰宁县| 星子县| 石门县| 田阳县| 喀喇沁旗| 夹江县| 遂川县| 高台县| 淅川县| 安溪县| 买车| 民勤县| 石狮市|