張 敏, 畢福強(qiáng), 許 誠(chéng), 劉 慶, 葛忠學(xué), 王伯周, 汪 偉, 朱 勇
(西安近代化學(xué)研究所, 陜西 西安 710065)
氮雜環(huán)化合物(呋咱類、咪唑類、三唑類、四唑類等)具有較高的氮含量,較高的密度及高正生成焓等特點(diǎn),同時(shí)具有熱穩(wěn)定性和安定性較好的優(yōu)點(diǎn),對(duì)大幅度提高推進(jìn)劑的能量水平具有重要的意義[1-3]。我們研究組[4-5]合成出一種國(guó)內(nèi)外未見文獻(xiàn)報(bào)道的四唑類含能化合物——2-偕二硝甲基-5-硝基四唑羥胺鹽(HADNMNT,C2H4N8O7),該化合物不含鹵素,具有較高的正氧平衡(6.35%),理論計(jì)算結(jié)果表明其能量水平與奧克托今(HMX)相當(dāng)[5]。因此,利用HADNMNT取代高氯酸銨(AP)用于推進(jìn)劑中,則有望實(shí)現(xiàn)提高推進(jìn)劑能量、降低特征信號(hào)、減少環(huán)境污染的目標(biāo)。
本研究理論計(jì)算了HADNMNT和其他高能氧化劑的能量特性,利用美國(guó)NASA-CEA軟件[6]計(jì)算了推進(jìn)劑的能量特性參數(shù),主要選取丁羥復(fù)合推進(jìn)劑(HTPB)和改性雙基推進(jìn)劑(CMDB)兩種體系,考察添加不同含量HADNMNT時(shí),HTPB和CMDB推進(jìn)劑能量特性的變化規(guī)律,并評(píng)價(jià)了幾種含HADNMNT推進(jìn)劑配方的能量性能。
為了比較HADNMNT與AP、二硝酰胺銨鹽(ADN)等氧化劑及黑索今(RDX)、奧克托今(HMX)等高能組分的性能,利用量子化學(xué)方法[7-14]計(jì)算了HADNMNT的密度(ρ)和固相生成焓(fH),并采用美國(guó)NASA-CEA軟件[6],在標(biāo)準(zhǔn)狀態(tài)下(壓強(qiáng)為6.86 MPa,膨脹比為70/1),對(duì)各化合物單元推進(jìn)劑的氧系數(shù)(Ф)、燃溫(Tc)、產(chǎn)物平均分子質(zhì)量特征速度(C*)、理論比沖(Isp)及密度比沖(Iρ)進(jìn)行計(jì)算,結(jié)果見表1。
表1中列出了HADNMNT、RDX及AP等各化合物的能量性能,HADNMNT的特征速度遠(yuǎn)遠(yuǎn)高于AP和ADN,低于HMX、RDX及CL-20; HADNMNT具有較高的單元比沖,僅低于CL-20; 而就密度比沖而言,HADNMNT的密度比沖高于AP、AND及RDX,低于HMX與CL-20。與RDX、HMX、CL-20等高能炸藥相比,HADNMNT的氧系數(shù)為1.167,均有較大提高; 與AP、ADN等氧化劑相比,HADNMNT的氧系數(shù)低,但具有較高的生成焓,且其分子中不含鹵素,燃燒產(chǎn)物清潔。因此,HADNMNT是一種能量較高、正氧平衡的含能化合物,可作為含能氧化劑或高能組分應(yīng)用于推進(jìn)劑配方中,部分或全部取代常用氧化劑AP或高能炸藥組分RDX、HMX等,有望實(shí)現(xiàn)推進(jìn)劑的高能化和少煙化。
考察了HADNMNT取代AP后,對(duì)丁羥復(fù)合推進(jìn)劑能量性能的影響規(guī)律。實(shí)際采用的丁羥復(fù)合推進(jìn)劑配方(質(zhì)量分?jǐn)?shù))為[16]: HTPB 10%,Al 5%,AP 85%。保持HTPB的含量不變,利用HADNMNT逐步取代AP,對(duì)推進(jìn)劑能量性能進(jìn)行計(jì)算,結(jié)果列于表2中。
在推進(jìn)劑實(shí)際配方中,通常采用高能炸藥與氧化劑配合使用,以達(dá)到提高推進(jìn)劑能量性能的目的。鑒于上述結(jié)論,考察了固定HTPB含量為10%,Al含量為5%,利用氧化劑HADNMNT分別與高能炸藥RDX、HMX及CL-20等進(jìn)行復(fù)配(總含量85%)的推進(jìn)劑能量性能。結(jié)果列于圖1。
表1HADNMNT和其他含能材料的性能比較
Table1Performance parameters of HADNMNT and some energetic materials
compd.ρ1)/g·cm-3DfH2)/kJ·mol-1Ф3)Tc4)/KMw5)C*6)/m·s-1Isp7)/N·s·kg-1Iρ8)/N·s·dm-3HADNMNT1.87299.401.167346227.451609.02639.84936.4RDX1.82 61.55[15]0.667327724.271645.02608.94748.2HMX1.90 75.02[15]0.667326924.281642.02604.14947.8CL-20[3]2.04415.50.800358627.361638.02673.35453.5AP[3]1.95-290.452.666143327.92990.31550.33034.2ADN[3]1.82-149.802.000209624.801282.12008.53614.3
Note: 1) density; 2) enthalpy of formation; 3) oxygen balance; 4) chamber temperature; 5) ralative average molecular mass of products; 6) characteristic velocity; 7) specific impulse; 8) density impulse.
表2HADNMNT含量對(duì)HTPB推進(jìn)劑的能量特性及燃燒產(chǎn)物的影響
Table2Effect of HADNMNT content on energy characteristics and combustion products of HTPB propellant
content/%HADNMNTAPФenergycharacteristicsTc/KMwIsp/N·s·kg-1C*/m·s-1molefractionofcombustionproduct/%H2OCO2COO2N2HCl0851.413300530.102331.3143040.5310.09013.9310.8121.0010751.321315029.952407.9147139.3512.530.0211.2714.3418.3120651.238327029.732475.2150738.0214.900.128.5817.8915.5630551.162337229.452533.7153836.4216.980.516.0421.4312.8640451.092345929.142584.4156634.6018.641.303.8725.0010.4050351.028353628.802630.2159332.3819.362.922.2728.457.9960250.968360628.462671.1161929.9119.145.361.2731.755.6670150.913367128.102708.4164127.3518.298.310.6734.913.388050.861373327.742743.3166524.7617.0411.580.3437.931.138500.837376427.572760.0167623.4616.3013.280.2339.380
圖1HADNMNT含量對(duì)HTPB推進(jìn)劑理論比沖的影響
Fig.1Effect of HADNMNT content on the specific impulse of HTPB propellant
圖1中三條曲線分別表示高能氧化劑HADNMNT與高能炸藥CL-20、RDX及HMX復(fù)配時(shí),HADNMNT含量對(duì)推進(jìn)劑理論比沖的影響規(guī)律。由圖可知,在HADNMNT與CL-20復(fù)配時(shí),隨著HADNMNT含量增加,推進(jìn)劑的Isp不斷增加; HADNMNT與RDX及HMX分別進(jìn)行復(fù)配時(shí),隨著HADNMNT含量不斷增加,丁羥復(fù)合推進(jìn)劑的Isp先不斷提高,并分別在HADNMNT含量為71%和73%達(dá)到最大值2764.2 N·s·kg-1和2763.9 N·s·kg-1,繼續(xù)增加HADNMNT的含量至85%,Isp則小幅降低。因此,選取高能氧化劑HADNMNT與高能炸藥RDX進(jìn)行復(fù)配,獲得優(yōu)化的推進(jìn)劑配方為: HTPB 10%,Al 5%,HADNMNT 71%,RDX 14%。
實(shí)際配方中,為提高推進(jìn)劑的能量,往往需要向推進(jìn)劑中加入單位質(zhì)量放熱量大的Al粉,因此,進(jìn)一步對(duì)以HTPB、Al、HADNMNT及RDX為主要組分的丁羥復(fù)合推進(jìn)劑的能量性能進(jìn)行計(jì)算,固定HTPB含量為10%,Al、RDX及HADNMNT的總含量為90%(金屬Al粉的最大含量為23%),考察了Al、RDX及HADNMNT的含量對(duì)推進(jìn)劑理論比沖的影響,繪制了推進(jìn)劑的等比沖三角圖,如圖2所示。
由圖2中曲線可見,HADNMNT含量一定時(shí),Isp隨著Al含量增加呈現(xiàn)出先提高后降低的趨勢(shì)(轉(zhuǎn)折區(qū)間在Al含量為15%~16%范圍內(nèi)),其原因可能為,推進(jìn)劑中高能燃料Al粉的加入,有利于提高Isp,但當(dāng)Al含量過(guò)大時(shí),推進(jìn)劑體系的氧系數(shù)逐漸降低,造成不完全燃燒加劇,從而使Isp下降。由圖2可見,推進(jìn)劑高比沖配方有較大的調(diào)節(jié)范圍,推進(jìn)劑Isp>2770.0 N·s·kg-1的優(yōu)化配方為HADNMNT含量為35%~80%,RDX含量為0%~40%,Al粉含量為7%~16%。丁羥復(fù)合推進(jìn)劑的最高理論比沖為2778.9 N·s·kg-1,其配方范圍為HADNMNT的含量為60%~62%,RDX及Al粉含量分別為14%~16%和14%~15%。
圖2HTPB/HADNMNT/RDX/Al組成的丁羥復(fù)合推進(jìn)劑的等比沖三角圖
Fig.2Iso-impulse trigonal figure of the HTPB/HADNMNT/RDX/Al propellant
考察了微煙改性雙基推進(jìn)劑中,利用HADNMNT逐步取代高能炸藥RDX對(duì)推進(jìn)劑能量特性的影響。實(shí)際采用的CMDB推進(jìn)劑配方(質(zhì)量分?jǐn)?shù))為[17]:硝化棉(NC,含氮量12.6%)25%,硝化甘油(NG)33%,RDX 31%,DINA 3.5%,其他助劑7.5%。保持NC、NG、DINA及其他助劑的含量不變,利用HADNMNT逐步取代RDX,CMDB推進(jìn)劑的能量性能列于表3中。
表3HADNMNT含量對(duì)CMDB推進(jìn)劑能量性能的影響
Table3Effect of HADNMNT content on energy characteristics of CMDB propellant
content/%HADNMNTRDXФenergycharacteristicsTc/KMwIsp/N·s·kg-1C*/m·s-1molefractionofcombustionproduct/%H2H2OCOCO2N20310.679296924.982431.6153414.2621.6125.8718.7019.563280.686300025.132441.4153913.5722.1225.5018.9419.876250.694303025.272451.0154412.8822.6225.1119.1920.189220.702305825.422460.5154912.2123.1124.7019.4820.5012190.709308625.562469.7155411.5423.5924.2719.7820.8315160.717311225.702478.7155810.8924.0523.8020.1110.8918130.726313725.842487.6156210.2424.4923.3220.4721.4821100.734316025.972496.115669.6124.9322.8020.8521.822470.743318226.112504.515708.9925.3422.2521.2622.162740.751320326.242512.515738.3925.7421.6821.6922.513010.760322226.372520.315757.8026.1221.0722.1622.863100.763322826.422522.915767.6026.2520.8622.3222.97
向推進(jìn)劑中加入高能燃燒劑,利用其燃燒時(shí)放出的大量熱能,提高推進(jìn)劑的燃溫,從而達(dá)到提高理論比沖與特征速度的目的??疾旄吣苋紵齽╀X粉含量對(duì)含HADNMNT的CMDB推進(jìn)劑的能量特性影響規(guī)律。采用上述優(yōu)化的推進(jìn)劑配方: 硝化棉(NC,含氮量12.6%)25%,硝化甘油(NG)33%,HADNMNT 31%,DINA 3.5%,其他助劑7.5%。利用Al粉逐步取代HADNMNT,考察了添加不同含量Al粉對(duì)含HADNMNT的CMDB推進(jìn)劑能量性能的影響,結(jié)果列于表4中。
表4Al含量對(duì)CMDB推進(jìn)劑能量性能的影響
Table4Effect of Al content on energy characteristics of CMDB propellant
content/%HADNMNTAlФenergycharacteristicsTc/KMwIsp/N·s·kg-1C*/m·s-1molefractionofcombustionproduct/%H2H2OCOCO2N2Al2O33100.763322826.422522.915767.6026.2520.8622.3222.9702740.718334727.262553.415829.4424.0225.9516.9821.572.032380.675346728.142576.2158611.8521.1930.6412.0320.124.1219120.634358229.062590.5158915.0817.4634.677.7118.616.2615160.596368630.012595.9158919.3512.5637.734.3117.058.4611200.559375830.972598.5158524.856.5839.911.8415.4710.737240.524373231.812580.4156230.410.1141.300.0213.7912.813280.491354032.402464.0150230.240.0140.93011.3211.460310.467331832.732381.3144129.820.0140.6608.4310.70
(1) HADNMNT的氧系數(shù)為1.167,低于AP,高于RDX、HMX及CL-20。其密度比沖為4936.4 N·s·dm-3,高于RDX,低于HMX及CL-20,因此,是一種兼顧氧平衡和高能量的化合物,可分別作為含能氧化劑及高能組分應(yīng)用于推進(jìn)劑配方設(shè)計(jì)中。
(2) 丁羥復(fù)合推進(jìn)劑中,用HADNMNT完全取代AP,可提高推進(jìn)劑的理論比沖和特征速度。HADNMNT與高能炸藥RDX進(jìn)行復(fù)配,實(shí)現(xiàn)了提高推進(jìn)劑能量的目的。通過(guò)改變HADNMNT、RDX及Al含量,獲得推進(jìn)劑的等比沖三角圖,獲得了最高比沖的推進(jìn)劑配方: HADNMNT含量為60%~62%,RDX含量為14%~16%,Al粉含量為14%~15%,Isp為2778.9 N·s·kg-1。
(3) 用HADNMNT完全取代改性雙基推進(jìn)劑中的RDX,可以提高推進(jìn)劑的理論比沖和特征速度。通過(guò)進(jìn)一步加入Al粉,調(diào)節(jié)HADNMNT、Al的含量分別為11%和20%時(shí),最高理論比沖可達(dá)2598.5 N·s·kg-1。
參考文獻(xiàn):
[1] 劉晶如, 羅運(yùn)軍, 楊寅. 新一代高能固體推進(jìn)劑的能量特性計(jì)算研究[J]. 含能材料, 2008, 16(1): 94-99.
LIU Jing-ru, LUO Yun-jun, YANG Yin. Energetic characteristics calculation of a new generation of high energy solid propellant[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2008, 16(1): 94-99.
[2] 何春林, 杜志明, 叢曉民, 等. 偶氮四唑二胍的表征及性能研究[J]. 化學(xué)推進(jìn)劑與高分子材料, 2009, 7(6): 31-34.
HE Chun-lin, DU Zhi-ming, CONG Xiao-min, et al. Study on characterization and performance of guanidinium azotetrazolate[J].ChemicalPropellants&PolymericMaterials, 2009, 7(6): 31-34.
[3] 羅陽(yáng), 高紅旭, 趙鳳起, 等. 含2,4-二硝基呋咱基氧化呋咱(DNTF)推進(jìn)劑的能量特性[J]. 含能材料,2005,13(4): 225-228.
LUO Yang, GAO Hong-xu, ZHAO Feng-qi, et al. Energy characteristics of propellant containing 3,4-dinitrofurazanfuroxan(DNTF)[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2005, 13(4): 225-228.
[4] 張敏, 葛忠學(xué), 畢福強(qiáng), 等. 2-偕二硝甲基-5-硝基四唑的合成與性能[J]. 含能材料, 2013, 21(5): 688-690.
ZHANG Min, GE Zhong-xue, BI Fu-qiang, et al. Synthesis and Properties of 2-Dinitromethyl-5-nitrotetrazole[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2013, 21(5): 688-690.
[5] 張敏, 畢福強(qiáng), 許誠(chéng), 等. 2-偕二硝甲基-5-硝基四唑羥胺鹽的合成與性能研究[J]. 含能材料, 2015, 23(7): 653-656.
ZHANG Min, BI Fu-qiang, XU Cheng, et al. Synthesis and Theoretical Study of Hydroxylammonium 2-dinitromethyl-5-nitrotetrazolate[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(7): 653-656.
[6] Gordon S, McBride B J. Computer program for calculation chemical equilibrium compositions and applications: I Analysis, NASA RP-1311[R].Washington D C: NASA, 1994.
[7] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J].JournalofChemicalPhysics, 1993, 98(7): 5648-5652.
[8] Lee C, Yang W, Parr R G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J].PhysicalReviewB:CondensedMatter, 1988, 37: 785-789.
[9] GAO Hai-xiang, Ye Cheng-feng, Piekarski C M, et al. Computational Charaterization of Energetic Salts [J].JournalofPhysicalChemistryC, 2007, 111: 10718-10731.
[10] Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[J].JournalofChemicalPhysics, 1997, 106(3): 1063.
[11] Byrd E F C, Rice B M. Improved prediction of heats of formation of energetic materials using quantum chemical methods[J].JournalofPhysicalChemistryA, 2006, 110(3): 1005-1013.
[12] Rice B M, Pai S V, Hare J. Predicting heats of formation of energetic materials using quantum chemical calculations[J].CombustionandFlame, 1999, 118(3): 445-458.
[13] Ochterski J W, Petersson G A,Montgomery J A. A complete basis set model chemistry V. extension to six or more heavy atoms[J].JournalofChemicalPhysics, 1996, 104(7): 2598-2619.
[14] Montgomery J A, Frisch M J, Ochterski J W, et al. A complete basis set model chemistry VII. Use of the minimum population localization method[J].JournalofChemicalPhysics, 2000, 112(15): 6532-6542.
[15] Stull D R, Westrum E F, Sinke G C. The chemical thermodynamics of organic compounds[M].John Wiley& Sona Inc, New York, 1969: 807.
[16] 劉晶如, 楊寅, 辛偉. 含1,3,3-三硝基氮雜環(huán)丁烷(TNAZ)推進(jìn)劑能量特性計(jì)算研究[J]. 固體火箭技術(shù), 2009, 32(3): 318-322.
LIU Jing-ru, YANG Yin, XIN Wei. Computational investigation of energy characteristics of propellant containing 1,3,3-trinitroazetidine(TNAZ)[J].JournalofSolidRocketTechnology, 2009, 32(3): 318-322.
[17] FAN Xue-zhong, LI Ji-zhen, ZHANG Ya-jun, et al. Characteristics of the smokeless CMDB propellants with 1,3,3-trinitroazetidine[J].ChineseJournalofExplosive&Propellants, 2005, 28(4): 35-40.