王 楠,梁柱榮,王軍霞,徐雪青?,嚴(yán)卓理,何燕妙,鐘杏桃
(1. 中國科學(xué)院廣州能源研究所,廣州 510640;2. 中國科學(xué)院大學(xué),北京 100049;3. 廣州新棟力超聲電子設(shè)備有限公司,廣州 510640)
鈣鈦礦敏化太陽電池制備工藝的優(yōu)化研究*
王 楠1#,梁柱榮1,2#,王軍霞1,2,徐雪青1,2?,嚴(yán)卓理3,何燕妙3,鐘杏桃3
(1. 中國科學(xué)院廣州能源研究所,廣州 510640;2. 中國科學(xué)院大學(xué),北京 100049;3. 廣州新棟力超聲電子設(shè)備有限公司,廣州 510640)
近年來,有機金屬鹵化物鈣鈦礦太陽電池因制備條件溫和、光吸收強、能耗低、光電轉(zhuǎn)化效率高等優(yōu)點成為備受矚目的研究熱點。本文采用一步法制備鈣鈦礦材料甲胺碘化鉛(CH3NH3PbI3),并以廉價的聚(3-己基噻吩)(P3HT)為空穴傳輸材料在大氣環(huán)境下制備鈣鈦礦敏化太陽電池。其中,通過調(diào)控TiO2漿料與松油醇、乙基纖維素的配比,分別制備具有250 nm、600 nm和1 000 nm三種不同厚度的TiO2納米顆粒多孔薄膜光陽極,并系統(tǒng)考察鈣鈦礦前驅(qū)體溶液旋涂量對敏化電極結(jié)構(gòu)形貌及光吸收性能的影響。太陽電池光電特性測試結(jié)果表明:當(dāng)TiO2多孔層厚度為600 nm、鈣鈦礦前驅(qū)體溶液的旋涂量為40 μl時,CH3NH3PbI3能夠較為完全地覆蓋在多孔TiO2的表面,且鈣鈦礦材料的晶粒尺寸合適,TiO2孔道結(jié)構(gòu)未被堵塞,有利于空穴導(dǎo)體的填充以及空穴的轉(zhuǎn)移與傳輸,優(yōu)化后的太陽電池光電轉(zhuǎn)化效率達(dá)到5.17%。
CH3NH3PbI3;敏化太陽電池;P3HT;制備工藝
? 通信作者:徐雪青,E-mail:xuxq@ms.giec.ac.cn # 該作者對論文有同等貢獻(xiàn)雜化光吸收材料ABX3(A:CH3NH3+;B:Pb2+;X:I–,Br–或Cl–),是典型的鈣鈦礦晶體結(jié)構(gòu)[9]。目前鈣鈦礦太陽電池主要有兩種結(jié)構(gòu),分別是平板結(jié)構(gòu)和多孔敏化結(jié)構(gòu)。與現(xiàn)有太陽電池技術(shù)相比,鈣鈦礦材料及鈣鈦礦太陽電池具有以下優(yōu)點:(1)消光系數(shù)高且?guī)秾挾群线m[10-14]。甲胺碘化鉛(CH3NH3PbI3)的帶隙約為1.5 eV,與AM1.5太陽光照下的最佳帶隙值1.45 eV非常接近,具有極高的消光系數(shù)。同時,通過摻雜鹵素原子或金屬陽離子等手段,可以進(jìn)一步調(diào)節(jié)鈣鈦礦材料的帶隙[15-17]。(2)優(yōu)異的雙極性載流子輸運性質(zhì),鈣鈦礦內(nèi)部的光生電子?空穴對在室溫下就能實現(xiàn)界面和體內(nèi)分離[18]。(3)載流子遷移率高。其中電子遷移率約為7.5 cm2·V?1·S?1,空穴遷移率約為12.5 cm2·V?1·S?1[19]。(4)擴散長度非常大[20]。(5)開路電壓較高。目前報道的具有高效率的鈣鈦礦太陽電池大部分都是在手套箱內(nèi)制備,僅少量報道在大氣環(huán)境下制備[21-22],并且目前大多采用價格昂貴的Spiro-OMeTAD {2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴}作為空穴傳輸材料[23-24],這些都不利于鈣鈦礦太陽電池的規(guī)模化制備和進(jìn)一步推廣。本文通過合成鈣鈦礦CH3NH3PbI3,以廉價的P3HT為空穴傳導(dǎo)材料,探索電池優(yōu)化工藝,在大氣環(huán)境下低成本制備鈣鈦礦敏化太陽電池。
1.1 CH3NH3PbI3及其敏化TiO2電極的制備
1.1.1 CH3NH3PbI3的合成
將摩爾比為1∶1的CH3NH2和HI在 0℃反應(yīng)2 h,50℃下減壓蒸餾30 min,析出白色晶體。加入乙醚,多次洗滌后抽濾,收集結(jié)晶粉末。將所得結(jié)晶粉末置于60℃下真空干燥24 h得到CH3NH3I粉末。在大氣環(huán)境下,將摩爾比為1∶1的CH3NH3I粉末與PbI2在丁內(nèi)酯溶液中于60℃反應(yīng)12 h,冷卻后用0.45 μm的濾膜過濾該反應(yīng)液,裝瓶避光備用[25]。
1.1.2 CH3NH3PbI3敏化TiO2電極的制備
將TPP3納米TiO2漿料(平均粒徑20 nm)分別按照TiO2∶松油醇=1∶0、1∶2.5和1∶3.5 三種比例稀釋,得到不同濃度的TiO2漿料。采用絲網(wǎng)印刷的方法涂敷在FTO導(dǎo)電玻璃上,于450℃下熱處理30 min,得到不同厚度的多孔納米TiO2電極。
取適量上述CH3NH3PbI3的丁內(nèi)酯溶液滴于多孔納米TiO2電極上,以轉(zhuǎn)速為3 000 rpm旋涂60 s,然后放置于加熱臺上,40℃加熱3 min。最后在100℃下熱處理10 min,得到CH3NH3PbI3膜層,以上操作均在大氣環(huán)境(相對濕度約為30%)下進(jìn)行。
1.2 CH3NH3PbI3敏化太陽電池的制備
以上述CH3NH3PbI3敏化的TiO2電極為工作電極,P3HT為空穴傳導(dǎo)材料(15 mg P3HT溶解于1ml無水氯苯中,加入6.8 μl LiTFSI(雙三氟甲基磺酰亞胺鋰)的乙腈溶液(28.3 mg·ml–1)和3.4 μl 4-tBP(四-叔丁基吡啶),Au電極為對電極,組裝成鈣鈦礦敏化太陽電池。電池的組裝步驟如圖1所示。
圖1 鈣鈦礦太陽電池的組裝示意圖Fig. 1 Schematic diagram of the fabrication process for CH3NH3PbI3sensitized solar cells
1.3 光電化學(xué)測試
光電流?電壓曲線、載流子壽命曲線的測試均在Autolab PGSTAT-30電化學(xué)工作站上進(jìn)行,均直接以鈣鈦礦太陽電池為樣品。光照下的電化學(xué)測試均采用1 000 W的氙燈為光源,光強采用NREL標(biāo)準(zhǔn)硅電池校準(zhǔn)至100 mW·cm?2。
2.1 CH3NH3PbI3結(jié)構(gòu)分析
圖2a為制備的CH3NH3I和CH3NH3PbI3的XRD圖。如圖所示,制備的CH3NH3I峰位與JCPDS 00-101-0737一致,表明自制的CH3NH3I純度較高。繼續(xù)將上述CH3NH3I粉末與PbI2在丁內(nèi)酯溶液中反應(yīng),90℃烘干。將得到的CH3NH3PbI3粉末進(jìn)行XRD及Raman分析。結(jié)合圖2譜圖分析,可知所制得的鈣鈦礦晶體與標(biāo)準(zhǔn)譜圖吻合,且得到的晶體較純,不含PbI2。
圖2 (a)CH3NH3I和CH3NH3PbI3的XRD圖;(b) CH3NH3PbI3的Raman圖Fig. 2 (a) XRD patterns of CH3NH3I and CH3NH3PbI3; (b) Raman spectra of CH3NH3PbI3
2.2 CH3NH3PbI3熱行為測試
根據(jù)太陽電池的測試條件,要求光敏化劑在較高的溫度下具有良好的穩(wěn)定性,因此考察鈣鈦礦材料的使用溫度范圍,即熱穩(wěn)定性,是其性能分析的重要方面。我們對制備所得的CH3NH3PbI3粉末進(jìn)行熱行為測試分析。如圖3所示,在升溫的初始階段(30℃~300℃),鈣鈦礦材料的質(zhì)量基本不變,損失 在1wt%以下,這一階段的損失主要是因為殘留在粉末中的少量溶劑(丁內(nèi)酯)隨著溫度的升高而持續(xù)揮發(fā)。在300℃~450℃區(qū)間,鈣鈦礦材料的質(zhì)量緩慢減小,這是由于CH3NH3PbI3逐漸分解成PbI2和CH3NH3I。在450℃~550℃區(qū)間,鈣鈦礦材料的質(zhì)量明顯減小,這是由于有機物中C?N鍵的斷裂,表明CH3NH3PbI3的分解溫度為320℃左右。
圖3 CH3NH3PbI3的熱重圖Fig. 3 TGA spectra of CH3NH3PbI3
2.3 鈣鈦礦敏化電極的結(jié)構(gòu)與形貌
首先,我們對TiO2光陽極的厚度進(jìn)行了優(yōu)化。將TPP3原漿料添加不同體積的無水乙醇和乙基纖維素進(jìn)行稀釋,并通過絲網(wǎng)印刷在導(dǎo)電玻璃上刮涂一層多孔TiO2薄膜。通過截面SEM圖觀察其形貌與厚度(如圖4所示)。結(jié)果表明:TiO2的顆粒尺寸為20 nm左右,且當(dāng)TiO2與松油醇質(zhì)量體積比分別為1∶3.5、1∶2.5和1∶0時,所得多孔TiO2薄膜的厚度分別為250 nm,600 nm和1 000 nm。
圖4 不同濃度TiO2漿料制備所得的TiO2薄膜的SEM圖Fig. 4 SEM images of the TiO2films prepared using TiO2paste with different concentrations
以600 nm厚的TiO2薄膜為研究對象,探討了鈣鈦礦前驅(qū)體溶液旋涂量對敏化電極結(jié)構(gòu)形貌的影響。圖5為不同鈣鈦礦前驅(qū)體溶液旋涂量制備所得TiO2/CH3NH3PbI3薄膜的截面和表面SEM圖。由表面SEM圖可以看出:當(dāng)鈣鈦礦前驅(qū)體溶液的旋涂量為20 μl時,TiO2薄膜表面幾乎沒有CH3NH3PbI3覆蓋;這樣容易導(dǎo)致空穴傳導(dǎo)材料與光陽極TiO2直接接觸,引起嚴(yán)重的電子復(fù)合;當(dāng)旋涂量為30 μl時,TiO2表面有部分CH3NH3PbI3覆蓋,其顆粒較??;當(dāng)旋涂量為40 μl時,CH3NH3PbI3全部覆蓋在TiO2表面,其晶粒尺寸較大;當(dāng)旋涂量為50 μl時,TiO2表面全部被CH3NH3PbI3覆蓋,其晶粒尺寸更大,粒徑約為300 nm;由其截面圖可知,隨著鈣鈦礦前驅(qū)體溶液旋涂量的增加,CH3NH3PbI3逐漸填充多孔TiO2的孔道;當(dāng)旋涂量為50 μl時,CH3NH3PbI3晶體尺寸過大,團(tuán)聚形成塊狀,導(dǎo)致TiO2孔道堵塞,不利于空穴導(dǎo)體的滲透與填充。因此,當(dāng)鈣鈦礦前驅(qū)體溶液旋涂量為40 μL時,制備所得的鈣鈦礦薄膜具有適中的晶粒尺寸,TiO2的孔道沒有被 堵塞。
圖5 不同前驅(qū)體溶液旋涂量所得CH3NH3PbI3敏化TiO2薄膜的SEM截面形貌圖:(a)20 μl;(b)30 μl;(c)40 μl;(d)50 μl;與表面形貌圖:(e)20 μl;(f)30 μl;(g)40 μl;(h)50 μlFig. 5 Cross section SEM images of the CH3NH3PbI3films obtained with a perovskite precursor solution of (a) 20 μl, (b) 30 μl, (c) 40 μl, (d) 50 μl; and the surface SEM images respectively: (e) 20 μl, (f) 30 μl, (g) 40 μl, (h) 50 μl
2.4 鈣鈦礦敏化電極的光學(xué)性能分析
圖6是鈣鈦礦前驅(qū)體溶液旋涂量分別為20 μl,30 μl、40 μl和50 μl時的UV-Vis吸收光譜。由圖可知:CH3NH3PbI3敏化電極具有寬而強的光譜吸收。隨著前驅(qū)體旋涂量的增加,鈣鈦礦晶體長大,吸收強度逐漸增大。
圖6 不同鈣鈦礦前驅(qū)體溶液旋涂量制備所得的CH3NH3PbI3薄膜的UV吸收光譜Fig. 6 UV-Vis absorption spectra of the CH3NH3PbI3films obtained with diffident volume
2.5 鈣鈦礦敏化電池的光電性能分析
以不同厚度的多孔TiO2薄膜為光陽極,在大氣環(huán)境下組裝成太陽電池,電池的光電流?電壓(J-V)曲線如圖7所示,性能參數(shù)如表1所示。從圖7a和表1可以看出:隨著多孔TiO2厚度的增加,電池的開路電壓(Voc)與短路電流密度(Jsc)先增加后減??;當(dāng)多孔TiO2厚度為600 nm時,電池具有最高效率,為5.17%(Jsc=16.36 m·cm?2,Voc=0.56 V,F(xiàn)F=0.56)。這主要是因為隨著光陽極厚度的增加,光捕獲性能增強,使器件的光電流與光電壓增強;進(jìn)一步聯(lián)系電池的載流子壽命曲線(圖7b)可以看出,TiO2厚度為600 nm樣品的電子壽命最長,膜厚增加至1 000 nm時,電子壽命降低,這是由于當(dāng)光陽極厚度大于電子擴散長度時,不利于電荷的傳輸,從而導(dǎo)致電子壽命的縮短,造成開路電壓與短路電流的降低,電池性能下降。由于鈣鈦礦材料對濕度特別敏感且穩(wěn)定性差,因此該電池效率與目前報道的在手套箱內(nèi)組裝的太陽電池相比有較大差距。此外,空穴傳輸層的配方仍待進(jìn)一步優(yōu)化。
表1 具有不同多孔TiO2薄膜厚度電池的電池性能參數(shù)表Table 1 Photovoltaic parameters of CH3NH3PbI3sensitized solar cell with different thickness of TiO2films
圖7 具有不同多孔TiO2厚度的鈣鈦礦電池的亮態(tài)J-V曲線(a)和載流子壽命曲線(b) Fig. 7 (a) J-V characteristics measured under AM1.5G solar irradiance, and (b) electron lifetime as a function of open-circuit voltage for devices fabricated with TiO2films with different thickness
本文采用一步法制備鈣鈦礦材料CH3NH3PbI3,以廉價的P3HT為空穴傳輸材料,在大氣環(huán)境下制備鈣鈦礦敏化太陽電池,系統(tǒng)探討了鈣鈦礦前驅(qū)體溶液旋涂量及多孔TiO2膜厚對太陽電池光電性能的影響。電池結(jié)構(gòu)優(yōu)化實驗表明:當(dāng)TiO2多孔層厚度為600 nm、鈣鈦礦前驅(qū)體溶液的旋涂量為40 μl時,電池的光電轉(zhuǎn)化效率最優(yōu),達(dá)到5.17%??昭▊鬏攲拥呐浞胶吞栯姵氐男阅苡写M(jìn)一步提高。
[1] LI J Z, KONG F T, WU G H, et al. TiO2/dye/electrolyte interface modification for dye-sensitized solar cells[J]. Acta Phys. -Chim. Sin., 2013, 29(9): 1851-1864.
[2] SHI J, DONG J, LV S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property[J]. Applied Physics Letters, 2014, 104(6): 063901.
[3] JEON NJ, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014,13(9): 897-903.
[4] XIAO M, HUANG F, HUANG W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angewandte Chemie-International Edition, 2014, 53(37): 9898-9903.
[5] YANG W S,NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.
[6] CHEN Q, ZHOU H, HONG Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. Journal of the American Chemical Society, 2014, 136(2): 622-625.
[7] XIE F, CHOY W C, WANG C, et al. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics[J]. Advance Materials, 2013, 25(14): 2051-2055.
[8] CHEN L, XIE C, CHEN Y. Optimization of the power conversion efficiency of room temperature-fabricated polymer solar cells utilizing solution processed tungsten oxide and conjugated polyelectrolyte as electrode interlayer[J]. Advanced Functional Materials, 2014, 24(25): 3986-3995.
[9] KIM J, KIM G, KIM T K, et al. Efficient planar- heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer[J]. Journal of Materials Chemistry A, 2014, 2(41): 17291-17296.
[10] LI W, DONG H, WANG L, et al. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination[J]. Journal of Materials Chemistry A, 2014, 2(33): 13587-13592.
[11] KIM H S, MORA-SERO I, Gonzalez-Pedro V, et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells[J]. Nature Communications, 2013, 4: 2242.
[12] SUAREZ B, GONZALEZ-PEDRO V, RIPOLLES T S, et al. Recombination study of combined halides (Cl, Br, I) perovskite solar cells[J]. Journal of Physical Chemistry Letters, 2014, 5(10): 1628-1635.
[13] JUAREZ-PEREZ E J, WUSSLER M, FABREGAT- SANTIAGO F, et al. Role of the selective contacts in the performance of lead halide perovskite solar cells[J]. Journal of Physical Chemistry Letters, 2014, 5(4): 680-685.
[14] DUALEH A, MOEHL T, TETREAULT N, et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells[J]. Acs Nano, 2014, 8(1): 362-373.
[15] ZHAO Y, ZHU K. Charge transport and recombination in perovskite (CH3NH3)PbI3sensitized TiO2solar cells[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2880-2884.
[16] LEIJTENS T, Lauber B, Eperon G E, et al. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells[J]. Journal of Physical Chemistry Letters, 2014, 5(7): 1096-1102.
[17] BI D, YANG L, BOSCHLOO G, et al. Effect of different hole transport materials on recombination in CH3NH3PbI3perovskite-sensitized mesoscopic solar cells[J]. The Journal of Physical Chemistry Letters, 2013, 4(9): 1532-1536.
[18] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.
[19] JEON N J, NOH J H, KIM Y C, et al. Solventengineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13(9): 897-903.
[20] GIROTTO C, VOROSHAZI E, CHEYNS D, et al. Solution- processed MoO3thin films as a hole-injection layer for organic solar cells[J]. ACS Applied Material and Interfaces, 2011, 3(9): 3244-3247.
[21] YANG Z B, CHUEH C C, ZUO F, et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition[J]. Advanced Energy Materials, 2015, 5(13): 1500328.
[22] LIANG Z R, ZHANG S H, Xu X Q, et al. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions[J]. RSC Advances, 2015, 5, 60562-60569.
[23] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite- sensitized solar cells[J]. Nature, 2013, 499: 316-319.
[24] NIU G D, GUO X D, WANG L D. Review of recent progress in chemical stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3: 8970-8980.
[25] GONZALEZ-PEDRO V, JUAREZ-PEREZ E J, ARSYAD W S, et al. General working principles of CH3NH3PbX3perovskite solar cells[J]. Nano Letters, 2014, 14(2): 888-893.
Study on the Fabrication of Perovskites Sensitized Solar Cells
WANG Nan1#, LIANG Zhu-rong1,2#, WANG Jun-xia1,2, XU Xue-qing1,2,
YA N Zhuo-li3, HE Yan-miao3, ZHONG Xing-tao3
(1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Guangzhou Newpower Ultrasonic Electronic Equipment Co., Ltd., Guangzhou 510650, China)
Perovskites sensitized solar cells have attracted great interest owing to the easy fabrication conditions, excellent absorption property, low energy consumption, and high power conversion efficiency (PCE). Herein, we successfully synthesized CH3NH3PbI3via one-step method and fabricated perovskite sensitized solar cells by using P3HT as hole-transport material under ambient condition. Mesoporous TiO2films with different thickness (i.e. 250 nm, 600 nm, and 1 000 nm) have been obtained by regulating the mole ratios of TiO2pastes, terpineol, and ethyl cellulose. Furthermore, the influences of precursor volume on the microstructures and optical properties for the perovskite sensitized films were also systematically investigated. Results showed that when the thickness of the TiO2mesoporous layer was~600 nm, and the volume of perovskite precursor solutions was 40 μl, the perovskite layer with desirable grain sizes is covered sufficiently onto the TiO2surface, and the pores between TiO2nanoparticles were still remained, which favors the effective filling of hole-transport materials and is beneficial to the photo-generated hole transport in device. The optimized perovskite sensitized solar cells exhibited a PCE of 5.17%.
CH3NH3PbI3; solar cell; P3HT; fabrication process
TK51
A
10.3969/j.issn.2095-560X.2015.06.004
2095-560X(2015)06-0429-06
0 引 言
2015-09-07
2015-11-03
國家自然科學(xué)基金面上項目(21073193,21273241);廣東省科技計劃協(xié)同創(chuàng)新與平臺環(huán)境建設(shè)項目(2014A05050305);廣東省自然科學(xué)基金(2015A030310501);佛山市院市合作項目(2013HK100411);江蘇省能量轉(zhuǎn)換材料與技術(shù)重點實驗室開放課題基金(MTEC-2015M01)
王 楠(1990-),女,碩士研究生,主要從事納米材料與太陽電池的研究。
梁柱榮(1990-),男,碩士研究生,主要從事納米材料與太陽電池的研究。
徐雪青(1969-),女,博士,研究員,博士生導(dǎo)師,中國科學(xué)院廣州能源研究所太陽能材料實驗室研究主任,廣東省材料研究學(xué)會理事,長期從事太陽能材料與太陽電池研究。
目前,有機金屬鹵化物鈣鈦礦太陽電池(以下 簡稱鈣鈦礦太陽電池)是光伏領(lǐng)域的研究熱點[1-4],其光電轉(zhuǎn)化效率超過20%,是現(xiàn)有商業(yè)太陽電池最有力的競爭對手[5-8]。這種電池所采用的有機?無機