李波
一類(lèi)奇異非線性Dirichlet問(wèn)題解的存在性
李波
(煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,山東煙臺(tái)264005)
主要采用上下解方法,并結(jié)合極大值原理證明了一類(lèi)奇異非線性Dirichlet問(wèn)題-Δu=b(x)g(u)+λa(x)f(u),u>0,x∈Ω,u|?Ω=0解的存在性.其中Ω為?n(n≥2)中的有界光滑區(qū)域,λ<0,g在0處有奇性,且g'(s)<0,s∈(0,∞),f∈C([0,∞),[0,∞))∩C1((0,∞)),b,a>0在Ω上局部H?lder連續(xù).
半線性橢圓方程;Dirichlet問(wèn)題;上下解方法
設(shè)Ω為?n(n≥2)中的有界光滑區(qū)域,我們考慮如下一類(lèi)奇異Dirichlet問(wèn)題
其中:λ<0,a,b滿(mǎn)足(S1):b,a∈(Ω),0<α<1,在Ω上非負(fù)非平凡;f滿(mǎn)足(f1):f∈C([0,∞),[0,∞))∩C1((0,∞));g滿(mǎn)足(g1):g∈C1((0,∞),(0,∞)),,g'(s)≤0,s∈(0,∞).
問(wèn)題(1)來(lái)自于研究非牛頓流體,黏滯流體的邊界層現(xiàn)象,化學(xué)多項(xiàng)催化劑以及熱傳導(dǎo)電子材料等物理現(xiàn)象,見(jiàn)文獻(xiàn)[1-5].
目前,關(guān)于問(wèn)題(1)已經(jīng)有了大量的研究,當(dāng)λ=0時(shí),問(wèn)題(1)退化為問(wèn)題
當(dāng)b≡1時(shí),Crandall,Rabinowitz和Tartar[3]應(yīng)用攝動(dòng)方法和比較原理證明了問(wèn)題(2)存在唯一古典解u∈C2+α(Ω)∩C(ˉΩ).特別地,當(dāng)g(u)=u-γ,γ>1時(shí),Lazer和McKenna[6]利用上下解理論得出了問(wèn)題(2)存在唯一古典解,并且證明了該解有如下性質(zhì):(i)如果γ>1,則u?C1(ˉΩ);(ii)u∈(Ω)當(dāng)且僅當(dāng)γ<3.Zhang和Cheng[7]證明了問(wèn)題(2)在條件(s)ds<∞下,整體解的存在唯一性.更多關(guān)于問(wèn)題(2)的解的存在唯一性的研究請(qǐng)參閱文獻(xiàn)[8-11].
作為問(wèn)題(1)的一個(gè)特殊情形,Stuart[2]對(duì)任意的γ>0給出了如下結(jié)論:如果p∈(0,1),λ>0,則問(wèn)題
至少存在一個(gè)古典解.
然后,Coclite和Palmieri[12]證明了如果p≥1,則存在ˉλ∈(0,∞),使得問(wèn)題(3)當(dāng)λ∈[0,ˉλ)時(shí)至少存在一個(gè)古典解,當(dāng)λ>ˉλ時(shí)沒(méi)有古典解.
最近,Zhang[13]研究了問(wèn)題(1)當(dāng)λ≥0,a,b滿(mǎn)足(S1),f,g分別滿(mǎn)足(f1),(g1)時(shí)古典解的存在性及解在邊界的漸近行為.
本文主要利用上下解的理論方法和極值原理證明了當(dāng)λ<0時(shí),問(wèn)題(1)存在古典解.定理1是本文的主要結(jié)果.
定理1設(shè)λ<0,g滿(mǎn)足(g1)且)=0,f滿(mǎn)足(f1)且在[0,∞)遞增,f(0)=0,f(s)>0,s>0.a,b滿(mǎn)足(S1)在Ω上非負(fù)非平凡,假設(shè)Va∈C2+α(Ω)∩C(ˉΩ)為泊松問(wèn)題
的唯一古典解.如果泊松問(wèn)題
有唯一古典解Vb∈C2+α(Ω)∩C(ˉΩ),則對(duì)于任意固定的λ<0,問(wèn)題(1)至少存在一個(gè)古典解uλ∈C2+α(Ω)∩C(ˉΩ).
這一節(jié)我們證明問(wèn)題(1)解的存在性.
首先考慮更一般的問(wèn)題
關(guān)于上下解方法有如下定義:
定義1一個(gè)函數(shù)u∈C2+α(Ω)∩C(ˉΩ)稱(chēng)為問(wèn)題(6)的下解,如果
定義2一個(gè)函數(shù)ˉu∈C2+α(Ω)∩C(ˉΩ)稱(chēng)為問(wèn)題(6)的上解,如果
引理1[8]設(shè)f(x,s)在Ω×(0,∞)以指數(shù)α(0<α<1)H?lder連續(xù),關(guān)于變量s連續(xù)可微.假設(shè)問(wèn)題(6)在Ω上存在一個(gè)上解ˉu和一個(gè)下解u,且u≤ˉu,則問(wèn)題(6)至少存在一個(gè)解u∈C2+α(Ω)∩C(ˉΩ),且u∈[u,ˉu].
引理2[14]設(shè)b∈Cαloc(Ω),非負(fù)非平凡.如果g滿(mǎn)足(g1),在(0,∞)遞減并且slimg(s)=0,則問(wèn)題
(2)有解u0∈C2+α(Ω)∩C(ˉΩ)當(dāng)且僅當(dāng)問(wèn)題(5)存在唯一解Vb∈C2+α(Ω)∩C(ˉΩ).
下面是定理1的證明.
證明首先固定μ>0,設(shè)uμ∈C2(Ω)∩C(ˉΩ)為問(wèn)題(1)的當(dāng)λ=μ的一個(gè)解.又設(shè)u0為問(wèn)題(2)的唯一解,因?yàn)棣耍?,則
-Δu0≥b(x)g(u0)+λa(x)f(u0),
即u0為問(wèn)題(1)的一個(gè)上解.為了得到問(wèn)題(1)的一個(gè)下解,我們將其變形為如下等價(jià)問(wèn)題令
接下來(lái)考慮問(wèn)題:
因?yàn)閒(0)=0,顯然0為問(wèn)題(10)的一個(gè)下解.又因?yàn)棣?μ<0,問(wèn)題
的解w為問(wèn)題(10)的一個(gè)上解.因此問(wèn)題(10)至少存在一個(gè)解v∈C2(Ω)∩C(ˉΩ).而且v>0,x∈Ω.事實(shí)上,如果結(jié)論不成立,存在一個(gè)點(diǎn)x0∈Ω使得v(x0)=0,則存在一點(diǎn)x1∈Ω使得v(x1)=minx∈ˉΩv(x).則v (x1)=0,▽v(x1)=0且Δv(x1)≥0.另一方面,
矛盾.因此v>0,x∈Ω.故v為問(wèn)題(9)或(1)的一個(gè)下解.
接下來(lái)證明以上得到的下解小于等于上解,即v≤u0,x∈Ω.
假設(shè)存在某點(diǎn)^x∈Ω使得v(^x)>u0(^x).令w=v-u0,則存在~x∈Ω,使得w(~x)>0,且Δw(~x)≤0,另一方面,
矛盾.應(yīng)用引理1,我們得到問(wèn)題(1)至少存在一個(gè)古典解uλ∈C2+α(Ω)∩C(ˉΩ).
[1]Fulks W,Maybee J S.A singular nonlinear elliptic equation[J].Osaka J Math,1960,12:1-19.
[2]Stuart C A.Existence and approximation of solutions of nonlinear elliptic equations[J].Math Z,1976,147:53-63.
[3]Crandall M G,Rabinowitz P H,Tartar L.On a Dirichlet problem with a singular nonlinearity[J].Comm Partial Differential E-quations,1977,2:193-222.
[4]Nachman A,Callegari A.A nonlinear singular boundary value problem in the theory of pseudoplastic fluids[J].SIAM J Appl Math,1980,38:275-281.
[5]Gomes S N.On a singular nonlinear elliptic problem[J].SIAM J Math Anal,1986,17:1359-1369.
[6]Lazer A C,McKenna P J.On a singular nonlinear elliptic boundary value problem[J].Proc Amer Math Soc,1991,111:721-730.
[7]Zhang Zhijun,Cheng Jiangang.On the existence of positive solutions for a class of singular boundary value problems[J].Nonlinear Anal,2001,44:645-655.
[8]Cui Shangbin.Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems[J].Nonlinear Anal,2000,41:149-176.
[9]Lair A V,Shaker A W.Classical and weak solutions of a singular elliptic problem[J].J Math Anal Appl,1997,211:371-385.[10]Maagli H,Zribi M.Existence and estimates of solutions for singular nonlinear elliptic problems[J].J Math Anal Appl,2001,263:522-542.
[11]Shi Junping,Yao Miaoxin.Positive solutions for elliptic equations with a singular non-linearity[J].Electronic J Di Equations,2005,4:1-11.
[12]Coclite M M,Palmieri G.On a singular nonlinear Dirichlet problem[J].Comm Partial Diff Equations,1989,14:1315-1327.
[13]Zhang Zhijun,Li Bo,Li Xiaohong.The exact boundary behavior of solutions to singular nonlinear Lane-Emden-Fowler type boundary value problems[J].Nonlinear Anal:Real World Applications,2014,21:34-52.
[14]Zhang Zhijun.The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation[J].J Math Anal Appl,2005,312:33-43.
Existence of Solutions to a Singular Nonlinear Dirichlet Problem
LI Bo
(School of Mathematics and Information Science,Yantai University,Yangtai 264005,China)
By constructing a pair of sub-and super-solutions of nonlinear elliptic equation and combining with the maximum principle,we prove the existence of solutions to a singular nonlinear Dirichlet problem:-Δu=b(x)g (u)+λa(x)f(u),u>0,x∈Ω,u|?Ω=0.Here Ω is a bounded smooth domain in ?n(n≥2)λ<0,g is singular at zero,and g'(s)≤0,s∈(0,∞),and f∈C([0,∞),[0,∞))∩C1((0,∞)),b,a>0 is local H?lder continuous in Ω.
semi-linear elliptic equation;Dirichlet problem;sub-and super-solution method
O175.2
A
(責(zé)任編輯 李春梅)
1004-8820(2015)03-0162-03
10.13951/j.cnki.37-1213/n.2015.03.002
2014-09-15
煙臺(tái)大學(xué)青年基金資助項(xiàng)目(SX12Z03).
李波(1979-),男,山東煙臺(tái)人,講師,碩士,研究方向?yàn)槠⒎址匠汤碚?