莊國(guó)華,武晨
(江蘇聯(lián)合職業(yè)技術(shù)學(xué)院南京分院,江蘇南京210019)
一類三階兩點(diǎn)邊值問(wèn)題正解的存在性和唯一性
莊國(guó)華,武晨
(江蘇聯(lián)合職業(yè)技術(shù)學(xué)院南京分院,江蘇南京210019)
利用偏序集上的不動(dòng)點(diǎn)定理證明了一個(gè)三階兩點(diǎn)邊值問(wèn)題:
正解的存在性和唯一性,并證明了該正解是嚴(yán)格單調(diào)遞增的。
偏序集;邊值問(wèn)題;正解
Abstract:In this paper,we consider a third-order two-point boundary value problem:
with the help of a fixed-point theorem in partially ordered sets,and obtained sufficient conditions for the existence and uniqueness positive solution to the above boundary value problem.The result showed that this solution is strictly monotonic increasing.
Key words:partially ordered set;boundary value problem;positive solution
三階微分方程在應(yīng)用數(shù)學(xué)和應(yīng)用物理學(xué)中有很重要的應(yīng)用,它可以描述擾度彎曲的梁有固定或者改變交叉的部分及電磁波的傳播等[1]。近來(lái),三階邊值問(wèn)題也受到了廣泛的關(guān)注,同時(shí)也取得了一系列重要結(jié)果[2-7]。在文獻(xiàn)[6]中,作者通過(guò)應(yīng)用錐上的不動(dòng)點(diǎn)定理得出三階邊值問(wèn)題
正解的存在性和多解性;在文獻(xiàn)[7]中,作者應(yīng)用線性算子的特征值理論得出文獻(xiàn)[6]中邊值問(wèn)題正解的存在性。然而,以上的研究中絕大部分是通過(guò)利用錐上的不動(dòng)點(diǎn)定理或者上下解的方法來(lái)證明解的存在性以及多解性,但利用偏序集上的不動(dòng)點(diǎn)定理來(lái)證明解的存在性和唯一性結(jié)果相對(duì)較少。
本文正是利用偏序集上的不動(dòng)點(diǎn)定理來(lái)證明邊值問(wèn)題:
(1)
正解的存在性和唯一性,并證明了該正解還是嚴(yán)格單調(diào)遞增的。
引理2[9]假設(shè)E滿足引理1中的條件,且(E,≤)滿足:對(duì)于x,y∈E,存在z∈E,使得x和y均可與z相比較,則不動(dòng)點(diǎn)是唯一的。
從而由引理3,可得:
本文假設(shè)以下條件成立:
(H1)f(t,u(t))≠0,其中t∈Z?[0,1],μ(z)>0(μ指的是Lebesgue測(cè)度)時(shí),f:[0,1]×[0,+∞]→[0,+∞)是關(guān)于第二個(gè)變量的單調(diào)非減連續(xù)函數(shù);
定理1 假設(shè)條件(H1)、(H2)成立,則邊值問(wèn)題(式(1))存在唯一的且是嚴(yán)格單調(diào)遞增的正解u(t)。
另一方面,由假設(shè)條件(H2)和對(duì)任意的v≤u,有
因?yàn)楹瘮?shù)h(x)=ln(x+1)非減,從而可知
由引理1可知,算子T至少存在一個(gè)不動(dòng)點(diǎn),該不動(dòng)點(diǎn)即為邊值問(wèn)題(式(1))的解。因此,邊值問(wèn)題(式(1))至少有一個(gè)非負(fù)解。又因?yàn)?K,≤)滿足引理2的條件,所以由引理2可知邊值問(wèn)題(式(1))的解是唯一的。由算子T的定義以及假設(shè)條件(H1)易知該解是嚴(yán)格遞增的。
[1]GREGUS M.Third order linear differential equations [M].Boston:D Reidel Pub Co,1987.
[2]CABADA A.The method of lower and upper solutions for second,third,fourth,and higher order boundary value problems[J].J Math Anal Appl,1994,185(2):302-320.
[3]GROSSINHO M R,MINHOS F M.Existence result for some third order separated boundary value problems [J].Nonlinear Anal,2001,47:2407-2418.
[4]CABADA A,HEIKKILA S.Extremality and comparison results for discontinuous implicit third order functional initial-boundary value problems [J].J Math Anal Appl,2001,255:195-212.
[5]LIU Z Q,SHEOK J U,KANG S M.Positive solutions of a singular nonlinear third order two-point boundary value problem [J].J Math Anal Appl,2007,326:589-601.
[6]LI S H.Positive solutionsof nonlinear singular third-order two-point boundary value problem [J].J Math Anal Appl,2006,323(1):413-425.
[7]劉瑞寬.一類奇異三階兩點(diǎn)邊值問(wèn)題正解的存在性[J].四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,37(4):482-486
[8]HARJANI J,SADARANGANI K.Fixed point theorems for weakly contractive mappings in partially ordered sets [J].Nonlinear Anal,2009,71(7/8):3403-3410.
[9]NIETO J J,RODRIGUEZ-LOPEZ R.Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations [J].Order,2005,22(3):223-239.
責(zé)任編輯:陳 亮
Existence and Uniqueness of Positive Solution for the Third-Order Two-Point Boundary Value Problem
ZHUANG Guohua,WU Chen
(Branch of Nanjing,Jiangsu Union Technical Institute,Nanjing 210019)
10.3969/j.issn.1671- 0436.2015.06.014
2015-11-17
莊國(guó)華(1981— ),男,碩士,講師。
O175.14
A
1671- 0436(2015)06- 0064- 03