李海俠
(寶雞文理學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,陜西寶雞 721013)
一類捕食-食餌模型共存解的多重性
李海俠
(寶雞文理學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,陜西寶雞 721013)
討論一類具有擴(kuò)散的捕食-食餌模型正解的存在性和多重性.首先利用上下解方法和不動點(diǎn)指數(shù)理論給出了正解存在的必要條件和充分條件,接著運(yùn)用橢圓系統(tǒng)的存在比較原理和擾動理論研究了參數(shù)b充分大時正解的多重性.結(jié)果說明當(dāng)參數(shù)滿足適當(dāng)條件時系統(tǒng)至少存在兩個正解.
捕食-食餌模型;不動點(diǎn)指數(shù);上下解方法;擾動理論;多重性
在自然界中,種群間的捕食關(guān)系非常普遍和重要,捕食-食餌模型刻畫了生態(tài)系統(tǒng)中種群間的相互作用,其動力學(xué)行為非常豐富.因此,帶有各種反應(yīng)函數(shù)和不同邊界條件的捕食-食餌模型受到了生物學(xué)家和數(shù)學(xué)家的極大關(guān)注[1-8].
本文討論捕食-食餌模型
(1)
近年來,帶有改進(jìn)Leslie-Gower項(xiàng)的捕食-食餌模型得到了廣泛研究[3-8],其中文獻(xiàn)[4-6]研究了帶有改進(jìn)Leslie-Gower項(xiàng)和HollingⅡ反應(yīng)函數(shù)的捕食-食餌模型正解的存在性、不存在性、穩(wěn)定性、唯一性和局部多解性.然而目前在齊次Dirichlet邊界條件下對帶有改進(jìn)Leslie-Gower項(xiàng)和C-M反應(yīng)函數(shù)的擴(kuò)散捕食-食餌模型的研究很少見,因此本文主要討論系統(tǒng)(1)正解的存在性和多重性.
本節(jié)利用不動點(diǎn)指數(shù)理論給出系統(tǒng)(1)正解存在的條件.令λ1(q)是-Δ+q(x)在Ω上關(guān)于齊次Dirichlet邊界條件的主特征值,則λ1(q)是單重的.而且,如果q1(x)≤q2(x)且q1(x)?q2(x),則λ1(q1)<λ1(q2).簡單起見記λ1(0)=λ1.
眾所周知,問題
(2)
首先給出系統(tǒng)(1)正解存在的必要條件和先驗(yàn)估計.
引理1 如果(u,v)是系統(tǒng)(1)的正解,則
證明 根據(jù)系統(tǒng)(1)的第一個方程和特征值的比較原理可得
因此a>λ1.同理可得d>λ1. 】
引理2 系統(tǒng)(1)的任意正解(u,v)滿足
為了利用不動點(diǎn)指數(shù)理論,我們引入如下空間:
下面計算系統(tǒng)(1)平凡解和半平凡解的指數(shù),因其證明與文獻(xiàn)[3]中的引理3.3和引理3.5類似,所以在此省略.
引理3 ( i ) 如果a>λ1或d>λ1,則indexW(A,(0,0))=0;如果a<λ1且d<λ1,則indexW(A,(0,0))=1.
( ii ) indexW(A,D)=1.
(iii) 設(shè)a>λ1.如果d>λ1,則indexW(A,(Θa,0))=0;如果d<λ1,則indexW(A,(Θa,0))=1.
證明 由已知條件和引理3有
矛盾,因此根據(jù)度的可加性知結(jié)論成立. 】
本節(jié)我們討論當(dāng)參數(shù)b充分大時系統(tǒng)(1)正解的多重性.
(3)
這里v*和v**分別是下列問題的唯一正解:
(4)
(5)
(6)
為了說明正解的多重性,先分析如下問題
(7)
引理5 如果a>λ1,d>λ1,則系統(tǒng)(7)存在唯一正解(Θa,v*).而且,(Θa,v*)是非退化和線性穩(wěn)定的.
證明 正解(Θa,v*)的存在性和唯一性顯然,下面證明非退化和線性穩(wěn)定性.令L(Θa,v*)是系統(tǒng)(7)在(Θa,v*)處的線性化算子,則
由Reize-Schaular定理知L(Θa,v*)的譜半徑σ(L(Θa,v*))由實(shí)特征值組成,且
又根據(jù)特征值的比較原理易得
因此,σ(L(Θa,v*))>0.故結(jié)論成立. 】
最后給出系統(tǒng)(1)正解的多重性結(jié)果.
1=indexW(A,D)=indexW(A,(0,0))+
矛盾.因此系統(tǒng)(1)至少存在兩個正解. 】
本文利用不動點(diǎn)指數(shù)理論和擾動理論研究了一類帶有Crowley-Martin反應(yīng)函數(shù)的捕食-食餌模型正解的存在性和多重性.主要結(jié)論如下:
[1] PENG Rui,WANG Ming-xin.On multiplicity and stability of positive solutions of a diffusive prey-predator model[J].JMathAnalAppl,2006,316(1):256-268.
[2] GUO Gai-hui,WU Jian-hua.Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response[J].NonlinearAnalysis(TMA),2010,72(3-4):1632-1646.
[3] GUO Gai-hui,WU Jian-hua,NIE Hua.Multiplicity for a diffusive predator-prey mutualist model[J].ProcLondonMathSoc,2012,105(2):342-366.
[4] ZHOU Jun.Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes[J].JMathAnalAppl,2012,389(2):1380-1393.
[5] ZHOU Jun.Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type II functional response and density-dependent diffusion[J].NonlinearAnalysis,2013,82:47-65.
[6] ZHOU Jun,SHI Jun-ping.The existence,bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses[J].JMathAnalAppl,2013,405(2):618-630.
[7] YANG Wen-sheng,LI Yong-qing.Dynamics of a diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes[J].ComputersandMathematicswithApplications,2013,65(11):1727-1737.
[8] YANG Wen-sheng.Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response[J].NonlinearAnalysis:RealWorldApplications,2013,14(3):1323-1330.
[9] DANCER E N.On the indices of fixed points of mapping in cones and applications[J].JMathAnalAppl,1983,91(1):131-151.
(責(zé)任編輯 馬宇鴻)
Multiplicityofcoexistencesolutionsforapredator-preymodel
LIHai-xia
(InstituteofMathematicsandInformationScience,BaojiUniversityofArtsandSciences,Baoji721013,Shaanxi,China)
The existence and multiplicity of positive solutions for a predator-prey model with diffusion are discussed.The necessary and sufficient conditions of the existence of positive solutions are given by means of the super and sub-solution method and fixed point index theory.Then,by making use of the existence-comparison theorem for elliptic systems and perturbation theory,the multiplicity of positive solutions is investigated when parameterbis sufficiently large.The results show that the system has at least two positive solutions if the parameters satisfy appropriate conditions.Key words:predator-prey model;fixed point index;super and sub-solution method;perturbation theory;multiplicity
2015-02-28;修改稿收到日期:2015-04-15
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(GK201302025);陜西省教育廳專項(xiàng)科研計劃資助項(xiàng)目(14JK1035);寶雞文理學(xué)院重點(diǎn)科研項(xiàng)目(ZK15039)
李海俠(1977—),女,陜西寶雞人,講師,博士.主要研究方向?yàn)槠⒎址匠碳坝嬎憧梢暬? E-mail:xiami0820@163.com
O
A
1001-988Ⅹ(2015)04-0006-04