廣西平南縣大安高級(jí)中學(xué) 蘇達(dá)興
數(shù)學(xué)教師要完成教學(xué)任務(wù)必須重視教學(xué)法,為了達(dá)到現(xiàn)行教學(xué)大綱規(guī)定的中學(xué)數(shù)學(xué)教學(xué)目的,改革傳統(tǒng)的以教師灌輸知識(shí)為主的課堂教學(xué)法已經(jīng)成為一個(gè)普遍被重視的實(shí)際問題,這是因?yàn)橛霉噍敺ú焕诔涔{(diào)動(dòng)學(xué)生的積極思維和發(fā)展學(xué)生的智力,長(zhǎng)此下去,便會(huì)形成思維僵化、智力呆滯,缺乏靈活性和創(chuàng)造性。還由于一些學(xué)生在理解力、接受力和記憶力等方面的差異,容易使部分學(xué)生失去信心,造成兩極分化。因此,教師應(yīng)該把學(xué)生當(dāng)作學(xué)習(xí)的主體,從學(xué)生已有的知識(shí)出發(fā),調(diào)動(dòng)學(xué)生掃主觀能動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)的興趣,將“教”與“學(xué)”有機(jī)地聯(lián)系起來,使學(xué)生積極、主動(dòng)地參與教學(xué)過程,生動(dòng)活潑地進(jìn)行學(xué)習(xí)。
為了實(shí)現(xiàn)上述看法,我在高中數(shù)學(xué)的教學(xué)過程中,對(duì)“探索法”作了一些試驗(yàn),覺得比較符合上述看法?,F(xiàn)用教過的課題舉例如下。
一是首先畫出三個(gè)鈍角ΔABC,并分別以A、B和C為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系。如圖(1)、圖(2)及圖(3)所示。
二是請(qǐng)你根據(jù)橫坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn),確定圖(1)中C點(diǎn)的坐標(biāo)。
三是請(qǐng)你觀察并研究如何利用三角函數(shù)表示圖(1)中B點(diǎn)的坐標(biāo)?
四是請(qǐng)你用兩點(diǎn)間距離公式表示圖(1)中BC邊的長(zhǎng)。
學(xué)生根據(jù)已有的知識(shí),很容易確定了C點(diǎn)的坐標(biāo)為(b,0),但對(duì)于利用三角函數(shù)表示B點(diǎn)的坐標(biāo)不知如何下手,因?yàn)橐郧皼]有這樣做過,交頭接耳互相議論,這時(shí),教師就作出啟發(fā)性的提示:可設(shè)點(diǎn)B的坐標(biāo)為(x,y),并自點(diǎn)B作x軸的垂線形成直角三角形(如圖(4))所示。
然后利用三角函數(shù)的定義,便可得出x和y的三角函數(shù)表示式。經(jīng)過提示之后,學(xué)生很快求出了點(diǎn)B的坐標(biāo)為(c·cosA,c·sinA),然后學(xué)生用兩點(diǎn)間距離。
公式得出:a=|B C|經(jīng)過整理得到
五是請(qǐng)你運(yùn)用上面的方法分別求出圖(2)和圖(3)中AC和AB的長(zhǎng)度表示式,并整理成(1)的形式。
由于學(xué)生已經(jīng)明確了解題的途徑,經(jīng)過一番計(jì)算和整理之后,絕大多數(shù)都求出了:
六是如果將圖(1)、圖(2)和圖(3)鈍角三角形改變成銳角三角形,按照同樣的方法建立直角坐標(biāo)系(如圖(5)、圖(6)及圖(7)所示),能否求出同樣的結(jié)論?
這時(shí),學(xué)生感到比較有把握,最后得出的結(jié)論與上面(1)(2)(3)三個(gè)式子是一致的。
七是如果三角形ABC中有一個(gè)角是直角,又將得到怎樣的結(jié)論呢?由于結(jié)果得到:(當(dāng)時(shí))時(shí))。
至此,教師作出小結(jié),指出:“三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍”。這個(gè)結(jié)論稱為“余弦定理”。如果三角形中有一個(gè)角是直角,就得到“勾股定理”。因此,余弦定理是勾股定理的推廣,而勾股定理是余弦定理的特例。學(xué)生經(jīng)過這樣學(xué)習(xí),覺得定理是由自己推證出來的,心情相當(dāng)舒暢、愉快,后來應(yīng)用定理解題的效果也比較好。
通過這樣的教學(xué)實(shí)踐,我覺得利用“探索法”進(jìn)行教學(xué)有下面幾點(diǎn)好處。
第一,有利于打好學(xué)生的知識(shí)基礎(chǔ)。
第二,有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
第三,有利于提高學(xué)生的思維能力和發(fā)展智力。
以上幾點(diǎn),是我對(duì)“探索法”教學(xué)的初步體會(huì),通過以后不斷的完善和發(fā)展,相信效果會(huì)更好。