潘慧雯,劉 柳,胡亞云,徐金良,李曉薇
(淮陰師范學(xué)院 物理與電子電氣工程學(xué)院,江蘇 淮安 223300)
有限溫度下石墨烯上鐵磁超導(dǎo)隧道結(jié)中微分電導(dǎo)的研究
潘慧雯,劉 柳,胡亞云,徐金良,李曉薇
(淮陰師范學(xué)院 物理與電子電氣工程學(xué)院,江蘇 淮安 223300)
石墨烯; 鐵磁體;p-波超導(dǎo)體; 超導(dǎo)隧道結(jié); 微分電導(dǎo)
單層石墨片是只有一個原子層厚度的蜂窩狀的碳原子晶體,這種理想二維體系顯示了不同尋常的奇異特性[1-6],實(shí)驗(yàn)上已經(jīng)發(fā)現(xiàn)該體系具有很多新穎的物理性質(zhì),例如強(qiáng)磁場下反常的量子霍耳效應(yīng)[1]、彈道輸運(yùn)[3,4]、Josephson效應(yīng)[5]、雙極性超導(dǎo)特性[6]等.理論上,由于單層石墨片獨(dú)特的電子結(jié)構(gòu)和無質(zhì)量費(fèi)米子的特征,使得人們可以利用低能的凝聚態(tài)物理來模擬一些量子場論所預(yù)言的相對論量子現(xiàn)象[1,3,4],例如克萊因佯謬[7](Klein paradox).近幾年來,有關(guān)石墨層上超導(dǎo)隧道結(jié)的研究已成為當(dāng)前凝聚態(tài)物理的熱點(diǎn)之一.
近來,有很多關(guān)于基于石墨層上超導(dǎo)隧道結(jié)中準(zhǔn)粒子輸運(yùn)性質(zhì)的研究報道,人們研究了基于石墨層上正常金屬/s波和d波超導(dǎo)隧道結(jié)、石墨層上鐵磁體/s波超導(dǎo)體隧道結(jié)中準(zhǔn)粒子輸運(yùn)性質(zhì)[4,9-16],但有限溫度下有關(guān)基于石墨層上鐵磁/p波超導(dǎo)體隧道結(jié)中準(zhǔn)粒子輸運(yùn)性質(zhì)的研究還比較少.
本文利用推廣的BTK理論討論有限溫度下石墨層上鐵磁/p波超導(dǎo)體隧道結(jié)中準(zhǔn)粒子輸運(yùn)過程,計算結(jié)的微分電導(dǎo).計算結(jié)果表明,在有限溫度下,微分電導(dǎo)譜的電導(dǎo)峰對應(yīng)的偏壓位置隨α的增大從eV=Δ0處向零偏壓處移動,磁交換能Eh
我們所研究的石墨層上鐵磁/p波超導(dǎo)體隧道結(jié)的結(jié)構(gòu)如圖1所示,x<0處為鐵磁態(tài),x>0處為p波超導(dǎo)體.當(dāng)不考慮準(zhǔn)粒子的自旋反轉(zhuǎn)效應(yīng)時,在石墨層上鐵磁/p波超導(dǎo)體隧道結(jié)中準(zhǔn)粒子的狀態(tài)可以由DBdG方程描述[8,15]:
(1)
h=EhΘ(-x)
(2)
Δk=Δ±(θ)Θ(x)
(3)
其中Θ(x)是階躍函數(shù),p波超導(dǎo)體的配對勢是各向異性的,電子、空穴的有效配對勢是不同的,分別是[19-21]:
Δ±(θ)=±Δ0cos(θ?α)
(4)
(5)
式中θ為準(zhǔn)粒子輸運(yùn)方向相對x軸的夾角,α是p波超導(dǎo)體的a軸與x軸的夾角,由于石墨層上蜂窩狀的碳原子晶體結(jié)構(gòu),α取0和±2π/3[24].式(4)(5)分別是零溫和有限溫度下的配對勢.
考慮電子型準(zhǔn)粒子從左邊入射的情況,在x<0處的鐵磁區(qū)域,電子型和空穴型準(zhǔn)粒子E>0的本征矢和波矢為:
(6)
(7)
(8)
EF是鐵磁區(qū)域的費(fèi)米能,平行于結(jié)方向的粒子的動量是守恒的,滿足條件:
(9)
其中θAσ最大值為900,超過900時,Andreev反射是一虛過程虛Andreev反射對電流沒有貢獻(xiàn).因此,θσ不能超過:
(10)
(1) 自旋向上的入射電子空穴 (2) 自旋向下的反向Andreev反射空穴(3) 自旋向上的反射電子 (4) 自旋向下的鏡面Andreev反射空穴(5) 自旋向上的透射電子型準(zhǔn)粒子 (6) 自旋向下的透射空穴型準(zhǔn)粒子
在x>0處的超導(dǎo)體區(qū)域,電子型和空穴型準(zhǔn)粒子E>0的本征矢和波矢為:
(11)
(13)
(14)
(15)
(16)
(17)
波函數(shù)滿足的邊界條件為[8]:
ψsσ(x=0-)=ψFσ(x=0+)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
這里G0是常量,G1G2分別為零溫和有限溫度下的微分電導(dǎo).
(25)
Bσ(eV,θ)=|bσ(eV,θ)|2
(26)
圖2 微分電導(dǎo)隨偏壓V的變化關(guān)系曲線
本文利用推廣的BTK理論討論石墨層上鐵磁/p波超導(dǎo)體隧道結(jié)中準(zhǔn)粒子輸運(yùn)過程,計算了結(jié)的微分電導(dǎo).計算結(jié)果表明,在有限溫度下,微分電導(dǎo)譜的電導(dǎo)峰對應(yīng)的偏壓位置隨α的增大從eV=Δ0處向零偏壓處移動,磁交換能Eh
圖3 微分電導(dǎo)隨偏壓V的變化關(guān)系曲線
[1]Novoselov K S,Geim A K,Mozorov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
[2]Morozov S V,Novoselov K S,Katsnelson M I,et al.Strong Suppression of Weak Localization in Graphene[J].Phys Rev Lett,2006,97:016801.
[3]Novoselov K S,Geim A K,Mozorov S V.et al Two-dimensional gas of massless Dirac fermions in grapheme[J].Nature,2005,438:197-200.
[4]Zhang Y B,Tan Y W,Stormer Horst L,et al.Experimental Observation of Quantum Hall Effect and Berry’s Phase in Graphene[J].Nature,2005,483:201-204.
[5]Titov M,Beenakker C W J.Josephson effect in ballistic grapheme[J].Phys Rev B,2006,74:041401.
[6]Heersche Hubert B,Jarillo-Herrero Pablo,Ostinga Jeroen B,et al.Bipolar supercurrent in grapheme[J].Nature,2007,446:56-59.
[7]Katsenlson M I,Novoselov K S,Geim A K.Chiral tunnelling and the Klein paradox in graphene[J].Nature Phys,2006,2:620-625.
[8]Beenakker C W J,Specular Andreev Reflection in Graphene[J].Phys Rev Lett,2006,97:067007.
[9]Bhattacharjee S,Sengupta K.Tunneling Conductance of Graphene NIS Junctions[J].Phys Rev Lett,2006,97:217001.
[10]Linder J,Sudbo A.Dirac Fermions and Conductance Oscillations ins-andd-Wave Superconductor-Graphene Juncti-ons[J].Phys Rev Lett,2007,99:147001.
[11]Linder J,Sudbo A.Tunneling conductance in s-and d-wave superconductor-graphene junctions:Extended Blonder-Tinkham-Klapwijk formalism[J].Phys Rev B,2008,77:064507.
[12]Zareyan M,Mohammadpour H,Moghaddam A G.Andreev-Klein reflection in graphene ferromagnet-superconductor junctions[J].Phys Rev B,2008,78:193406.
[13]Asano Y,Yoshida T,Tanaka Y,et al.Electron transport in a ferromagnet-superconductor junction on grapheme[J].Phys Rev B,2008,78:014514.
[14]Zhang Q Y,Fu D Y,Wang B G,et al.Signals for Specular Andreev Reflection[J].Phys Rev Lett,2008,101:047005.
[15]Hsu Y F,Guo G Y.Tunneling conductance of graphene ferromagnet-insulator-superconductor junctions[J].phys Rev B,2010,81:045412.
[16]Bai C X,Yang Y L.Tunneling conductance in graphene-based normal metal-insulator-superconductor junctions[J].Physics Letters A,2010,374:882-885.
[17]Andreev A F.The thermal conductivity of the intermediate state in superconductors[J].Sov Phys JETP,1964,19(5):1228-1231.
[18]Blonder G E,Tinkham M,Klapwijk T M.Transition from metallic to tunneling regimes in superconducting microconstrictions:Excess current charge imbalance and supercurrent conversion[J].Phys Rev B,1982,25:4515.
[19]Hirai T,Tanaka Y,Yoshida N,et al.Temperature dependence of spin-polarized transport in ferromagnet/unconventional superconductor junctions[J].phys Rev B,2003,67:174501.
[20]Tanaka Y,Kashiwaya S.Anomalous charge transport in triplet superconductor junctions[J].phys Rev B,2004,70:12507.
[21]Roy Bitan,Herbut Igor F.Unconventional superconductivity on honeycomb lattice:Theory of Kekule order parame-ter[J].phys Rev B,2010,82:035429.
[責(zé)任編輯:蔣海龍]
Tunneling Conductance in Graphene Ferromagnet/pWave Superconductor Junctions at Finite Temperature
PAN Hui-wen,LIU Liu,HU Ya-yun,XU Jin-liang,LI Xiao-wei
(School of physics and electronic electrical engineering,Huaiyin Normal University,Huaian Jiangsu 223300,China)
Using the extended Blonder-Tinkham-Klapwijk formalism,we investigate the conductance spectra of graphene ferromagnet/pwave superconductor junctions at finite temperature.It is found that the conductance spectra at finite temperature are affected by the p wave pairing symmetry.The ferromagnetic exchange energy in the ferromagnet can suppress Andreev retroreflection but enhance the specular Andreev reflection in graphene ferromagnet/pwave superconductor junctions.The conductance decreases at finite temperature with increasing exchange energyEhforEh
graphene; ferromagnet;p-wave superconductor; superconductor junctions; differential conductance
O511
:A
:1671-6876(2015)01-0024-06