張四保
(喀什師范學(xué)院數(shù)學(xué)系,新疆喀什 844008)
有關(guān)7m+j型奇正整數(shù)不是完全數(shù)的一些命題
張四保
(喀什師范學(xué)院數(shù)學(xué)系,新疆喀什 844008)
完全數(shù);奇完全數(shù);命題
雖未解決是否存在奇完全數(shù)的問題,但有關(guān)奇完全數(shù)存在熱點問題:一,奇完全數(shù)的大小估計,其研究成果參考文獻[3-5];二,奇完全數(shù)相異素因子大小估計與個數(shù)估計,其研究成果參考文獻[6-10];三,特殊類型奇數(shù)是否是完全數(shù)問題,其研究成果參考文獻[11-14].
(1)當π≡3,5,6(mod 7);
(2)當π≡2,4(mod 7)且α=4k+1,k2(mod 3),則n不是完全數(shù).
當π≡1(mod 7)時,顯然有πα≡1(mod 7).
當π≡2(mod 7)時,有πα≡24k+1(mod 7).當k≡0(mod 3),則πα≡2(mod 7);當k≡1(mod 3),則πα≡4(mod 7);當k≡2(mod 3),則πα≡1(mod 7).
當π≡3(mod 7)時,有πα≡34k+1(mod 7).當k≡0(mod 3),則πα≡3(mod 7);當k≡1(mod 3),則πα≡5(mod 7);當k≡2(mod 3),則πα≡6(mod 7).
當π≡4(mod 7)時,有πα≡44k+1(mod 7).當k≡0(mod 3),則πα≡4(mod 7);當k≡1(mod 3),則πα≡2(mod 7);當k≡2(mod 3),則πα≡1(mod 7).
當π≡5(mod 7)時,有πα≡54k+1(mod 7).當k≡0(mod 3),則πα≡5(mod 7);當k≡1(mod 3),則πα≡3(mod 7);當k≡2(mod 3),則πα≡6(mod 7).
當π≡6(mod 7)時,有πα≡64k+1≡6(mod 7).
(1)當π≡3(mod 7)時,有πα≡3,5,6(mod 7),這與πα≡1(mod 7)矛盾;當π≡5(mod 7)時,有πα≡3,5,6(mod 7),這與πα≡1(mod 7)矛盾;當π≡6(mod 7)時,有πα≡6(mod 7),這與πα≡1(mod 7)矛盾,因而n不是完全數(shù).
(2)π≡2(mod 7)且α=4k+1,當k≡0(mod 3)時,有πα≡2(mod 7),這與πα≡1(mod 7)矛盾;當k≡1(mod 3),則πα≡4(mod 7),這與πα≡1(mod 7)矛盾,因而n不是完全數(shù).
π≡4(mod 7)且α=4k+1,當k≡0(mod 3)時,有πα≡4(mod 7),這與πα≡1(mod 7)矛盾;當k≡1(mod 3),則πα≡2(mod 7),這與πα≡1(mod 7)矛盾,因而此時n不是完全數(shù).
證畢.
(1)當π≡1,3,5,6(mod 7);
(2)當π≡2(mod 7)且α=4k+1,k1(mod 3);
(3)當π≡4(mod 7)且α=4k+1,k0(mod 3),則n不是完全數(shù).
(1)當π≡1,3,5,6(mod 7);
(2)當π≡2(mod 7)且α=4k+1,k0(mod 3);
(3)當π≡4(mod 7)且α=4k+1,k1(mod 3),則n不是完全數(shù).
由命題1至命題3,可得到推論1.
(1)當π≡1,3,5,6(mod 7);
(2)當π≡2(mod 7)且α=4k+1,k0(mod 3);
(3)當π≡4(mod 7)且α=4k+1,k1(mod 3),
則n不是完全數(shù).
由命題1的討論可知,當π≡1(mod 7)時,有πα≡1(mod 7);當π≡3(mod 7)時,有πα≡3,5,6(mod 7);當π≡5(mod 7)時,有πα≡3,5,6(mod 7);當π≡6(mod 7)時,有πα≡6(mod 7).由此可知,當π≡1,3,5,6(mod 7)時,πα取模7的情況與πα≡2(mod 7)矛盾,因而n不是完全數(shù).
π≡2(mod 7)且α=4k+1,當k≡1(mod 3)時,有πα≡4(mod 7),這與πα≡2(mod 7)矛盾;當k≡2(mod 3),有πα≡1(mod 7),這與πα≡2(mod 7)矛盾,因而n不是完全數(shù).
π≡4(mod 7)且α=4k+1,當k≡0(mod 3)時,有πα≡4(mod 7),這與πα≡2(mod 7)矛盾;當k≡2(mod 3),有πα≡1(mod 7),這與πα≡2(mod 7)矛盾,因而n不是完全數(shù).
證畢.
(1)當π≡3,5,6(mod 7);
(2)當π≡2,4(mod 7)且α=4k+1,k2(mod 3),
則n不是完全數(shù).
(1)當π≡1,3,5,6(mod 7);
(2)當π≡2(mod 7)且α=4k+1,k1(mod 3);
(3)當π≡4(mod 7)且α=4k+1,k0(mod 3),
則n不是完全數(shù).
由命題4至命題6,可得到推論2.
(1)當π≡1,2,4,6(mod 7);
(2)當π≡3(mod 7)且α=4k+1,k0(mod 3);
(3)當π≡5(mod 7)且α=4k+1,k1(mod 3),
則n不是完全數(shù).
由命題1的討論可知,當π≡1(mod 7)時,有πα≡1(mod 7);當π≡2(mod 7)時,有πα≡1,2,4(mod 7);當π≡4(mod 7)時,有πα≡1,2,4(mod 7);當π≡6(mod 7)時,有πα≡6(mod 7).由此可知,當π≡1,2,4,6(mod 7)時,πα取模7的情況與πα≡3(mod 7)矛盾,因而n不是完全數(shù).
π≡3(mod 7)且α=4k+1,當k≡1(mod 3)時,有πα≡5(mod 7),這與πα≡3(mod 7)矛盾;當k≡2(mod 3),有πα≡6(mod 7),這與πα≡3(mod 7)矛盾,因而n不是完全數(shù).
π≡5(mod 7)且α=4k+1,當k≡0(mod 3)時,有πα≡5(mod 7),這與πα≡3(mod 7)矛盾;當k≡2(mod 3),有πα≡6(mod 7),這與πα≡3(mod 7)矛盾,因而n不是完全數(shù).
證畢.
(1)當π≡1,2,4,6(mod 7);
(2)當π≡3(mod 7)且α=4k+1,k1(mod 3);
(3)當π≡5(mod 7)且α=4k+1,k0(mod 3),
則n不是完全數(shù).
(1)當π≡1,2,4(mod 7);
(2)當π≡3,5(mod 7)且α=4k+1,k2(mod 3),
則n不是完全數(shù).
由命題7至命題9,可得到推論3.
(1)當π≡1,3,5,6(mod 7);
(2)當π≡2(mod 7)且α=4k+1,k1(mod 3);
(3)當π≡4(mod 7)且α=4k+1,k0(mod 3),
則n不是完全數(shù).
由命題1的討論可知,當π≡1(mod 7)時,有πα≡1(mod 7);當π≡3(mod 7)時,有πα≡3,5,6(mod 7);當π≡5(mod 7)時,有πα≡3,5,6(mod 7);當π≡6(mod 7)時,有πα≡6(mod 7).由此可知,當π≡1,3,5,6(mod 7)時,πα取模7的情況與πα≡4(mod 7)矛盾,因而n不是完全數(shù).
π≡2(mod 7)且α=4k+1,當k≡0(mod 3)時,有πα≡2(mod 7),這與πα≡4(mod 7)矛盾;當k≡2(mod 3)時,有πα≡1(mod 7),這與πα≡4(mod 7)矛盾,因而n不是完全數(shù).
π≡4(mod 7)且α=4k+1,當k≡1(mod 3)時,有πα≡2(mod 7),這與πα≡4(mod 7)矛盾;當k≡2(mod 3)時,有πα≡1(mod 7),這與πα≡4(mod 7)矛盾,因而n不是完全數(shù).
證畢.
(1)當π≡1,3,5,6(mod 7);
(2)當π≡2(mod 7)且α=4k+1,k0(mod 3);
(3)當π≡4(mod 7)且α=4k+1,k1(mod 3),
則n不是完全數(shù).
(1)當π≡3,5,6(mod 7);
(2)當π≡2,4(mod 7)且α=4k+1,k2(mod 3),
則n不是完全數(shù).
由命題10至命題12,可得到推論4.
(1)當π≡1,2,4,6(mod 7);
(2)當π≡3(mod 7)且α=4k+1,k1(mod 3);
(3)當π≡5(mod 7)且α=4k+1,k0(mod 3),
則n不是完全數(shù).
,若下列任一條件成立:
(1)當π≡1,2,4(mod 7);
(2)當π≡3,5(mod 7)且α=4k+1,k2(mod 3),
則n不是完全數(shù).
(1)當π≡1,2,4,6(mod 7);
(2)當π≡3(mod 7)且α=4k+1,k0(mod 3);
(3)當π≡5(mod 7)且α=4k+1,k1(mod 3),則n不是完全數(shù).
由命題1的討論可知,當π≡1(mod 7)時,有πα≡1(mod 7);當π≡2,4(mod 7)時,有πα≡1,2,4(mod 7);當π≡6(mod 7)時,有πα≡6(mod 7).由此可知,當π≡1,2,4,6(mod 7)時,πα取模7的情況與πα≡3(mod 7)矛盾,因而n不是完全數(shù).
π≡3(mod 7)且α=4k+1,當k≡1(mod 3)時,有πα≡5(mod 7),這與πα≡3(mod 7)矛盾;當k≡2(mod 3)時,有πα≡6(mod 7),這與πα≡3(mod 7)矛盾,因而n不是完全數(shù).
π≡5(mod 7)且α=4k+1,當k≡0(mod 3)時,有πα≡5(mod 7),這與πα≡3(mod 7)矛盾;當k≡2(mod 3)時,有πα≡6(mod 7),這與πα≡3(mod 7)矛盾,因而n不是完全數(shù).
證畢.
由命題13至命題15,可得到推論5.
(References):
[1] 蓋伊R K.數(shù)論中未解決的問題[M].張明堯,譯,北京:科學(xué)出版社,2006:59.
Guy R K.Unsolved problems in number theory[M].Zhang Mingyao,trans,Beijing:Science Press,2006:59.
[2] Dickson L E.History of theory of number[M].Washington:Carnegie Institution of Washington,1919.
[3] Brent R P,Cohen G L,Riele H J J.Improved techniques for lower bounds for odd perfect numbers[J].Math Comp,1991,57(196):857-868.
[4] Karl K N.Remarks on the number of factors of an odd perfect number[J].Acta Arith,1961(6):365-374.
[5] Slowak J.Odd perfect numbers[J].Math Slovaca,1999,49(3):253-254.
[6] Pomerance C.Odd perfect numbers are divisible by at least seven distinct primes[J].Acta.Arith,1974(25):265-300.
[7] Chein E Z.An odd perfect number has a least 8prime factors[J].Notices Math Soc,1979(26):365.
[8] Hagis P,Cohen G L.Every odd perfect number has a prime factor which exceeds 106[J].Math Comp,1998(67):1323-1330.
[9] Goto T,Ohno Y.Odd perfect numbers have a prime factor exceeding108[J].Math Comp,2008(77):1859-1868.
[10] 張四保,鄧勇.Numbersω(n)of distinct primes factors for a kind of odd perfect number[J].中國科學(xué)院研究生學(xué)院學(xué)報,2011,28(4):548-550.
Zhang Sibao,Deng Yong.Numbersω(n)of distinct primes factors for a kind of odd perfect number[J].Journal of Graduate University of Chinese Academy of Sciences,2011,28(4):548-550.
[11] McDaniel W L.The non-existence of odd perfect of a certain form[J].Arch Math,1970(21):52-53.
[12] Mcdaniel W L,Hagis P.Some results concerning nonexistence of odd perfect numbers of the formpαm2β[J].The J Fibonnacci Quart,1975,13(1):25-28.
[13] Iannucci D E,Sorli R M.On the total number of prime factors of an odd perfect number[J].Math Comp,2003(72):2078-2084.
[14] 朱玉揚.奇完全數(shù)的幾個命題[J].數(shù)學(xué)進展,2011,40(5):595-598.
Zhu Yuyang.Several results on odd perfect numbers[J].Advances in mathematics,2011,40(5):595-598.
[15] 張四保.7 m-1形的奇正整數(shù)n不是完全數(shù)的條件[J].黑龍江大學(xué)學(xué)報:自然科學(xué)版,2014,31(4):480-483.
Zhang Sibao.Conditions on the positive odd numbers of the form 7 m-1are not perfect number[J].Journal of Heilongjiang Univer-sity:Natural Science Edition,2014,31(4):480-483.
DOI 10.3969/j.issn.2095-4107.2015.01.016
O156
A
2095-4107(2015)01-0118-05
2014-10-03;編輯:關(guān)開澄
喀什師范學(xué)院校內(nèi)一般課題((14)2513)
張四保(1978-),男,碩士,副教授,主要從事數(shù)論方面的研究.
book=122,ebook=125