• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于文獻挖掘的前列腺癌蛋白組學與基因組學差異基因的生物信息學分析

      2015-09-14 02:56:53陳晨曹笑歌張立國么安亮劉健康紹叁高偉興韓會曹鳳宏李治國
      中國全科醫(yī)學 2015年32期
      關鍵詞:細胞骨架肌動蛋白基因組學

      陳晨,曹笑歌,張立國,么安亮,劉健,康紹叁,高偉興,韓會,曹鳳宏,李治國

      基于文獻挖掘的前列腺癌蛋白組學與基因組學差異基因的生物信息學分析

      陳晨,曹笑歌,張立國,么安亮,劉健,康紹叁,高偉興,韓會,曹鳳宏,李治國

      目的通過前列腺癌(PCa)蛋白組學與基因組學文獻,挖掘與PCa存在相關性并缺乏具體研究的差異基因,并分析其參與的生物過程與通路。方法計算機檢索PubMed數據庫,檢索策略:“(prostate cancer[Title]) AND Proteomics”“(prostate cancer[Title])AND Genomics”,時間限定為建庫至2015年1月。按照PCa與前列腺增生(BPH)組織(A組)、PCa與鄰近良性組織(B組)、PCa高Gleason評分與低Gleason評分(C組)蛋白譜和基因譜的比較提取差異蛋白或基因,輸入“The Protein Information Resource(PIR,Georgetown University Medical Center,Washington,DC 20007,USA)”,按照“official gene symbol”統(tǒng)一名稱。采用“DAVID Bioinformatics Resources 6.7 (National Institute of Allergy and Infectious Diseases,NIH,USA)”在線工具對差異基因進行GO(Gene Ontology)、KEGG等生物信息學分析。結果共納入35篇文獻,提取差異基因764個,其中A組差異基因162個,B組差異基因423個,C組差異基因209個,3組共同差異基因21個。A組差異基因中DES報道最多,為6次;B組差異基因ACPP報道最多,為4次;C組差異基因ACTN1、HSPB1、LMNA報道最多,均為3次。GO分析結果顯示,差異基因涉及的生物過程主要有細胞死亡調控、細胞增殖調控、創(chuàng)傷反應、蛋白質轉運、穩(wěn)態(tài)過程(差異基因頻數≥72,頻率≥9.4%),細胞成分主要涉及胞外區(qū)、膜封閉腔、細胞骨架、囊泡以及線粒體(差異基因頻數≥85,頻率≥11.1%),分子功能主要涉及核苷酸結合、鈣離子結合、相同蛋白結合以及酶結合(差異基因頻數≥60,頻率≥7.9%)。KEGG通路分析發(fā)現,差異基因主要參與癌癥通路、黏著斑、肌動蛋白細胞骨架調控、MAPK信號等生物學通路(差異基因頻數≥29,頻率≥3.8%)。對各組差異基因進行KEGG通路分析結果顯示,各組差異基因共同參與的KEGG通路主要有黏著斑、補體及凝血級聯、ECM受體相互作用等生物學通路。結論差異基因DES、ACTN1、ATP5B、TLN1、COL6A2、MYH9、OGN、PGAM1報道次數較多,而其參與PCa發(fā)生發(fā)展的具體機制未見報道,值得進一步實驗驗證。黏著斑、肌動蛋白細胞骨架的調控以及MAPK信號通路可能在PCa發(fā)生發(fā)展過程中發(fā)揮重要作用,對其進一步分析將為臨床治療PCa提供新的靶點。

      前列腺腫瘤;基因組學;蛋白組學;生物信息學

      陳晨,曹笑歌,張立國,等.基于文獻挖掘的前列腺癌蛋白組學與基因組學差異基因的生物信息學分析[J].中國全科醫(yī)學,2015,18(32):4011-4016.[www.chinagp.net]

      Chen C,Cao XG,Zhang LG,etal.Bioinformatics analysis of differentially expressed genes of prostate cancer proteomics and genomics based on literaturemining[J].Chinese General Practice,2015,18(32):4011-4016.

      前列腺癌(PCa)是男性最常見的癌癥之一。2014年,美國新增PCa患者23萬例,死亡患者近3萬例[1]。目前,針對PCa的蛋白組學和基因組學研究非常廣泛,發(fā)現表達差異具有統(tǒng)計學意義的基因數以千計,但其中僅少數可能與PCa的發(fā)生發(fā)展相關[2]。通過文獻挖掘對癌癥相關基因進行提取和整理,是癌癥分子機制研究的良好方法。但若文獻挖掘只局限于摘要,且利用自動文獻挖掘工具未免機械,在文章題目和摘要中未出現的差異基因可能被漏掉。本研究通過檢索PCa蛋白組學及基因組學相關文獻,閱讀全文人工提取差異基因,并對其進行GO(Gene Ontology)、KEGG通路等生物信息學分析,進一步挖掘可能與PCa相關的基因和通路,從而為PCa發(fā)生的分子機制研究提供依據。

      1 資料與方法

      1.1文獻納入與排除標準納入標準:(1)研究對象為人PCa組織或人PCa細胞株;(2)提供差異蛋白或基因名稱。排除標準:(1)某種干預措施對PCa蛋白譜變化的影響研究; (2)未提供差異蛋白或基因名稱;(3)文獻綜述。

      1.2文獻檢索計算機檢索PubMed數據庫,檢索策略:“(prostate cancer[Title])AND Proteomics”“(prostate cancer[Title])AND Genomics”,時間限定建庫至2015年1月。

      1.3資料提取文獻中涉及PCa與前列腺增生(BPH)組織或細胞(A組)、PCa與鄰近良性組織(B組)、PCa高Gleason評分與低Gleason評分(C組)蛋白譜和基因譜的比較,提取差異基因或蛋白輸入“The Protein Information Resource(PIR,Georgetown University Medical Center,Washington,DC 20007,USA)”,按照“official gene symbol”統(tǒng)一名稱。

      1.4生物信息學分析

      1.4.1差異基因的GO分析采用“DAVID Bioinformatics Resources 6.7(National Institute of Allergy and Infectious Diseases,NIH,USA)”在線工具分別對差異基因及各組的差異基因進行GO分析,探索共同出現的生物過程、細胞成分以及分子功能。

      1.4.2差異基因的KEGG通路分析通過“DAVID Bioinformatics Resources 6.7(National Institute of Allergy and Infectious Diseases,NIH,USA)”在線工具分別對差異基因及各組的差異基因進行KEGG通路分析,探索共同出現的生物學通路。

      2 結果

      2.1文獻篩選結果檢索PubMed數據庫獲得文獻564篇,排除重復文獻179篇,閱讀文題和摘要排除282篇,閱讀全文排除文獻68篇,共納入35篇文獻[3-37],文獻篩選流程見圖1。

      2.2差異基因納入文獻提取差異基因764個,其中A組差異基因162個,B組差異基因423個,C組差異基因209個,3組共同差異基因21個(見表1)。報道大于4次的差異基因共14個,其中DES報道8次,HSPB1、VCL各報道7次,ACPP、ACTN1、AZGP1、ENO1、HSPA5和HSPD1各報道6次,ANXA1、EZR、KRT8、LMNA和SERPINF1各報道5次。A組差異基因DES報道最多,為6次;B組差異基因ACPP報道最多,為4次;C組差異基因ACTN1、HSPB1、LMNA報道最多,均為3次。

      圖1 文獻篩選流程圖Figure 1 Flow chart of literature screening

      表1 各組共同差異基因及其被報道次數(次)Table 1 Co-occurrence of the differentially expressed genes in different groups and the reported frequency

      2.3差異基因的GO分析GO分析結果顯示,差異基因涉及的生物過程主要有細胞死亡調控、細胞增殖調控、創(chuàng)傷反應、蛋白質轉運、穩(wěn)態(tài)過程(差異基因頻數≥72,頻率≥9.4%),細胞成分主要涉及胞外區(qū)、膜封閉腔、細胞骨架、囊泡以及線粒體(差異基因頻數≥85,頻率≥11.1%),分子功能主要涉及核苷酸結合、鈣離子結合、相同蛋白結合以及酶結合(差異基因頻數≥60,頻率≥7.9%,見表2)。

      表2 差異基因的GO分析Table 2 GO analysis of differentially expressed genes in PCa

      對各組差異基因進行GO分析結果顯示,各組差異基因共同涉及的生物過程主要有細胞死亡調控、細胞增殖調控、創(chuàng)傷反應以及穩(wěn)態(tài)過程;共同涉及的細胞成分主要有胞外區(qū)、膜封閉腔、細胞骨架、囊泡以及線粒體;共同涉及的分子功能主要有鈣離子結合、相同蛋白結合、結構分子活性以及肌動蛋白結合。

      2.4差異基因的KEGG通路分析KEGG通路分析發(fā)現,差異基因主要參與癌癥通路、黏著斑、肌動蛋白細胞骨架調控、MAPK信號等生物學通路(差異基因頻數≥29,頻率≥3.8%,見表3)。

      表3 所有差異基因的KEGG通路分析Table 3 KEGG pathway analysis of all differentially expressed genes in PCa

      對各組差異基因進行KEGG通路分析結果顯示,各組差異基因共同參與的KEGG通路主要有黏著斑、補體及凝血級聯、ECM受體相互作用等生物學通路。

      3 討論

      目前,尚缺少通過文獻挖掘對PCa蛋白組學及基因組學差異基因數據進行整理并開展生物信息學分析的研究。Hu等[2]采用MedGene文獻挖掘工具對乳腺癌及正常組織蛋白組學和基因組學數據進行分析,確定了一組研究相對充分、在雌激素受體陰性腫瘤高表達的基因。李鐵求等[38]通過文獻挖掘對雄激素非依賴型PCa特異表達基因進行生物信息學分析,發(fā)現MMP9、EGFR等基因在雄激素依賴型轉變?yōu)樾奂に胤且蕾囆蚉Ca過程中可能發(fā)揮重要作用。本研究首次將PCa與蛋白組學及基因組學數據整合,對更新至2015年1月的相關文獻進行差異基因挖掘,并觀察其在PCa與BPH、PCa與鄰近良性組織、PCa高低Gleason評分不同分類比較中差異基因出現的頻率,更直觀地了解差異基因與癌癥發(fā)生、發(fā)展、轉移過程中的關聯性。

      本研究發(fā)現,所有差異基因中DES報道次數最多,同時也是PCa與BPH比較報道最多的差異基因,提示其可能與PCa存在一定聯系。目前表明,高表達的DES是結腸癌、胃腸道間質瘤、子宮內膜癌等內皮細胞分化和腫瘤侵襲的高度敏感標志物[39]。也有研究發(fā)現,DES在腫瘤早期毛細血管形成過程中持續(xù)高表達[40]。然而,PCa組學實驗結果發(fā)現,與BPH組織比較,DES在PCa組織中表達下調;同時,與局限性PCa相比,DES在淋巴結轉移PCa中表達同樣下調[5]。這似乎與上文所述DES參與腫瘤血管內皮細胞形成互相矛盾,具體機制值得后續(xù)進一步研究。另外,HSPB1、VCL、ACPP、ACTN1、AZGP1、ENO1、HSPA5、HSPD1、ANXA1、EZR、KRT8、LMNA以及SERPINF1等差異基因被報道5次及以上,提示上述差異基因可能參與PCa的發(fā)生發(fā)展過程。ACPP在PCa與鄰近良性組織比較中被報道次數最多,其編碼前列腺酸性磷酸酶,由前列腺上皮細胞分泌并受雄激素調節(jié)。ACTN1、HSPB1、LMNA在PCa高Gleason評分與低Gleason評分比較中被報道次數最多,提示其可能在PCa進展轉移的過程中發(fā)揮重要作用。多篇研究報道了HSPB1與PCa的相關性,其參與PCa發(fā)展過程的機制也已被廣泛探討[41]。LMNA也已發(fā)現在PCa組織中高表達,并通過PI3K/AKT/PTEN通路促進腫瘤細胞生長、遷移和入侵[42]。HSPA5、AZGP1、EZR參與PCa的機制研究比較深入[43-46],ENO1、HSPD1、ANXA1、SERPINF1、VCL以及KRT8參與PCa的具體機制有待進一步探討和多角度分析。

      本研究發(fā)現,21個差異基因在各組均有報道,提示其可能在PCa發(fā)生、進展以及轉移的過程中均發(fā)揮重要作用。其中,HSP90AA1、S100A9、POSTN、ANXA3、ANXA7、AKT1與PCa的相關性研究較為深入[47-49],而MCCC2僅初步證實其高表達可提升PCa細胞的遷移能力[50],但其確切機制缺乏具體闡述。ATP5B、TLN1、COL6A2、MYH9、OGN、PGAM1參與PCa的機制尚未見報道。部分被報道次數較高且在各組中頻繁出現的差異基因,如DES、ACTN1、ATP5B、TLN1、COL6A2、MYH9、OGN、PGAM1,提示其可能與PCa存在潛在的聯系,同時又缺乏具體的相關性報道,有進一步開展研究的價值,以驗證其參與PCa差異表達的真實性,以及詳細闡明其參與PCa發(fā)生、發(fā)展、轉移的具體機制。

      本研究KEGG通路分析發(fā)現,差異基因主要參與癌癥通路、黏著斑、肌動蛋白細胞骨架的調控、MAPK信號通路,提示這些通路可能涉及PCa的發(fā)生發(fā)展過程。黏著斑是細胞外基質黏附在細胞膜某個特殊的區(qū)域[38],是黏著斑激酶(FAK)介導的重要細胞過程。FAK在PCa中常高表達和過度活躍,通過主要致癌途徑的激活,FAK促進雄激素非依賴PCa的生長、存活、遷移及轉移[51]。肌動蛋白細胞骨架的調控提供了PCa分子機制研究的新靶點,Wang等[52]通過研究Wnt/Ca2+信號在PCa中的機制,發(fā)現癌細胞特異性抑制CaMKⅡ(Wnt/ Ca2+信號的一個主要傳感器)可引起肌動蛋白細胞骨架的重構,CaMKⅡ可能通過肌動蛋白結合蛋白的中間信號傳導,導致癌細胞中細胞骨架的重構。Zhang等[53]認為,腫瘤抑制蛋白ZNF185通過調節(jié)PCa中的肌動蛋白細胞骨架動力學發(fā)揮其功能。可以預見,未來對肌動蛋白細胞骨架的研究,將為臨床腫瘤靶向治療帶來巨大的導向作用。MAPK信號通路近年來也是PCa分子研究的熱點,PCa的發(fā)生與發(fā)展、癌細胞的增殖、癌癥的復發(fā)與信號轉導與MAPK信號通路密切相關[54]。在未經雄激素阻斷治療的PCa最初階段,雄激素的刺激通過激活PCa細胞MAPK信號通路,誘導細胞增殖[55],激活的MAPK水平隨PCa的進展而升高。此外,研究證實,在PCa進展到后期階段,生長因子信號、神經多肽信號、致癌基因HER2/Neu等均可作用于MAPK信號通路,使PCa不依賴雄激素繼續(xù)發(fā)展,即進展到雄激素非依賴型PCa[54]。盡管目前MAPK信號通路的作用及具體機制有待進一步的研究和探索,但可以確定,MAPK信號轉導調控機制的闡明將為臨床提供治療PCa的新思路。此外,本研究通過對各組差異基因的KEGG通路分析結果發(fā)現,黏著斑、補體及凝血級聯、ECM受體相互作用通路在各組均有出現,提示其可能與PCa存在一定的相關性,其中補體及凝血級聯、ECM受體相互作用參與PCa的具體機制尚未見報道。Spans等[56]也發(fā)現在LNCaP和C4-2B PCa細胞株中,黏著斑與ECM受體相互作用通路發(fā)生變化,具體機制值得持續(xù)關注和深入調查研究。

      綜上所述,本研究通過對PCa蛋白組學及基因組學文獻進行挖掘,篩選出可能與PCa有較大聯系且缺乏具體相關報道的差異基因,如DES、ACTN1、ATP5B、TLN1、COL6A2、MYH9、OGN、PGAM1,為下一步研究提供了方向。黏著斑、肌動蛋白細胞骨架的調控、MAPK信號通路可能在PCa分子機制中發(fā)揮重要作用,對其進一步分析有利于揭示PCa的發(fā)病機制,為臨床治療PCa提供新的靶點。

      [1]Nandana S,Chung LW.Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting[J].Am JClin Exp Urol,2014,2(2):92-101.

      [2]Hu Y,Hines LM,Weng H,et al.Analysis of genomic and proteomic data using advanced literature mining[J].J Proteome Res,2003,2(4):405-412.

      [3]Saraon P,Musrap N,Cretu D,etal.Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer[J].JBiol Chem,2012,287(41):34019-34031.

      [4]Sun C,Song C,Ma Z,et al.Periostin identified as a potentialbiomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy[J].Proteome Sci,2011,9(22):22.

      [5]Pang J,Liu WP,Liu XP,et al.Profiling proteinmarkers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis[J].J Proteome Res,2010,9(1):216-226.

      [6]Ummanni R,Junker H,Zimmermann U,et al.Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer[J].Cancer Lett,2008,266(2):171-185.

      [7]Burgess EF,Ham AJ,Tabb DL,et al.Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes[J].Proteomics Clin Appl,2008,2(9):1223.

      [8]Glen A,Gan CS,Hamdy FC,et al.iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression[J].JProteome Res,2008,7(3):897-907.

      [9]Han ZD,Zhang YQ,He HC,et al.Identification of novel serological tumormarkers for human prostate cancer using integrative transcriptome and proteome analysis[J].Med Oncol,2012,29 (4):2877-2888.

      [10]Kim Y,Ignatchenko V,Yao CQ,et al.Identification of differentially expressed proteins in direct expressed prostatic secretions ofmen with organ-confined versus extracapsular prostate cancer[J].Mol Cell Proteomics,2012,11(12):1870-1884.

      [11]Chen P,Wang L,Li N,et al.Comparative proteomics analysis of sodium selenite-induced apoptosis in human prostate cancer cells[J].Metallomics,2013,5(5):541-550.

      [12]Chen J,Huang P,Kaku H,et al.A comparison of proteomic profiles changes during17beta-estradiol treatment in human prostate cancer PC-3 cell line[J].Cancer Genomics Proteomics,2010,6(6):331-335.

      [13]Song DX,Chen AM,Guo FJ,etal.Differential proteomic analysis and function study of human prostate carcinoma cells with different osseousmetastatic tendency[J].NationalMedical JournalofChina,2008,88(17):1197-1201.(in Chinese)宋登新,陳安民,郭風勁,等.人前列腺癌細胞骨轉移潛能差異表達蛋白的研究[J].中華醫(yī)學雜志,2008,88(17): 1197-1201.

      [14]Zhang XM,Shen Y,Xianyu ZQ.Serum proteomic study of prostate cancer with bone metastasis[J].National Journal of Andrology,2010,16(8):721-725.(in Chinese)張雪梅,沈影,鮮于志群.前列腺癌骨轉移血清蛋白質組學研究[J].中華男科學雜志,2010,16(8):721-725.

      [15]Zhang XB,Tang ZY,Qi L,et al.Modified serum-guided immunoblotting for differential proteomic study of prostate cancer[J].National Journal of Andrology,2010,16(5):438-444.(in Chinese)張曉波,唐正嚴,齊琳,等.改進的血清免疫印跡引導的前列腺癌差異蛋白質組學研究[J].中華男科學雜志,2010,16 (5):438-444.

      [16]Pin E,Fredolini C,Petricoin EF.The role of proteomics in prostate cancer research:biomarker discovery and validation[J].Clin Biochem,2013,46(6):524-538.

      [17]Bigot P,Mouzat K,Lebdai S,et al.Quantitative proteomic determination of diethylstilbestrol action on prostate cancer[J].Asian JAndrol,2013,15(3):413-420.

      [18]Everley PA,Krijgsveld J,Zetter BR,et al.Quantitative cancer proteomics:stable isotope labeling with amino acids in cell culture (SILAC)as a tool for prostate cancer research[J].Mol Cell Proteomics,2004,3(7):729-735.

      [19]Alaiya AA,Al-Mohanna M,Aslam M,et al.Proteomics-based signature for human benign prostate hyperplasia and prostate adenocarcinoma[J].Int JOncol,2011,38(4):1047-1057.

      [20]Skvortsov S,Sch?fer G,Stasyk T,et al.Proteomics profiling of microdissected low-and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker[J].J Proteome Res,2011,10(1):259-268.

      [21]Wood SL,Knowles MA,Thompson D,et al.Proteomic studies of urinary biomarkers for prostate,bladder and kidney cancers[J].Nat Rev Urol,2013,10(4):206-218.

      [22]Sandvig K,Llorente A.Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3[J].Mol Cell Proteomics,2012,11(7):M111.012914.

      [23]Sardana G,Jung K,Stephan C,et al.Proteomic analysis of conditioned media from the PC3,LNCaP,and 22Rv1 prostate cancer cell lines:discovery and validation of candidate prostate cancer biomarkers[J].J Proteome Res,2008,7(8):3329-3338.

      [24]Lee EK,Cho H,Kim CW.Proteomic analysis of cancer stem cells in human prostate cancer cells[J].Biochem Biophys Res Commun,2011,412(2):279-285.

      [25]Sardana G,Marshall J,Diamandis EP.Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell cultureconditionedmedium[J].Clin Chem,2007,53(3):429-437.

      [26]Kallioniemi O.Functional genomics and transcriptomics of prostate cancer:promises and limitations[J].BJU Int,2005,96(S2): 10-15.

      [27]Rowehl RA,Crawford H,Dufour A,et al.Genomic analysis of prostate cancer stem cells isolated from a highly metastatic cell line[J].Cancer Genomics Proteomics,2009,5(6):301-310.

      [28]Wiklund F.Prostate cancer genomics:can we distinguish between indolent and fatal disease using genetic markers?[J].Genome Med,2010,2(7):45.

      [29]Nakagawa H,Akamatsu S,Takata R,et al.Prostate cancer genomics,biology,and risk assessment through genome-wide association studies[J].Cancer Sci,2012,103(4):607-613.

      [30]Roychowdhury S,Chinnaiyan AM.Advancing precision medicine for prostate cancer through genomics[J].J Clin Oncol,2013,31(15):1866-1873.

      [31]Chaudhary J,Schmidt M.The impact of genomic alterations on the transcriptome:a prostate cancer cell line case study[J].Chromosome Res,2006,14(5):567-586.

      [32]Chow A,Amemiya Y,Sugar L,et al.Whole-transcriptome analysis reveals established and novel associations with TMPRSS2: ERG fusion in prostate cancer[J].Anticancer Res,2012,32 (9):3629-3641.

      [33]Shipitsin M,Small C,Choudhury S,et al.Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error[J].Br JCancer,2014,111(6):1201-1212.

      [34]Kiprijanovska S,Stavridis S,Stankov O,et al.Mapping and identification of the urine proteome of prostate cancer patients by 2D PAGE/MS[J].Int JProteomics,2014,2014:594761.

      [35]Amaro A,Esposito AI,Gallina A,et al.Validation of proposed prostate cancer biomarkerswith gene expression data:a long road to travel[J].Cancer Metastasis Rev,2014,33(2/3):657-671.

      [36]Bergamini S,Bellei E,Reggiani Bonetti L,et al.Inflammation: an important parameter in the search of prostate cancer biomarkers[J].Proteome Sci,2014,12:32.

      [37]Williams KA,Lee M,Hu Y,et al.A systems genetics approach identifies CXCL14,ITGAX,and LPCAT2 as novel aggressive prostate cancer susceptibility genes[J].PLoS Genet,2014,10 (11):e1004809.

      [38]Li TQ,Feng CQ,Zou YG,et al.Literature-mining and bioinformatic analysis of androgen-independent prostate cancerspecific genes[J].National Journal of Andrology,2009,15 (12):1102-1107.(in Chinese)李鐵求,馮春瓊,鄒亞光,等.基于文獻挖掘的雄激素非依賴型前列腺癌特異表達基因的生物信息學分析[J].中華男科學雜志,2009,15(12):1102-1107.

      [39]Ma Y,Peng J,LiuW,etal.Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer[J].Mol Cell Proteomics,2009,8(8):1878-1890.

      [40]Arentz G,Chataway T,Price TJ,et al.Desmin expression in colorectal cancer stroma correlates with advanced stage disease and marks angiogenic microvessels[J].Clin Proteomics,2011,8 (1):16.

      [41]Shiota M,Bishop JL,Nip KM,et al.Hsp27 regulates epithelial mesenchymal transition,metastasis,and circulating tumor cells in prostate cancer[J].Cancer Res,2013,73(10):3109-3119.

      [42]Kong L,Sch?fer G,Bu H,et al.Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth,migration and invasion through the PI3K/AKT/PTEN pathway[J].Carcinogenesis,2012,33(4): 751-759.

      [43]Ruiz C,Holz DR,Oeggerli M,et al.Amplification and overexpression of vinculin are associated with increased tumour cell proliferation and progression in advanced prostate cancer[J].J Pathol,2011,223(4):543-552.

      [44]Yu L,Shi J,Cheng S,et al.Estrogen promotes prostate cancer cellmigration via paracrine release of ENO1 from stromal cells[J].Mol Endocrinol,2012,26(9):1521-1530.

      [45]Mu D,Gao Z,Guo G,et al.Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1[J].PLoS One,2013,8(9):e74922.

      [46]Guan M,Jiang H,Xu C,et al.Adenovirus-mediated PEDF expression inhibits prostate cancer cell growth and results in augmented expression of PAI-2[J].Cancer Biol Ther,2007,6 (3):419-425.

      [47]Altieri DC.Mitochondrial Hsp90 chaperones as novelmolecular targets in prostate cancer[J].Future Oncol,2010,6(4):487-489.

      [48]Srivastava M,Leighton X,Starr J,etal.Diverse effects of ANXA7 and p53 on LNCaP prostate cancer cells are associated with regulation of SGK1 transcription and phosphorylation of the SGK1 target FOXO3A[J].Biomed Res Int,2014,2014:193635.

      [49]Goc A,Liu J,Byzova TV,et al.Akt1 mediates prostate cancer cellmicroinvasion and chemotaxis tometastatic stimuli via integrinβ3 affinity modulation[J].Br J Cancer,2012,107(4):713-723.

      [50]李科,陳怡,黃文濤,等.MCCC2在前列腺癌細胞系中的表達及其對前列腺癌轉移影響的初步研究[J].中華腔鏡泌尿外科雜志:電子版,2014,8(2):140-146.

      [51]Figel S,Gelman IH.Focal adhesion kinase controls prostate cancer progression via intrinsic kinase and scaffolding functions[J].Anticancer Agents Med Chem,2011,11(7):607-616.

      [52]Wang Q,Symes AJ,Kane CA,et al.A novel role for Wnt/Ca2+signaling in actin cytoskeleton remodeling and cellmotility in prostate cancer[J].PLoSOne,2010,5(5):e10456.

      [53]Zhang JS,Gong A,Young CY.ZNF185,an actin-cytoskeletonassociated growth inhibitory LIM protein in prostate cancer[J].Oncogene,2007,26(1):111-122.

      [54]查樹偉,查佶,王興海.MAPK信號轉導通路與前列腺癌的發(fā)病及治療關系的研究進展[J].中國男科學雜志,2008,22 (6):57-60.

      [55]Gioeli D,Mandell JW,Petroni GR,et al.Activation ofmitogenactivated protein kinase associated with prostate cancer progression[J].Cancer Res,1999,59(2):279-284.

      [56]Spans L,Helsen C,Clinckemalie L,et al.Comparative genomic and transcriptomic analyses of LNCaP and C4-2B prostate cancer cell lines[J].PLoSOne,2014,9(2):e90002.

      (本文編輯:吳立波)

      Bioinform atics Analysis of Differentially Expressed Genes of Prostate Cancer Proteom ics and Genom ics Based on Literature M ining

      CHEN Chen,CAO Xiao-ge,ZHANG Li-guo,et al.School of Graduate,North China University of Science and Technology,Tangshan 063000,China

      Objective To mine differentially expressed genes which have strong correlation with prostate cancer (PCa)but have not been specifically covered through literatures about proteomics and genomics of PCa and analyze the biological processes and pathways in which these genes are involved.M ethods With PubMed public database,we used the advanced search by inputting"(prostate cancer[Title])AND Proteomics""(prostate cancer[Title])AND Genomics"for literaturesbefore January 2015.We extracted differentially expressed proteins or genes according to the comparison of protein and gene expression profiles between PCa and benign prostatic hyperplasia(BPH)(Group A),between PCa and adjacent benign tissues (Group B)and between high and low Gleason scores of Pca(Group C).We input all the differentially expressed genes or proteins into"The Protein Information Resource(PIR,Georgetown University Medical Center,Washington,DC 20007,USA)"and unified all names according to"official gene symbol".Then we conducted the bioinformatics analysis of Gene Ontology and KEGG pathway by DAVID Bioinformatics Resources 6.7(National Institute of Allergy and Infectious Diseases,NIH,USA)online tool.Results A total of35 articleswere included.Throughmining,we obtained 764 differentially expressed genes totally,ofwhich 162 were in Group A,423 in Group B and 209 in Group C.In all the 3 groups,there were 21 common reported genes.DESwas reported themost in Group A,which appeared 6 times.ACPPwas reported themost in Group B,which appeared 4 times.ACTN1,HSPB1 and LMNA were reported themost in Group C,which all appeared 3 times.All these genes played important roles in biological processes of regulation of cell death,regulation of cell proliferation,response to wounding,protein transport and homeostatic process(genes count≥72,percentage≥9.4%),as well as in molecular function of nucleotide binding,calcium ion binding,identical protein binding and enzyme binding(genes count≥60,percentage≥7.9%).Their cellular componentsweremainly in extracellular region,membrane-enclosed lumen,cytoskeleton,vesicle and mitochondrion(genes count≥85,percentage≥11.1%).They weremainly involved in the biological pathways like pathways in cancer,focal adhesion,regulation of actin cytoskeleton and MAPK signaling(genes count≥29,percentage≥3.8%).The co-occurrence KEGG pathways from different groups were focal adhesion,complement and coagulation cascade and ECM-receptor interactions.Conclusion We found out there is strong association between DES,ACTN1,ATP5B,TLN1,COL6A2,MYH9,OGN,PGAM1 and PCa butwithout specific relevant reports,whichmeansmore experimental researches are needed to prove that.What'smore,focal adhesion,regulation of actin cytoskeleton and MAPK signaling pathwaymay play important roles in the development of PCa.Further analysiswill provide new targets for clinical prevention and treatment of PCa.

      Prostatic neoplasms;Genomics;Proteomics;Bioinformatics

      R 737.25 R 394

      A

      10.3969/j.issn.1007-9572.2015.32.028

      063000河北省唐山市,華北理工大學研究生院(陳晨,韓會);天津市濱海新區(qū)漢沽第一中學(曹笑歌);華北理工大學附屬醫(yī)院泌尿外科(張立國,么安亮,劉健,康紹叁,高偉興,曹鳳宏);華北理工大學醫(yī)學實驗研究中心,老年醫(yī)學國際科技合作基地(李治國)

      曹鳳宏,063000河北省唐山市,華北理工大學附屬醫(yī)院泌尿外科;E-mail:caofenghong@163.com。李治國,063000河北省唐山市,華北理工大學醫(yī)學實驗研究中心,老年醫(yī)學國際科技合作基地;E-mail:lzg1017@163.com

      2015-05-18;

      2015-08-28)

      猜你喜歡
      細胞骨架肌動蛋白基因組學
      細胞骨架
      土槿皮乙酸對血管內皮細胞遷移和細胞骨架的影響
      基于基因組學數據分析構建腎上腺皮質癌預后模型
      系統(tǒng)基因組學解碼反芻動物的演化
      科學(2020年2期)2020-08-24 07:56:44
      肌動蛋白結構及生物學功能的研究進展
      “洋蔥細胞骨架的制作技術研究”一 文附圖
      生物學通報(2019年3期)2019-06-15 03:35:04
      細胞骨架在ns脈沖誘導腫瘤細胞凋亡中的作用
      肌動蛋白清除系統(tǒng)與凝血—纖溶系統(tǒng)在子癇前期患者外周血中的變化
      營養(yǎng)基因組學——我們可以吃得更健康
      生物進化(2014年3期)2014-04-16 04:36:41
      主動免疫肌動蛋白樣蛋白7a蛋白引起小鼠睪丸曲細精管的損傷
      如皋市| 高阳县| 玉门市| 湟源县| 武义县| 泾阳县| 榆林市| 自治县| 罗平县| 上虞市| 揭阳市| 鹤峰县| 封开县| 灵丘县| 榕江县| 临沂市| 苏州市| 哈巴河县| 千阳县| 宜宾市| 将乐县| 宜川县| 武川县| 微山县| 扶绥县| 库车县| 色达县| 芦山县| 扎囊县| 山东省| 临江市| 军事| 图们市| 顺昌县| 洛隆县| 桐梓县| 开化县| 贞丰县| 增城市| 绥阳县| 海丰县|