• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一類錐約束多目標(biāo)優(yōu)化問(wèn)題的高階對(duì)偶研究

      2015-10-14 02:15:40李紅梅高英
      關(guān)鍵詞:凸性對(duì)偶二階

      李紅梅,高英

      (重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶 400047)

      一類錐約束多目標(biāo)優(yōu)化問(wèn)題的高階對(duì)偶研究

      李紅梅,高英

      (重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶400047)

      在一類錐約束單目標(biāo)優(yōu)化問(wèn)題的一階對(duì)偶模型基礎(chǔ)之上,建立了錐約束多目標(biāo)優(yōu)化問(wèn)題的二階和高階對(duì)偶模型.在廣義凸性假設(shè)下,給出了弱對(duì)偶定理,在Kuhn-Tucker約束品性下,得到了強(qiáng)對(duì)偶定理.最后,在弱對(duì)偶定理的基礎(chǔ)上,利用Fritz-John型必要條件建立了逆對(duì)偶定理.

      錐約束多目標(biāo)優(yōu)化;廣義凸;對(duì)偶定理

      1 引言

      對(duì)偶理論是多目標(biāo)優(yōu)化問(wèn)題的主要研究?jī)?nèi)容.1961年,Wolfe[1]首次利用Kuhn-Tucker最優(yōu)性條件,在凸性假設(shè)下建立了一階對(duì)偶模型并證明了弱對(duì)偶定理.隨后,為了減弱凸性假設(shè)條件,Mond和Weir[2]提出了另一種一階對(duì)偶模型,并在偽不變凸和擬不變凸假設(shè)下給出了弱對(duì)偶定理.1975年,Mangasarian[3]在一階Wolfe型對(duì)偶的基礎(chǔ)上通過(guò)引進(jìn)二次可微函數(shù),建立了二階和高階對(duì)偶模型.Mond和Weir[2]考慮了另一種二階對(duì)偶模型(Mond-Weir型對(duì)偶模型).隨后,許多學(xué)者開始研究各種二階和高階對(duì)偶模型[4-9].

      1996年,Nanda和Das[10]考慮了如下錐約束問(wèn)題(NP):

      其中f:S→R,g:S→Rm,f,g分別是二次可微函數(shù).S∈Rn是閉集且C1,C2是Rn和Rm內(nèi)的非空凸錐.C?2為C2的負(fù)極錐.

      Nanda和Das[10]建立了問(wèn)題(NP)的四種對(duì)偶模型,在偽不變凸和擬不變凸的假設(shè)之下給出了弱對(duì)偶定理.隨后,Chandra和Abha[11]對(duì)四種模型進(jìn)行了修正,并在廣義凸性假設(shè)下證明了四種對(duì)偶模型的弱對(duì)偶和強(qiáng)對(duì)偶定理,但并沒(méi)有給出其逆對(duì)偶定理.因此,文獻(xiàn)[12]中利用Fritz-John型必要條件給出了四種對(duì)偶模型的逆對(duì)偶定理.

      本文是在文獻(xiàn)[12]的基礎(chǔ)之上,考慮了多目標(biāo)錐約束優(yōu)化問(wèn)題的二階和高階對(duì)偶模型,給出并證明了相應(yīng)的弱對(duì)偶,強(qiáng)對(duì)偶和逆對(duì)偶定理.本文結(jié)構(gòu)如下:第1節(jié),給出了一些基本知識(shí)以及錐約束多目標(biāo)優(yōu)化問(wèn)題高階對(duì)偶模型.第2節(jié),討論了錐約束多目標(biāo)優(yōu)化問(wèn)題高階對(duì)偶模型的弱對(duì)偶,強(qiáng)對(duì)偶和逆對(duì)偶定理.第3節(jié),給出了錐約束多目標(biāo)優(yōu)化問(wèn)題的二階對(duì)偶模型并討論了其弱對(duì)偶,強(qiáng)對(duì)偶和逆對(duì)偶定理.

      2 預(yù)備知識(shí)

      設(shè)Rn是n維歐氏空間,Rn+是非負(fù)象限.對(duì)x,y∈Rn給出以下符號(hào):

      定義2.1[13]設(shè)S?Rn是閉集,函數(shù)f:S→R在S上關(guān)于η是高階偽不變凸的,如果對(duì)任意x,u,p∈S,有

      定義2.2[13]設(shè)S?Rn是閉集,函數(shù)f:S→R在S上關(guān)于η是高階擬不變凸的,如果對(duì)任意x,u,p∈S,有

      其中函數(shù)η:S×S→Rn,函數(shù)h:S×Rn→R且h關(guān)于p可微.

      定義2.3[14](i)可行解稱為問(wèn)題(MOP)的弱有效解,若不存在x∈S使得

      對(duì)于(MOP),在文獻(xiàn)[11]中錐約束單目標(biāo)對(duì)偶模型(D)2的基礎(chǔ)之上,建立如下高階對(duì)偶模型(HD):

      其中,h:Rn×Rn→Rl和k:Rn×Rn→Rm是二階連續(xù)可微函數(shù).

      3 高階對(duì)偶定理

      下面將討論弱對(duì)偶定理,強(qiáng)對(duì)偶定理和逆對(duì)偶定理.

      4 二階對(duì)偶定理

      下面討論問(wèn)題(MOP)的高階對(duì)偶模型(HD)的特殊情況.令

      則高階對(duì)偶(HD)退化為(MOP)的二階對(duì)偶模型(SD):

      注4.1當(dāng)h(u,p)=pT?f(u),k(u,q)=qT?g(u),l=1時(shí),多目標(biāo)高階對(duì)偶模型(HD)退化為文獻(xiàn)[6]中的單目標(biāo)一階對(duì)偶模型(ND)2.

      高階對(duì)偶模型(HD)的弱對(duì)偶定理3.1和強(qiáng)對(duì)偶定理3.2可分別退化為二階對(duì)偶模型(SD)的弱對(duì)偶和強(qiáng)對(duì)偶定理.

      下面給出例子說(shuō)明逆對(duì)偶定理的合理性.

      正定且?yg(0,0)=0.因此定理4.3中的假設(shè)條件都滿足,故(0,0)是(MOP)的可行解.又因(λ,u,y,p=0,q=0)滿足定理4.1中的廣義凸性假設(shè)條件,因此(0,0)是(MOP)的有效解.

      事實(shí)上,原問(wèn)題只有(0,0)一個(gè)可行解,因此(0,0)確實(shí)是原問(wèn)題(MOP)的有效解.

      [1]Wolfe P.A duality theorem for nonlinear programming[J].Quart.Appl.Math.,1961,19:239-244.

      [2]Mond B,Weir T.Generalized Concavity and Duality,in:S.Schaible,W.T.Ziemba(Eds),Generalized Concavity in Optimization and Economics[M].New York:Academic Press,1981.

      [3]Mangasarian O L.Second and higher-order duality in nonlinear programming[J].J.Math.Anal.Appl.,1975,51:607-620.

      [4]Gulati T R,Divya Agarwal.On Huard type second-order converse duality in nonlinear programming[J]. Appl.Math.ett.,2000,20:1057-1063.

      [5]Yang X M,Yang X Q,Teo K L.Higher-order generalized convexity and duality in nondifferentiable multiobjective mathematical programming[J].J.Math.Anal.Appl.,2004,297:48-55.

      [6]Yang X M,Yang X Q,Teo K L.Huard type second-order converse duality for nonlinear programming[J]. Appl.Math.Lett.,2005,18:205-208.

      [7]Ahmad I,Husain Z,Sarita Sharma.Higher-order duality in nondifferentiable multiobjective programming[J]. Numerical Functional Analysis and Optimization,2007,28:989-1002.

      [8]高英.一類多目標(biāo)廣義分式規(guī)劃問(wèn)題的最優(yōu)性條件和對(duì)偶[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2011,27(4):476-485.

      [9]高英.非可微多目標(biāo)優(yōu)化問(wèn)題的高階逆對(duì)偶定理[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2014,30(2):136-142.

      [10]Nanda S,Das L N.Pseudo-invexity and duality in nonlinear programming[J].European Journal of Operational Research,1996,88:572-577.

      [11]Chandra S,Abha.A note on pseudo-invex and duality in nonlinear programming[J].European Journal of Operational Research,2000,122:161-165.

      [12]Yang X M,Yang X Q,Teo K L.Converse duality in nonlinear programming with cone constraints[J]. European Journal of Operational Research,2006,170:350-354.

      [13]Mond B,Zang J.Higher order invexity and duality in mathematical programming[J].European Journal of Operational Research,1998,163:357-372.

      [14]Sawaragi,Yoshikazu Date.Theory of Multiobjective Optimization[M].Japan:Department of Applied Matheatics Konan Uinversity,1985.

      Higher-order duality in multiobjective programming problems with cone constraints

      Li Hongmei,Gao Ying

      (Department of Mathematics,Chongqing Normal University,Chongqing400047,China)

      In this paper,basing on the first-order dual models for single objective problems with cone constraints,we construct second-order and higher-order dual models for nonlinear multiobjective programming problems with cone constraints.And then we establish weak and strong duality theorems under generalized convexity assumptions.By using Fritz-John type necessary condition,converse duality theorems are established.

      multiobjective programming problems with cone constraints,generalized convexity,duality theorems

      O221.6

      A

      1008-5513(2015)01-0073-12

      10.3969/j.issn.1008-5513.2015.01.009

      2014-07-18.

      國(guó)家自然科學(xué)基金(11201511);重慶市重點(diǎn)實(shí)驗(yàn)室專項(xiàng)項(xiàng)目(CSTC,2011KLORSE03).

      李紅梅(1988-),碩士生,研究方向:多目標(biāo)規(guī)劃.

      2010 MSC:90C32,90C46,90C47

      猜你喜歡
      凸性對(duì)偶二階
      一類二階迭代泛函微分方程的周期解
      一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
      二階線性微分方程的解法
      一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
      對(duì)偶平行體與對(duì)偶Steiner點(diǎn)
      對(duì)偶均值積分的Marcus-Lopes不等式
      對(duì)偶Brunn-Minkowski不等式的逆
      關(guān)于Hadamard矩陣的一類三元自對(duì)偶碼構(gòu)造
      永仁县| 天等县| 循化| 东海县| 武功县| 枝江市| 博爱县| 德江县| 华容县| 庆安县| 满城县| 贵南县| 东山县| 偏关县| 元朗区| 大英县| 嵊泗县| 宝山区| 合阳县| 宣威市| 桓台县| 罗甸县| 徐汇区| 三亚市| 衡水市| 吐鲁番市| 含山县| 安泽县| 洛扎县| 资溪县| 博湖县| 海安县| 娱乐| 岳阳县| 扎赉特旗| 新邵县| 永兴县| 简阳市| 布拖县| 澄江县| 榕江县|