李紅梅,高英
(重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶 400047)
一類錐約束多目標(biāo)優(yōu)化問(wèn)題的高階對(duì)偶研究
李紅梅,高英
(重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶400047)
在一類錐約束單目標(biāo)優(yōu)化問(wèn)題的一階對(duì)偶模型基礎(chǔ)之上,建立了錐約束多目標(biāo)優(yōu)化問(wèn)題的二階和高階對(duì)偶模型.在廣義凸性假設(shè)下,給出了弱對(duì)偶定理,在Kuhn-Tucker約束品性下,得到了強(qiáng)對(duì)偶定理.最后,在弱對(duì)偶定理的基礎(chǔ)上,利用Fritz-John型必要條件建立了逆對(duì)偶定理.
錐約束多目標(biāo)優(yōu)化;廣義凸;對(duì)偶定理
對(duì)偶理論是多目標(biāo)優(yōu)化問(wèn)題的主要研究?jī)?nèi)容.1961年,Wolfe[1]首次利用Kuhn-Tucker最優(yōu)性條件,在凸性假設(shè)下建立了一階對(duì)偶模型并證明了弱對(duì)偶定理.隨后,為了減弱凸性假設(shè)條件,Mond和Weir[2]提出了另一種一階對(duì)偶模型,并在偽不變凸和擬不變凸假設(shè)下給出了弱對(duì)偶定理.1975年,Mangasarian[3]在一階Wolfe型對(duì)偶的基礎(chǔ)上通過(guò)引進(jìn)二次可微函數(shù),建立了二階和高階對(duì)偶模型.Mond和Weir[2]考慮了另一種二階對(duì)偶模型(Mond-Weir型對(duì)偶模型).隨后,許多學(xué)者開始研究各種二階和高階對(duì)偶模型[4-9].
1996年,Nanda和Das[10]考慮了如下錐約束問(wèn)題(NP):
其中f:S→R,g:S→Rm,f,g分別是二次可微函數(shù).S∈Rn是閉集且C1,C2是Rn和Rm內(nèi)的非空凸錐.C?2為C2的負(fù)極錐.
Nanda和Das[10]建立了問(wèn)題(NP)的四種對(duì)偶模型,在偽不變凸和擬不變凸的假設(shè)之下給出了弱對(duì)偶定理.隨后,Chandra和Abha[11]對(duì)四種模型進(jìn)行了修正,并在廣義凸性假設(shè)下證明了四種對(duì)偶模型的弱對(duì)偶和強(qiáng)對(duì)偶定理,但并沒(méi)有給出其逆對(duì)偶定理.因此,文獻(xiàn)[12]中利用Fritz-John型必要條件給出了四種對(duì)偶模型的逆對(duì)偶定理.
本文是在文獻(xiàn)[12]的基礎(chǔ)之上,考慮了多目標(biāo)錐約束優(yōu)化問(wèn)題的二階和高階對(duì)偶模型,給出并證明了相應(yīng)的弱對(duì)偶,強(qiáng)對(duì)偶和逆對(duì)偶定理.本文結(jié)構(gòu)如下:第1節(jié),給出了一些基本知識(shí)以及錐約束多目標(biāo)優(yōu)化問(wèn)題高階對(duì)偶模型.第2節(jié),討論了錐約束多目標(biāo)優(yōu)化問(wèn)題高階對(duì)偶模型的弱對(duì)偶,強(qiáng)對(duì)偶和逆對(duì)偶定理.第3節(jié),給出了錐約束多目標(biāo)優(yōu)化問(wèn)題的二階對(duì)偶模型并討論了其弱對(duì)偶,強(qiáng)對(duì)偶和逆對(duì)偶定理.
設(shè)Rn是n維歐氏空間,Rn+是非負(fù)象限.對(duì)x,y∈Rn給出以下符號(hào):
定義2.1[13]設(shè)S?Rn是閉集,函數(shù)f:S→R在S上關(guān)于η是高階偽不變凸的,如果對(duì)任意x,u,p∈S,有
定義2.2[13]設(shè)S?Rn是閉集,函數(shù)f:S→R在S上關(guān)于η是高階擬不變凸的,如果對(duì)任意x,u,p∈S,有
其中函數(shù)η:S×S→Rn,函數(shù)h:S×Rn→R且h關(guān)于p可微.
定義2.3[14](i)可行解稱為問(wèn)題(MOP)的弱有效解,若不存在x∈S使得
對(duì)于(MOP),在文獻(xiàn)[11]中錐約束單目標(biāo)對(duì)偶模型(D)2的基礎(chǔ)之上,建立如下高階對(duì)偶模型(HD):
其中,h:Rn×Rn→Rl和k:Rn×Rn→Rm是二階連續(xù)可微函數(shù).
下面將討論弱對(duì)偶定理,強(qiáng)對(duì)偶定理和逆對(duì)偶定理.
下面討論問(wèn)題(MOP)的高階對(duì)偶模型(HD)的特殊情況.令
則高階對(duì)偶(HD)退化為(MOP)的二階對(duì)偶模型(SD):
注4.1當(dāng)h(u,p)=pT?f(u),k(u,q)=qT?g(u),l=1時(shí),多目標(biāo)高階對(duì)偶模型(HD)退化為文獻(xiàn)[6]中的單目標(biāo)一階對(duì)偶模型(ND)2.
高階對(duì)偶模型(HD)的弱對(duì)偶定理3.1和強(qiáng)對(duì)偶定理3.2可分別退化為二階對(duì)偶模型(SD)的弱對(duì)偶和強(qiáng)對(duì)偶定理.
下面給出例子說(shuō)明逆對(duì)偶定理的合理性.
正定且?yg(0,0)=0.因此定理4.3中的假設(shè)條件都滿足,故(0,0)是(MOP)的可行解.又因(λ,u,y,p=0,q=0)滿足定理4.1中的廣義凸性假設(shè)條件,因此(0,0)是(MOP)的有效解.
事實(shí)上,原問(wèn)題只有(0,0)一個(gè)可行解,因此(0,0)確實(shí)是原問(wèn)題(MOP)的有效解.
[1]Wolfe P.A duality theorem for nonlinear programming[J].Quart.Appl.Math.,1961,19:239-244.
[2]Mond B,Weir T.Generalized Concavity and Duality,in:S.Schaible,W.T.Ziemba(Eds),Generalized Concavity in Optimization and Economics[M].New York:Academic Press,1981.
[3]Mangasarian O L.Second and higher-order duality in nonlinear programming[J].J.Math.Anal.Appl.,1975,51:607-620.
[4]Gulati T R,Divya Agarwal.On Huard type second-order converse duality in nonlinear programming[J]. Appl.Math.ett.,2000,20:1057-1063.
[5]Yang X M,Yang X Q,Teo K L.Higher-order generalized convexity and duality in nondifferentiable multiobjective mathematical programming[J].J.Math.Anal.Appl.,2004,297:48-55.
[6]Yang X M,Yang X Q,Teo K L.Huard type second-order converse duality for nonlinear programming[J]. Appl.Math.Lett.,2005,18:205-208.
[7]Ahmad I,Husain Z,Sarita Sharma.Higher-order duality in nondifferentiable multiobjective programming[J]. Numerical Functional Analysis and Optimization,2007,28:989-1002.
[8]高英.一類多目標(biāo)廣義分式規(guī)劃問(wèn)題的最優(yōu)性條件和對(duì)偶[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2011,27(4):476-485.
[9]高英.非可微多目標(biāo)優(yōu)化問(wèn)題的高階逆對(duì)偶定理[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2014,30(2):136-142.
[10]Nanda S,Das L N.Pseudo-invexity and duality in nonlinear programming[J].European Journal of Operational Research,1996,88:572-577.
[11]Chandra S,Abha.A note on pseudo-invex and duality in nonlinear programming[J].European Journal of Operational Research,2000,122:161-165.
[12]Yang X M,Yang X Q,Teo K L.Converse duality in nonlinear programming with cone constraints[J]. European Journal of Operational Research,2006,170:350-354.
[13]Mond B,Zang J.Higher order invexity and duality in mathematical programming[J].European Journal of Operational Research,1998,163:357-372.
[14]Sawaragi,Yoshikazu Date.Theory of Multiobjective Optimization[M].Japan:Department of Applied Matheatics Konan Uinversity,1985.
Higher-order duality in multiobjective programming problems with cone constraints
Li Hongmei,Gao Ying
(Department of Mathematics,Chongqing Normal University,Chongqing400047,China)
In this paper,basing on the first-order dual models for single objective problems with cone constraints,we construct second-order and higher-order dual models for nonlinear multiobjective programming problems with cone constraints.And then we establish weak and strong duality theorems under generalized convexity assumptions.By using Fritz-John type necessary condition,converse duality theorems are established.
multiobjective programming problems with cone constraints,generalized convexity,duality theorems
O221.6
A
1008-5513(2015)01-0073-12
10.3969/j.issn.1008-5513.2015.01.009
2014-07-18.
國(guó)家自然科學(xué)基金(11201511);重慶市重點(diǎn)實(shí)驗(yàn)室專項(xiàng)項(xiàng)目(CSTC,2011KLORSE03).
李紅梅(1988-),碩士生,研究方向:多目標(biāo)規(guī)劃.
2010 MSC:90C32,90C46,90C47