張蕊,方莉
(西北大學數學學院,陜西 西安 710127)
具有奇性與真空粘性依賴于密度的非牛頓流局部強解的存在唯一性
張蕊,方莉
(西北大學數學學院,陜西 西安710127)
研究一維有界區(qū)間上粘性依賴于密度且具有奇性、初始允許真空的可壓縮非牛頓流.通過正則化奇性項以及逐步迭代構造初邊值問題的逼近解,對逼近解取極限得到其局部強解的存在唯一性,進一步推廣了相關文獻中關于非牛頓流解的存在性結果.
可壓縮非牛頓流;局部強解;粘性依賴于密度
考慮一維情形下,粘性依賴于密度的一類可壓縮非牛頓流初邊值問題:
初邊值條件為:
其中,ρ,u和π分別表示密度、速度和壓力,ρ0≥0,1<p<2,α∈(0,1).由于π(ρ)中的常數A并不影響后面的分析,因此不失一般性,設A=1.為方便敘述,記I=[0,1].
對于可壓縮牛頓流(p=2),許多數學工作者已得到當初始密度具有真空時解的存在性理論并在可壓Euler方程或可壓Navier-Stokes方程的背景下,得到了關于初值具有緊支撐的強解的存在性結果[1-8].近年來,對于可壓非牛頓流的研究也有了一些進展[9-14].
本文主要得到了初邊值問題(1.1)式-(1.2)式的局部強解的存在唯一性.以下給出局部強解的定義及本文的主要結果.
定理 1.1設(ρ0,u0)滿足以及相容性條件:
則存在T?∈(0,T)以及初邊值問題(1.1)-(1.2)的唯一強解(ρ,u)滿足:
注記 1.1本文中,|·|表示Banach空間上的范數.
引理 2.1[11]設?是R1中的有界集,1≤q≤p≤+∞.則
引理 2.2[11]設在??上f=0且則特別地,當1<q<+∞時,其中,?是R1中有界開集,d(?)表示?的長度.
[1]Cho Y,Choe H,Kim H.Unique solvability of theinitial boundary valueproblems for compressible viscous fluids[J],J.Math.Pures.Appl.,2004,83:243-275.
[2]Choe H,Kim H.Strong solutions of the Navier-Stokes equations for isentropic compressible fluids[J].J. Differential Equations,2003,190:504-523.
[3]Choe H,Kim Hyunseok.Global existence of the radially symmetric solutions of the Navier-Stokes equations for isentropic compressible fluids[J].Math.Methods Appl.Sci.,2005,28:1-28.
[4]Liu T,Xin Z,Yang T.Vacuum states of compressible flow[J].Discrete Contin.Dyn.Syst.,1998,4:1-32.
[5]Xin Z.Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density[J]. Comm.Pure.Appl.Math.,1998,51:229-240.
[6]Yang T,Yao Z,Zhu C.Compressible Navier-Stokes equations with density-dependent viscosity and vacuum[J].Comm.Partial Differential Equations,2001,26:965-981.
[7]Yang T,Zhu C.Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum[J]. Comm.Math.Phys.,2002,230:329-363.
[8]Málek J,Ne?as J,Rokyta M,et al.Weak and Measure-Valued Solutions to Evolutionary PDEs[M].New York:Chapman and Hall,1996.
[9]Ne?asová?,Luká?ová M.Bipolar isothermal non-Newtonian compressible fluids[J].J.Math.Anal.Appl.,1998,225:168-192.
[10]Bae H O.Existence,regularity,and decay rate of solutions of non-Newtonian flow[J].J.Math.Anal.Appl.,1999,231:467-491.
[11]Yuan H,Xu X.Existence and uniqueness of solutions for a class of non-Newtonian fluids with singularity and vaccum[J].J.Differential Equations,2008,245:2871-2916.
[12]Bognár G.Similarity solution of boundary layer flows for non-Newtonian fluids[J].Int.J.Nonlinear.Sci. a Numer.Simulat.,2009,10:1555-1566.
[13]Yuan H,Li H.Global existence and uniqueness of solution for a class of non-Newtonian Fluids[J].J.Partial Differential Equations,2012,25:13-36.
Existence of solutions for a class of non-Newtonian fluids with density-dependent viscosity,singularity and vacuum
Zhang Rui,Fang Li
(College of Mathematics,Northwest University,Xi′an7110127,China)
This paper aims to discuss existence and uniqueness of local strong solutions for a class of compressible non-Newtonian fluids with density-dependent viscosity,singularity and vacuum in one-dimensional bounded intervals.By regularizing the viscosity term with singlarity and iterating step by step,we construct the approximate solutions and prove the existence and uniqueness of the local strong solution.Furthermore,we extend the existence results in relative
for non-Newtonian fluids.
compressible non-Newtonian fluid,local strong solution,density-dependent viscosity
O175.2
A
1008-5513(2015)01-0097-014
10.3969/j.issn.1008-5513.2015.01.012
2014-05-02.
陜西省科技計劃項目(2012JQ020).
張蕊(1990-),碩士生,研究方向:偏微分方程.
2010 MSC:35A25