賈國梁,石晶盈,李法德,*
(1.山東農(nóng)業(yè)大學機械與電子工程學院,山東 泰安 271018;2.山東農(nóng)業(yè)大學食品科學與工程學院,山東 泰 安 271018)
電生功能水抑制微生物及其產(chǎn)生毒素研究進展
賈國梁1,石晶盈2,李法德1,*
(1.山東農(nóng)業(yè)大學機械與電子工程學院,山東 泰安 271018;2.山東農(nóng)業(yè)大學食品科學與工程學院,山東 泰 安 271018)
由于電生功能水具有廣譜殺菌性、效率高、經(jīng)濟、安全、環(huán)保等諸多優(yōu)點,近幾年,在抑制或殺滅微生物活性方面受到了人們的普遍關注。目前,強酸性電生功能水的應用已較廣泛,也有一些微酸性及中性電 生功能水應用于農(nóng)業(yè)、 食品領域的報道。隨著研究的不斷深入,電生功能水與其他多種處理手段的結合,電生功能水殺 菌成分與機理,電生功能水的殺菌條件等問題也 被不斷探究。本文論述電生功能水殺菌、滅活病毒、毒素等方面的最新研究進展,指出目前研究中存在的問題以及今后的發(fā)展方向。
電生功能水;微生物;農(nóng)業(yè);食品;殺菌劑
電生功能水(electrolyzed function water),也稱為電解氧化電位水(electrolyzed oxidizing water,EOW),最早發(fā)源于日本[1],是指將添加少量含氯電解質(zhì)的水置于一種特殊裝置中,經(jīng)電場處理,使水的pH值、氧化還原電位(oxidation-reduction potential,ORP)、有效氯含量(avail able chlorine content,ACC)等指標發(fā) 生改變而產(chǎn)生的具有特殊功能的電解水。日本在2002年已將EOW作為一種食品添加劑[2]。EOW包括酸性電生功能水(acid electrolyzed water,AEW)、堿性電生功能水(alkaline electrolyzed water,AlEW)和中性電解水(neutral electrolyzed water,NEW)。本文主要涉及具有抑菌及殺菌作用的AEW和NEW。AEW按照pH值不同可分為強酸性電生功能水(strongly acid electrolyzed water,StAEW,2.3<pH<2.8)和微酸性電生功能水(slightly acidic electrolyzed water,SAEW,5.5<pH<6.5)[3]。NEW的pH值范圍大約都在6.5~8.5內(nèi),氧化還原電位大約都在800~1 000 mV內(nèi)[4-6]。EOW具有安全、經(jīng)濟[7-10]、容易操作、副作用少[11]等優(yōu)點。本文對近幾年來在農(nóng)業(yè)和食品領域電生功能水在微生物抑制等方面的研究進展進行論述,主要包括電生功能水的制備和應用、殺菌條件的優(yōu)化、殺菌機理及存在的問題與發(fā)展方向等。
根據(jù)工作方式的不同,可將EOW生成裝置分為間歇式和連續(xù)式兩大類。而按照電解室結構的不同,可將EOW生成裝置分為隔膜式和無隔膜式(圖1)。本實驗室針對已有技 術的特點,發(fā)明了浸沒式電解混合裝置[12]。該設備采用浸沒式結構,有效地避免了電解室在工作過程中的溫度升高,既減小了設備體積,又可以避免酸性電解液和電解過程中產(chǎn)生的氯氣泄露,減少了對環(huán)境的污染,提高了設備的安全性;并可通過調(diào)節(jié)電壓、電流、電解液與原水流量等操作參數(shù)生產(chǎn)出具有不同指標(pH值、ORP、ACC)的EOW。NEW的生成類似于AEW,但是陽極形成的部分產(chǎn)品又重新回到陰極區(qū),因此增加了ClO-的量[13]。
圖1 無隔膜式(A)和隔膜式(B)電解槽Fig.1 Electrolytic cells without (A) or with (B) a membrane
2.1EOW用于控制植物病害
植物病害會使植物的機能被破壞或干擾。化學防治是目前控制植物病害最常用、效果最好的方法,但化學防治常常導致農(nóng)藥殘留、環(huán)境污染、病原菌抗藥性增強,也不利于施藥人員的自身安全。EOW在控制植物病害方面的優(yōu)勢較為明顯。一些學者已證明了EOW對Penicillium digitatum、Aspergillus flavus、Sphaeroteca spp.、Botrytis cinerea和Oomycete phytophthora的功效[14-17]。利用EOW控制小麥條銹?。?8]、葡萄炭疽?。?9]和黃瓜白粉病[20]等也取得了良好的效果,在條銹菌潛育期1 周噴灑2 次AEW(理化指標:pH (2.5±0.1)、ORP(1 150±20) mV、ACC(70±20) mg/L)對小麥條銹病的防治效果為100%,與粉銹寧農(nóng)藥防治效果接近[18];對未發(fā)病的葡萄植株進行病害防治實驗,發(fā)現(xiàn)AEW(理化指標:pH(2.5±0.1)、ORP(1 150±20)mV、ACC(70±20)mg/L)對葡萄炭疽病的防治效果(32.24%~44.04%)優(yōu)于農(nóng)藥百菌清,且不會給葡萄植株造成損傷[19];對已經(jīng)發(fā)病的黃瓜進行葉面噴灑,發(fā)現(xiàn)AEW(理化指標:pH(2.5±0.1)、ORP(1 150±20)mV、ACC(100±5)mg/L)處理后,黃瓜葉面的白粉病防治效果達到70%以上[20]。
據(jù)不完全統(tǒng)計,國內(nèi)煙草受煙草黑脛病菌影響,每年產(chǎn)量損失高達2.869 26×107kg,產(chǎn)值損失超1.23 億元[21]。為了抑制煙草黑脛病的發(fā)生,Hou Yatao等[22]利用電生功能水對Phytophthora parasitica var. nicotianae的體外生長進行抑制實驗,研究了電生功能水處理時間間隔、有效氯含量、pH值和浸沒時間對Phytophthora parasitica var. nicotianae抑制效果的影響。結果表明電生功能水可以抑制體外煙草黑脛病菌,抑制率在27.2%~53.3%之間。當有效氯含量大于一定值時(ACC>30 mg/L)和浸沒時間相同的條件下,StAEW和SAEW(pH 5.0~6.0)對煙草黑脛病菌的抑制率沒有顯著差異。通過實驗確定的最佳處理時間間隔是48 h,且無論浸沒時間長短,抑制率都高于46.7%。可見,EOW可有效抑制煙草黑脛病菌的生長。
白粉病是溫室觀賞植物中普遍的、有破壞性的疾病之一。Mueller等[23]用EOW(理化指標:pH 2.7~2.8、ACC 49~54 μg/mL、ORP 1 050~1 053 mV)每周噴灑1 次或2 次顯著減少了非洲菊的白粉病,從而驗證了EOW可替代溫室中的傳統(tǒng)殺菌劑。并且,EOW對植物沒有明顯傷害[24],加上EOW對許多真菌孢子和菌絲的廣譜活性,使得EOW成為在溫室控制疾病有前途的方法之一。
作者利用自主設計的連續(xù)式微酸性電生功能水生成系統(tǒng)制作了具有不同理化指標的3 種微酸性電生功能水(表1),并研究了這3 種不同指標的電生功能水對蘋果鏈格孢屬真菌孢子懸浮液中真菌孢子萌發(fā)率的影響,結果如圖2所示,隨著加入SAEW的ACC升高,蘋果鏈格 孢屬真菌孢子萌發(fā)率顯著降低。因此,微酸性電生功能水能夠抑制蘋果鏈格孢屬真菌孢子的萌發(fā)率。
表1 電生功能水的理化性質(zhì)Table1 Physicochemical parameters of SAEW
圖2 蘋果鏈格孢屬真菌孢子4 h和8 h萌發(fā)率Fig.2 Percentage of germinating spores of Alternaria from apple after treatment with SAEW for 4 and 8 h
2.2EOW用于控制食源性微生物
一些腐敗菌、酵母菌和霉菌在生鮮食品中較為常見[25-26],水果和蔬菜在田間生長、采收和采后處理、加工和流通過程被病原微生物污染[27]。為了防治食源性微生物,目前已研究了多種殺菌劑[28],在食品工業(yè)如鮮切產(chǎn)業(yè)廣泛使用的殺菌劑有Cl2、H2O2、有機酸、臭氧[29-30]和NaClO等。隨著人們生活節(jié)奏的加快和生活水平的提高,鮮切水果和蔬菜的銷售額逐年增長,由病原菌引起的食源性疾病在世界范圍內(nèi)時有發(fā)生,在加拿大、美國、英國、日本等很多國家都有相關報道[31-33]。因此,開發(fā)安全有效的控制食品中病原微生物的方法是食品企業(yè)HACCP體系的重要步驟[34]。殺菌研究發(fā)現(xiàn),EOW可以很好地替代其他化學消毒劑,所以關于EOW殺菌的研究越來越受到青睞。
常見的蔬菜如菠菜、大白菜、萵苣、蘿卜芽中含有大量的致病菌,研究證明SAEW對Escherichia coli O157:H7、Listeria monocytogenes、Staphylococcus aureus和Salmonella spp.抑制效果很好[35-37]。另外,AEW不造成腐蝕,貯存更穩(wěn)定,對人體產(chǎn)生的危害?。ㄒ莩龅穆葰馍伲?。研究還發(fā)現(xiàn),NEW對西紅柿、卷心萵苣、胡蘿卜絲、鮮切的萵苣菜、玉米沙拉、四季沙拉上的E. coli O157:H7、Salmonella enteritidis、Listeria monocytogenes、Erwinia carotovora等都有抑制作用[13,38],如西紅柿經(jīng)過N E W處理,表面的種群數(shù)量由5(lg(CFU/cm2))減小到不足1 (lg(CFU/cm2)),且用NEW處理過的西紅柿樣品和未處理過的西紅柿感官評價不存在顯著差別[13]。同時,NEW(50 mg/L)與氯水(120 mg/L)對幾種鮮切果蔬如卷心萵苣、胡蘿卜絲、鮮切的萵苣菜的殺菌效果接近[38]。所以EOW在控制食源性疾病領域推廣前景廣闊。
2.3EOW用于病毒滅活
近年來,國內(nèi)豬呼吸與繁殖障礙綜合征(porcine reproductive and respiratory syndrome,PRRS)和假狂犬?。╬seudorabies,PR)造成的經(jīng)濟損失嚴重[39-40]。Hao Xiaoxia等[41]研究了不同質(zhì)量濃度的SAEW(ACC 30、50、70 mg/L)在不同處理時間(5、10、15 min)和不同溫度(4、20、40、60 ℃)等條件下,殺滅PRRS病毒(PRRS virus,PRRSV)和PR病毒(PR virus,PRV)的效果,結果表明,SAEW可以有效殺滅PRRSV和PRV,且效果優(yōu)于NaClO溶液處理組,SAEW(ACC 50 mg/L)可在10 min內(nèi)完全殺滅這兩種病毒,并且對宿主細胞沒有顯著影響;隨著有效氯質(zhì)量濃度的增加、處理時間的延長、溫度的升高,SAEW抗病毒能力增強。但是對微酸性電生功能水抗病毒作用的機理還未研究清楚。隨著機理的進一步深入研究,SAEW在養(yǎng)殖場推廣應用的前景還很廣闊。
Morita等[42]研究發(fā)現(xiàn)StAEW(理化指標:pH 2.34、ORP 1 053 mV、ACC 4.2 mg/L)可以抑制人類免疫缺陷病毒(human immunodeficiency virus-1,HIV-1),20 min內(nèi)HIV-1的傳染性完全消失??赡艿臋C理是導致病毒表面的蛋白質(zhì)失活;抑制病毒的酶,破壞病毒的蛋白質(zhì)等。而且,StAEW比NaClO對乙型肝炎病毒表面抗原(epatitis B surface antigen,HBsAg)和HIV-1的滅活效率更高。Tagawa等[43]通過建立動物模型,證明了StAEW(理化指標:pH 2.15、ORP 1 153 mV、ACC 7.15 mg/L)可以有效地防止肝炎病毒(hepatitis B virus,HBV)的傳播。
2.4EOW用于毒素滅活
病原菌會產(chǎn)生毒素,單純減少食源性病原菌并不能保證食品加工過程的安全,而EOW對于毒素的滅活效果引起了人們的興趣。腸毒素是分子質(zhì)量為27~30 kD的蛋白質(zhì)。葡萄球菌腸毒素A(staphylococcal enterotoxin,SEA)是造成食物中毒的主要腸毒素之一,小于0.2 μg的SEA會導致人體食物中毒,攝入0.4~0.8 ng/mL的SEA會使人在3~5 h內(nèi)發(fā)病。Suzuki等[44]通過酶聯(lián)免疫吸附測定(enzyme linked immunosorbent assay,ELISA)、高效液相色譜法(high performance liquid chromatography,HPLC)等手段研究發(fā)現(xiàn)EOW(理化指標:pH 2.5~2.8、ACC 36.3 μg/mL、ORP 1 180 mV)可以滅活SEA。黃曲霉毒素是一種肝毒素,毒性為二甲基亞硝胺的75 倍,20多種衍生物中黃曲霉毒素B1(aflatoxin B1,AFB1)致癌最強。Zhang?Qian等[45]研究發(fā)現(xiàn)經(jīng)過AEW室溫處理15 min后,花生中85% AFB1被處理掉。而且經(jīng)過處理,花生中的營養(yǎng)素(蛋白質(zhì)、脂質(zhì)、碳水化合物成分)沒有顯著性變化,花生表皮的顏色也沒有發(fā)生變化。他們認為電生功能水中有效氯是滅活毒素AFB1的主要成分,并通過設置處理組所用的殺菌劑分別為新制的AEW、堿性NaClO、接近中性的NaClO、酸性NaClO等說明了殺滅AFB1的有效氯形式主要是HClO,另外,強酸性條件對毒素AFB1的滅活也有一定的促進作用。
3.1EOW和其他方法的協(xié)同作用
超聲波具有殺菌的功效,由于超聲波裂解作用導致細菌細胞膜的破裂,超聲波對顆粒的細化與分散作用,從而降低所需的有效氯量(本文中指Cl2)[46]。Ugarte-Romero等[47]利用超聲波在頻率為20 kHz、功率密度為0.46 W/mL的條件下研究了超聲波輔助加熱與傳統(tǒng)加熱方法對蘋果汁的殺菌效果,結果發(fā)現(xiàn),在同樣溫度下超聲波輔助加熱殺菌的效果優(yōu)于單純加熱殺菌方法,經(jīng)掃描電鏡(scanning electron microscope,SEM)觀察,其主要機理是由于超聲波作用在固液界面附近產(chǎn)生的“氣穴”破裂而引起的“射流”造成了E. coli細胞壁的破裂,從而導致細胞的失活。通過超聲波的輔助作用,促使有效氯成分HClO并進入細胞,從而提高了EOW的殺菌效果。
Forghani等[48]認為SAEW(理化指標:pH 5.2~5.5、ORP 500~600 mV、ACC 21~22 mg/L)的處理不能將食源性微生物的量減小到安全范圍,因此采用微酸性電生功能水與超聲波(ultrasonication,US,40 kHz,400 W/L)和清水沖洗(water wash,WW)的組合方式,對大白菜、萵苣、芝麻葉和菠菜等進行了處理,測量指標包括酵母菌和霉菌、總細菌數(shù)量、E. coli、Listeria monocytogenes的微生物減少量等,結果發(fā)現(xiàn),組合處理方式的效果顯著優(yōu)于單獨采用微酸性電生功能水、超聲波和清水沖洗處理方式時的效果(P<0.05)。
Khayankarn等[49]采用AEW和超聲波的組合來研究菠蘿采后腐爛問題。他們首先分別采用AEW(ACC 100、200、300 mg/L,處理時間為0、10、20、30 min)及超聲波(108、400、700、1 000 kHz,處理時間為0、10、30、60 min)處理Fusarium sp.(鐮刀菌)孢子,根據(jù)抑制孢子萌發(fā)的結果選擇效果最優(yōu)的AEW和超聲波處理,然后通過超聲波、AEW浸泡和超聲波處理三步來研究對果實腐爛與品質(zhì)的影響,包括對好氧微生物及酵母菌、霉菌數(shù)量、水果腐爛率、溶解固形物含量(total soluble solids,TSS)、可滴定酸度(titratable acidity,TA)等的影響,得出1 MHz超聲波和電解水的組合處理對于減少腐爛率、延長貨架期的效果最好。
Liu Rui等[50]通過研究發(fā)現(xiàn)先用AlEW浸泡糙米,同時超聲波處理30 min再放在SAEW中8 h可以顯著增強殺菌能力(P<0.05)。同樣,Xie?Jun等[51]證實經(jīng)AlEW預處理后再用AEW處理的方法增強了抑制副溶血性弧菌污染的效果。
3.2環(huán)境對EOW的影響
不同的農(nóng)產(chǎn)品對殺菌劑的殺菌活力也會產(chǎn)生影響。動物產(chǎn)品如蝦、肉都富含蛋白質(zhì)(有的也含有脂肪),而水果和蔬菜則富含碳水化合物[52]。即使少量的蛋白質(zhì)和脂質(zhì)也可以和EOW中的有效氯成分(如HClO)反應,使HClO含量迅速降低[53],因此EOW的生物膜滲透能力差,這是造成EOW殺菌效率下降的主要原因之一[54-55]。有效氯可通過氧化還原反應與許多無機物或有機物(VC等)反應,降低其含量,例如有效氯與氨、氨基酸反應會形成一些化合物如N-氯代氨基酸;有效氯與脂質(zhì)中的C=C反應(即不飽和脂肪酸鏈);在有效氯含量高的情況下與糖的反應??傊?,在食品產(chǎn)業(yè)、農(nóng)業(yè)、醫(yī)學上,有機物會使AEW中的有效氯成分發(fā)生形式的改變,變?yōu)榛衔锏男问?,降低其殺菌效率?5]。
貯存環(huán)境對EOW的品質(zhì)影響很大。Cui Xiaodong等[56]研究認為NEW比AEW穩(wěn)定,AEW需要放置在一個密閉容器中防止有效氯(影響抗菌指標的主要因素之一)散失。Horiba等[57]也證明NEW可以在無光的密閉容器中保持恒定的pH值和ORP值,從而具有抑菌、殺菌的作用。有觀點認為,EOW溫度的升高有利于EOW殺菌能力的增強,Xie Jun等[58]發(fā)現(xiàn)用AEW處理,隨著溫度升高到50 ℃,剩余總細菌數(shù)、真菌數(shù)都隨之逐漸減少。但是,50 ℃高溫只適用在一些肉制品等的加工中,不適合果蔬加工,Xie?Jun等[58]針對不同溫度,采用實驗室自制的SAEW(表1)抑制蘋果鏈格孢屬真菌的效果進行研究,發(fā)現(xiàn)溫度未對抑菌圈的直徑產(chǎn)生顯著性影響(圖3),所以還應針對殺菌對象的不同需要進一步探討。Hsu等[59]研究發(fā)現(xiàn)當功能水半開貯存12 d,會造成DO(溶解氧)和總余氯含量(有效氯)分別減少81%和47%,其減少程度比延長貯存時間9 d更嚴重。Koide[60]和Len[61]等研究發(fā)現(xiàn)避光可以減少有效氯的損失,光線可能會誘導有效氯成分的自身分解。
圖3 溫度對SAEW抑制蘋果鏈格孢屬真菌生長的影響Fig.3 Influence of temperature on growth inhibition of Alternaria from apple by SAEW
3.3EOW凍結
在食品領域,研究AEW制成冰后發(fā)揮它的殺菌等作用是一個新的熱點。EOW制成的冰對于食品保鮮和殺菌很有潛力[59]。Kim等[62]對比EW-ice(電生功能水制成的冰)與TW-ice(自來水制成的冰)對秋刀魚微生物學、化學、感官品質(zhì)方面的影響。他們采用的EW-ice的有效氯含量為34 mg/kg,是使用pH值為5、ACC為47 mg/L的一種接近微酸性的電生功能水制成。發(fā)現(xiàn)EW-ice明顯抑制了秋刀魚肉中的需氧菌和嗜冷細菌的生長。EW-ice也抑制了揮發(fā)性鹽基態(tài)氮(total volatile basic nitrogen,TVBN)、硫代巴比妥酸反應產(chǎn)物、堿性化合物的形成。另外,貯存在EW-ice中的秋刀魚貨架期比貯存在TW-ice中的秋刀魚貨架期長4~5 d。同樣,Wang Jingjing等[63]研究發(fā)現(xiàn),AEW-ice比TW-ice對熟蝦上的副溶血性弧菌的殺菌效果更明顯,防止TVBN的形成更有效。TVBN是新鮮和冷凍海鮮產(chǎn)品常用的品質(zhì)指標之一[64-65]。高TVBN值和肉中的不愉快氣味是相關的[66]。
Koseki等[67]發(fā)現(xiàn)AEW-ice產(chǎn)生的氯氣是其具有殺菌作用的主要因素,AEW-AlEW混合物制成的冰對萵苣沒有殺菌效果,不能減少微生物種群的數(shù)量。
關于EOW的殺菌主要成分,許多研究表明有效氯含量越高,殺菌效果越好[6,55,68],有效氯包括次氯酸、次氯酸根離子或溶解的單質(zhì)氯等,次氯酸是EOW具有殺菌能力的最有效形式,其次是次氯酸鹽。HClO可以通過氧化核酸和蛋白質(zhì)來破壞微生物細胞結構[16]。一些微生物細胞質(zhì)酶中的巰基會被HClO氧化,可能會造成酶的失活,而且產(chǎn)物會抑制碳水化合物代謝途徑中重要的葡萄糖氧化,使微生物無法正常代謝,從而殺死微生物細胞。也有研究認為NEW的殺菌效果主要是ACC和ORP的聯(lián)合抗菌效果[5]。
Monnin[4]和Liao[69]等認為高ORP值使EOW具有殺菌效果。ORP與游離氯關系密切[4,45]。Liao等[69]的研究指出通過電子顯微鏡學和熒光測量技術顯示出高氧化還原電位(ORP)值可以破壞E. coli O157:H7的外部膜和內(nèi)部膜,造成E. coli O157:H7失活。失活的機理可能是:首先,破壞E. coli O157:H7中GSSG(氧化型谷胱甘肽)/2GSH(谷胱甘肽)氧化還原態(tài)的穩(wěn)定(2HClO+ 2GSH=GSSG+H++H2O+Cl-),破壞了E. coli O157:H7的結構和功能,嚴重的氧化應激會耗盡能量儲存,破壞產(chǎn)能結構,導致與細胞凋亡相關的結構變化無法被修復;然后滲入E. coli O157:H7的外層和內(nèi)層膜;最后導致E. coli O157:H7的壞死。也有類似觀點指出高ORP值可破壞病原體的細胞壁膜,導致病原體細胞內(nèi)的滲透壓或類氫過載[70]。細胞膜受損導致膜兩側水轉移量增加,導致水進入細胞的速率大于排出的速率,從而短時間內(nèi)產(chǎn)生極大的壓力,最終造成細胞爆炸或死亡,而病原菌無法抵抗這樣的物理破壞過程。結合EOW有效氯成分及Acher等[71]的理論,有效氯中部分成分殺菌的功效應為:Cl2>ClO2>ClO-。
而超聲波與SAEW的組合會進一步提高殺滅微生物的效率,與超聲波的作用機制密不可分,它會產(chǎn)生局部的高壓與高溫,破壞微生物細胞壁,導致更多的SAEW被其吸收[72],結果導致最大量的細胞損傷[73]。另外,局部的高壓和高溫導致的微機械振動可能將一些細胞去除掉,也會使一些細胞的接觸變的松動。從而使細胞更容易與次氯酸充分接觸[74]。超聲波處理有延長貨架期的開發(fā)潛能[75]。
目前,EOW用于控制植物病害、食源性致病菌、水果防腐等方向已有了一定研究,可以用于指導農(nóng)業(yè)、食品工業(yè)中的生產(chǎn)實踐。但是目前仍存在的一些問題,主要包括:1)Audenaert等[76]研究表明EOW在體外實驗和體內(nèi)實驗均可控制鐮孢菌屬,但是,由于氧化應激反應,NEW也造成了鐮孢菌屬產(chǎn)生的真菌毒素(如DON)的增多。即會有造成食物中毒問題的風險。可見利用
EOW抑菌的方法需要進一步優(yōu)化,如通過延長浸泡時間、增加浸泡次數(shù)等方法再次將真菌毒素殺死;2)多數(shù)涉及真菌的實驗都未在大田中進一步研究,如我們實驗室所做的EOW抑制煙草黑脛病菌實驗未在大田中繼續(xù)研究[22];3)EOW控制食源性疾病的研究,應考慮實際的商業(yè)條件下,按照不同種類的水果和蔬菜(具有不同的病原菌)進行實驗,為工業(yè)化生產(chǎn)確定合適的處理時間、溫度、浸泡次數(shù)等。所以如何把AEW合理的加入到食品廠的危害分析與關鍵控制點(hazard analysis and critical control point,HACCP)體系、藥品生產(chǎn)質(zhì)量管理規(guī)范(good manufacturing practice,GMP)、衛(wèi)生標準操作程序(sanitation standard operation procedure,SSOP)中需要進一步的實踐研究;同時,需要對EOW的殺菌動力學過程進行研究,以便為工業(yè)化應用提供技術指導;4)EOW所產(chǎn)生的刺激性氣味對消費者感官評價的影響等。這些問題需要進一步的研究和討論。
[1] SHIMIZU Y, HURUSAWA T. Antiviral, antibacterial, and antifungal actions of electrolyzed oxidizing water through electrolysis[J]. Dental Journal, 1992, 37: 1055-1062.
[2] YOSHIDA K, ACHIWA N, KATAYOSE M. Application of electrolyzed water for food industry in Japan[C]// Proceedings of 2004 Institute of Food Technologist Annual Meeting, Las Vegas, 2004.
[3] CAO Wei, ZHU Zhiwei, SHI Zhenxiang, et al. Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs[J]. International Journal of Food Microbiology, 2009, 130(2): 88-93.
[4] MONNIN A, LEE J, PASCALL M A. Efficacy of neutral electrolyzed water for sanitization of cutting boards used in the preparation of foods[J]. Journal of Food Engineering, 2012, 110(4): 541-546.
[5] AREVALOS-SANCHEZ M, REGALADO C, MARTIN S E, et al. Effect of neutral electrolyzed water on lux-tagged L. monocytogenes EGDe biofilms adhered to stainless steel and visualization with destructive and non-destructive microscopy techniques[J]. Food Control, 2013, 34(2): 472-477.
[6] ZHANG Chunling, LU Zhanhui, LI Yongyu, et al. Reduction of Escherichia coli O157:H7 and Salmonella enteritidison mung bean seeds and sprouts by slightly acidic electrolyzed water[J]. Food Control, 2011, 22(5): 792-796.
[7] MORI Y, KOMATSU S, HATA Y. Toxicity of electrolyzed strong acid aqueous solution-subacute toxicity test and effect on oral tissue in rats[J]. Odontology, 1997, 84: 619-626.
[8] SEKIYA S, OHMORI K, HARII K. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution[J]. Artificial Organs, 1997, 21(1): 32-38.
[9] SHIMMURA S, MATSUMOTO K, YAGUCHI H, et al. Acidic electrolysed water in the disinfection of the ocular surface[J]. Experimental Eye Research, 2000, 70(1): 1-6.
[10] SAKURAI Y, NAKATSU M, SATO Y, et al. Endoscope contamination from HBV and HCV positive patients and evaluation of a cleaning/disinfecting method using strongly acidic electrolyzed water[J]. Digestive Endoscopy, 2003, 15(1): 19-24.
[11] TANAKA N, FUJISAWA T, DAIMON T, et al. The effect of electrolyzed strong acid aqueous solution on hemodialysis equipment[J]. Artificial Organs, 1999, 23(12): 1055-1062.
[12] 李法德, 李里特, 劉海杰, 等. 浸沒式電解混合裝置: 中國,201010556255.8[P]. 2012-07-04.
[13] DEZA M A, ARAUJO M, GARRIDO M J. Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water[J]. Letters in Applied Microbiology, 2003, 37(6): 482-487.
[14] GUENTZEL J L, LAM K L, CALLAN M A, et al. Postharvest management of gray mold and brown rot on surfaces of peaches and grapes using electrolyzed oxidizing water[J]. International Journal of Food Microbiology, 2010, 143(1): 54-60.
[15] HONG C X, RICHARDSON P A, KONG P, et al. Efficacy of chlorine on multiple species of Phytophthora in recycled nursery irrigation water[J]. Plant Disease, 2003, 87(10): 1183-1189.
[16] WHANGCHAI K, SAENGNIL K, SINGKAMANEE C, et al. Effect of electrolyzed oxidizing water and continuous ozone exposure on the control of Penicillium digitatum on tangerine cv. ‘Sai Nam Pung’during storage[J]. Crop Protection, 2010, 29(4): 386-389.
[17] XIONG Ke, LIU Haijie, LIU Rong, et al. Differences in fungicidal efficiency against Aspergillus flavus for neutralized and acidic electrolyzed oxidizing waters[J]. International Journal of Food Microbiology, 2010, 137(1): 67-75.
[18] 郝建雄, 李里特, 馬占鴻, 等. 電生功能水防治小麥條銹病試驗研究[J].中國植保導刊, 2006, 26(6): 21-23.
[19] 武龍, 肖衛(wèi)華, 李里特. 電生功能水防治葡萄炭疽病試驗[J]. 植物保護, 2004, 30(6): 82-83.
[20] 肖衛(wèi)華, 李里特, 王慧敏, 等. 電生功能水防治黃瓜白粉病試驗初報[J].植物保護, 2003, 29(2): 50-51.
[21] CHAC?N O, HERN?NDEZ I, PORTIELES R, et al. Identification of defense-related genes in tobacco responding to black shank disease[J]. Plant Science, 2009, 177(3): 175-180.
[22] HOU Yatao, REN Jie, LIU Haijie, et al. Efficiency of electrolyzed water (EW) on inhibition of Phytophthora parasitica var. nicotianae growth in vitro[J]. Crop Protection, 2012, 42: 128-133.
[23] MUELLER D S, HUNG Y C, OETTING R D, et al. Evaluation of electrolyzed oxidizing water for management of powdery mildew on gerbera daisy[J]. Plant Disease, 2003, 87(8): 965-969.
[24] BUCK J W, VAN IERSEL M W, OETTING R D, et al. Evaluation of acidic electrolyzed water for phytotoxic symptoms on foliage and flowers of bedding plants[J]. Crop Protection, 2003, 22(1): 73-77.
[25] ZHANG S, FARBER J M. The effects of various disinfectants against Listeria monocytogenes on fresh-cut vegetables[J]. Food Microbiology, 1996, 13(4): 311-321.
[26] SEYMOUR I J, BURFOOT D, SMITH R L, et al. Ultrasound decontamination of minimally processed fruits and vegetables[J]. International Journal of Food Science & Technology, 2002, 37(5): 547-557.
[27] BEUCHAT L R. Pathogenic microorganisms associated with fresh produce[J]. Journal of Food Protection, 1996, 59(2): 204-216.
[28] BEUCHAT L R, NAIL B V, ADLER B B, et al. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes, and lettuce[J]. Journal of Food Protection, 1998,61(10): 1305-1311.
[29] BEUCHAT L. Surface decontamination of fruits and vegetables eaten raw: a review[C]// Food Safety Unit World Health Organization,WHO, 1998.
[30] European Commission. Risk profile on the microbiological contamination of fruits and vegetables eaten raw[C]// Report of the Scientific Committee on Food, 2002.
[31] FARBER J M, PETERKIN P I. Listeria monocytogenes, a food-borne pathogen[J]. Microbiological Reviews, 1991, 55(3): 476.
[32] de ROEVER C. Microbiological safety evaluations and recommendations on fresh produce[J]. Food Control, 1998, 9(6): 321-347.
[33] ELIZAQUIVEL P, AZNAR R. A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7,Salmonella spp. and Staphylococcus aureus on fresh,minimally processed vegetables[J]. Food Microbiology, 2008,25(5): 705-713.
[34] ISSA-ZACHARIA A, KAMITANI Y, TIISEKWA A, et al. in vitro inactivation of Escherichia coli, Staphylococcus aureus and Salmonella spp. using slightly acidic electrolyzed water[J]. Journal of Bioscience and Bioengineering, 2010, 110(3): 308-313.
[35] RAHMAN S M E, DING T, OH D H. Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach[J]. Food Control, 2010, 21(10): 1383-1387.
[36] ISSA-ZACHARIA A, KAMITANI Y, MORITA K, et al. Sanitization potency of slightly acidic electrolyzed water against pure cultures of Escherichia coli and Staphylococcus aureus, in comparison with that of other food sanitizers[J]. Food Control, 2010, 21(5): 740-745.
[37] ISSA-ZACHARIA A, KAMITANI Y, MIWA N, et al. Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts[J]. Food Control, 2011, 22(3): 601-607.
[38] ABADIAS M, USALL J, OLIVEIRA M, et al. Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables[J]. International Journal of Food Microbiology, 2008, 123(1): 151-158.
[39] FENG Youjun, ZHAO Tiezhu, NGUYEN T, et al. Porcine respiratory and reproductive syndrome virus variants, Vietnam and China,2007[J]. Emerging Infectious Diseases, 2008, 14(11): 1774-1776.
[40] SONG Jie, SHEN Di, CUI Jie, et al. Accelerated evolution of PRRSV during recent outbreaks in China[J]. Virus Genes, 2010, 41(2): 241-245.
[41] HAO Xiaoxia, SHEN Zhiqiang, WANG Jinliang, et al. in vitro inactivation of porcine reproductive and respiratory syndrome virus and pseudorabies virus by slightly acidic electrolyzed water[J]. The Veterinary Journal, 2013, 197(8): 297-301.
[42] MORITA C, SANO K, MORIMATSU S, et al. Disinfection potential of electrolyzed solutions containing sodium chloride at low concentrations[J]. Journal of Virological Methods, 2000, 85(1): 163-174.
[43] TAGAWA M, YAMAGUCHI T, YOKOSUKA O, et al. Inactivation of a hepadnavirus by electrolysed acid water[J]. Journal of Antimicrobial Chemotherapy, 2000, 46(3): 363-368.
[44] SUZUKI T, ITAKURA J, WATANABE M, et al. Inactivation of Staphylococcal enterotoxin-A with an electrolyzed anodic solution[J]. Journal of Agricultural and Food Chemistry, 2002, 50(1): 230-234.
[45] ZHANG Qian, XIONG Ke, TATSUMI E, et al. Elimination of aflatoxin B1in peanuts by acidic electrolyzed oxidizing water[J]. Food Control, 2012, 27(1): 16-20.
[46] PHULL S S, NEWMAN A P, LORIMER J P, et al. The development and evaluation of ultrasound in the biocidal treatment of water[J]. Ultrasonics Sonochemistry, 1997, 4(2): 157-164.
[47] UGARTE-ROMERO E, FENG H, MARTIN S E, et al. Inactivation of Escherichia coli with power ultrasound in apple cider[J]. Journal of Food Science, 2006, 71(2): E102-E108.
[48] FORGHANI F, OH D H. Hurdle enhancement of slightly acidic electrolyzed water antimicrobial efficacy on chinese cabbage, lettuce,sesame leaf and spinach using ultrasonication and water wash[J]. Food Microbiology, 2013, 36(1): 40-45.
[49] KHAYANKARN S, UTHAIBUTRA J, SETHA S, et al. Using electrolyzed oxidizing water combined with an ultrasonic wave on the postharvest diseases control of pineapple fruit cv. ‘Phu Lae’[J]. Crop Protection, 2013, 54: 43-47.
[50] LIU Rui, HE Xiangli, SHI Jiaqi, et al. The effect of electrolyzed water on decontamination, germination and γ-aminobutyric acid accumulation of brown rice[J]. Food Control, 2013, 33(1): 1-5.
[51] XIE Jun, SUN Xiaohong, PAN Yingjie, et al. Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp[J]. Food Control, 2012, 23(2): 320-324.
[52] VANDEKINDEREN I, DEVLIEGHERE F, van CAMP J, et al. Effects of food composition on the inactivation of foodborne microorganisms by chlorine dioxide[J]. International Journal of Food Microbiology,2009, 131(2): 138-144.
[53] STEWART P S, RAYNER J, ROE F, et al. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates[J]. Journal of Applied Microbiology, 2001, 91(3): 525-532.
[54] FELICIANO L, LEE J, LOPES J A, et al. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice[J]. Journal of Food Science, 2010, 75(4): M231-M238.
[55] OOMORI T, OKA T, INUTA T, et al. The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials[J]. Analytical Sciences, 2000, 16(4): 365-369.
[56] CUI Xiaodong, SHANG Yuchao, SHI Zhengxiang, et al. Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions[J]. Journal of Food Engineering, 2009, 91(4): 582-586.
[57] HORIBA N, HIRATSUKA K, ONOE T, et al. Bactericidal effect of electrolyzed neutral water on bacteria isolated from infected root canals[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1999, 87(1): 83-87.
[58] XIE Jun, SUN Xiaohong, PAN Yingjie, et al. Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp[J]. Food Research International, 2012, 47(2): 331-336.
[59] HSU S Y, KAO H Y. Effects of storage conditions on chemical and physical properties of electrolyzed oxidizing water[J]. Journal of Food Engineering, 2004, 65(3): 465-471.
[60] KOIDE S, TAKEDA J, SHI J, et al. Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage[J]. Food Control, 2009,20(3): 294-297.
[61] LEN S V, HUNG Y C, CHUNG D, et al. Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing (EO) water[J]. Journal of Agricultural and Food Chemistry, 2002, 50(1): 209-212.
[62] KIM W T, LIM Y S, SHIN I S, et al. Use of electrolyzed water ice for preserving freshness of pacific saury (Cololabis saira)[J]. Journal of Food Protection, 2006, 69(9): 2199-2204.
[63] WANG Jingjing, LIN Ting, LI Jibing, et al. Effect of acidic electrolyzed water ice on quality of shrimp in dark condition[J]. Food Control, 2014, 35(1): 207-212.
[64] KOSTAKI M, GIATRAKOU V, SAVVAIDIS I N, et al. Combined effect of MAP and thyme essential oil on the microbiological,chemical and sensory attributes of organically aquacultured sea bass(Dicentrarchus labrax) fillets[J]. Food Microbiology, 2009, 26(5): 475-482.
[65] LIN C M, KUNG H F, HUANG Y L, et al. Histamine production by Raoultella ornithinolytica in canned tuna meat at various storage temperatures[J]. Food Control, 2012, 25(2): 723-727.
[66] KILINCCEKER O, DOGAN ? S, KUCUKONER E. Effect of edible coatings on the quality of frozen fish fillets[J]. LWT-Food Science and Technology, 2009, 42(4): 868-873.
[67] KOSEKI S, FUJIWARA K, ITOH K. Decontaminative effect of frozen acidic electrolyzed water on lettuce[J]. Journal of Food Protection,2002, 65(2): 411-414.
[68] KIM C, HUNG Y C, BRACKETT R E. Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens[J]. Journal of Food Protection, 2000, 63(1): 19-24.
[69] LIAO L B, CHEN W M, XIAO X M. The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water[J]. Journal of Food Engineering, 2007, 78(4): 1326-1332.
[70] STEFFEN H. Method and technical embodiment for the cleaning of surfaces by means of a high-pressure cleaning device using electrolyzed water by using oxidative free radicals: U.S. Patent Application 12/679,880[P]. 2008-9-23.
[71] ACHER A, FISCHER E, TURNHEIM R, et al. Ecologically friendly wastewater disinfection techniques[J]. Water Research, 1997, 31(6): 1398-1404.
[72] PIYASENA P, MOHAREB E, MCKELLAR R C. Inactivation of microbes using ultrasound: a review[J]. International Journal of Food Microbiology, 2003, 87(3): 207-216.
[73] NAN S, YONGYU L I, BAOMING L I, et al. Effect of slightly acidic electrolyzed water for inactivating Escherichia coli O157:H7 and Staphylococcus aureus analyzed by transmission electron microscopy[J]. Journal of Food Protection, 2010, 73(12): 2211-2216.
[74] ELLERY W N, SCHLEYER M H. Comparison of homogenization and ultrasonication as techniques in extracting attached sedimentary bacteria[J]. Marine Ecology Progress Series, 1984, 15(3): 247-250.
[75] CAO Shifeng, HU Zhichao, PANG Bin, et al. Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest[J]. Food Control, 2010, 21(4): 529-532.
[76] AUDENAERT K, MONBALIU S, DESCHUYFFELEER N, et al. Neutralized electrolyzed water efficiently reduces Fusarium spp. in vitro and on wheat kernels but can trigger deoxynivalenol (DON)biosynthesis[J]. Food Control, 2012, 23(2): 515-521.
Recent Progress in Research on Inhibition of Microorganisms and Their Toxins by Electrolyzed Functional Water
JIA Guoliang1, SHI Jingying2, LI Fade1,*
(1. College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian 271018, China;2. College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China)
In recent years, increasing attention has been paid to the applications of electrolyzed oxidizing water (EOW)for inhibiting or disinfecting microorganisms, owning to its many advantages such as the broad-spectrum bactericidal activity with high efficiency, low-cost, safety and eco-friendliness. Nowadays, strongly acid electrolyzed water (StAEW)is used widely. In addition, there have also been some reports concerning the applications of slightly acidic electrolyzed water (SAEW) and neutral electrolyzed water (NEW) in the fields of agriculture and food processing. With the deepening of the research, some issues including the synergistic effect of EOW and other processing methods on the inhibition or the disinfection of microorganisms, the active ingredients and the mechanism of action of E OW, and the conditions for sterilization using EOW have been addressed. This paper reviews the latest research progress in the inhibition of microorganisms and in the disinfection and inactivation of viruses and toxins by EOW. Moreover, existing problems in the current research and future direction for the development of EOW are also discussed in this review.
electrolyzed oxidizing water (EOW); microorganism; agriculture; food; disinfectant
TS3;Q93
A
1002-6630(2015)03-0265-07
10.7506/spkx1002-6630-201503050
2014-03-26
農(nóng)業(yè)部引進國際先進農(nóng)業(yè)科學技術計劃(948計劃)資助項目(2009-Z38)
賈國梁(1991—),男,碩士研究生,研究方向為食品加工新技術,電生功能水的應用。E-mail:276648252@qq.com
李法德(1962—),男,教授,博士,研究方向為農(nóng)產(chǎn)品與食品工程新技術等。E-mail:lifade@sdau.edu.cn