耿永才, 劉 健
(上海應(yīng)用技術(shù)學(xué)院理學(xué)院,上海 201418)
任意大初值等溫相對(duì)論歐拉方程組的奇性形成問(wèn)題
耿永才, 劉 健
(上海應(yīng)用技術(shù)學(xué)院理學(xué)院,上海 201418)
主要證明了當(dāng)初始值受到擠壓以及初始流體向外流出時(shí)等溫相對(duì)論歐拉方程組光滑解的奇性形成問(wèn)題.通過(guò)引入與解有關(guān)的泛函,證明該泛函滿(mǎn)足適當(dāng)?shù)奈⒎植坏仁?,同時(shí)證明該微分不等式的解會(huì)發(fā)生奇性,繼而得到等溫相對(duì)論歐拉方程組解的奇性形成結(jié)果.
等溫相對(duì)論歐拉方程組;光滑解;奇性形成
考慮等溫相對(duì)論歐拉方程組[1-3],
式中:ρ,v分別表示流體的質(zhì)能密度和速度,c表示光速,p表示壓力.式(1)中第1個(gè)方程表示動(dòng)量守恒方程,第2個(gè)方程表示能量守恒方程.有關(guān)式(1)最早數(shù)學(xué)方面系統(tǒng)的研究始于Smoller-Temple,在文獻(xiàn)[4]中證明了式(1)的整體弱解存在性.隨后Lu-Ukai在文獻(xiàn)[5]中討論了熵解的整體相對(duì)論極限問(wèn)題.對(duì)不同的狀態(tài)方程,文獻(xiàn)[6-9]中證明了式(1)的整體熵界存在性和黎曼解的穩(wěn)定性.
由于雙曲守恒律系統(tǒng)本身的特點(diǎn),不管初值怎樣光滑,隨著時(shí)間的發(fā)展,光滑解都將會(huì)出現(xiàn)奇性,故人們更加關(guān)注解的奇性形成問(wèn)題.對(duì)一維流體光滑解的奇性形成問(wèn)題,多采用特征線法[10-11]進(jìn)行分析,但是對(duì)于高維情形,特征就不再那么明晰,Sideris[12-13]引入了泛函方法.該方法主要是在積分意義下考慮解的性質(zhì),避免了逐點(diǎn)討論.由于結(jié)構(gòu)的復(fù)雜性,有關(guān)相對(duì)論流體的奇性形成問(wèn)題結(jié)果還不是很多.對(duì)于式(1)的三維情形,Pan-Smoller在文獻(xiàn)[14]中證明了初始能量充分大和初始能量有限的兩種情形下解的奇形性問(wèn)題,但沒(méi)有考慮任意大初值下式(1)解的奇性形成問(wèn)題.
為簡(jiǎn)單起見(jiàn),引入兩個(gè)記號(hào)
式(1)可寫(xiě)成
初始條件為
式中,R表示一個(gè)正常數(shù).
式(1)有兩個(gè)方程,但是有3個(gè)未知數(shù),故還需要另外一個(gè)方程.本文試圖純粹從數(shù)學(xué)角度來(lái)考慮式(1)光滑解的奇性形成問(wèn)題,假設(shè)狀態(tài)方程為
假設(shè)
本文的主要結(jié)果如下:
定理1 假設(shè)(ρ(x,t),v(x,t))是式(1)和(4)的光滑解,若存在常數(shù)R0,滿(mǎn)足0<R0<R,且R0<r<R,有
則式(1)和(4)光滑解的生命跨度T是有限的.其中R0為常數(shù).T<∞表示光滑解的最大存在區(qū)間,即當(dāng)時(shí)間t→T時(shí),解本身的范數(shù)或者其梯度的范數(shù)就會(huì)出現(xiàn)奇性.
為證明定理1,需要一個(gè)重要的性質(zhì),即光滑解具有有限傳播速度.
命題1[12]假如(ρ0,v0)滿(mǎn)足初始條件(4),則對(duì)0≤t≤T,式(1)和(4)的光滑解(ρ,v)存在于D(t)上.其中為常數(shù)狀態(tài)處的聲速.
定理1證明如下.
證明 定義泛函
式中,權(quán)函數(shù)ω=(x-r)2.易計(jì)算得
通過(guò)計(jì)算P(r,t)關(guān)于r的導(dǎo)數(shù)并且利用式(6),可得
求P(r,t)關(guān)于t的導(dǎo)數(shù),并且利用命題1和式(6),可得
對(duì)上式再次關(guān)于時(shí)間求導(dǎo)
式中,
對(duì)于第2項(xiàng),可得
利用式(9),(10)易計(jì)算得
由狀態(tài)方程(5),得
和
將式(13)、(14)代入式(12),可得
式中,
式中,
式中,
定義泛函
容易看出F(t)關(guān)于時(shí)間t是C2的,故有
式中,
通過(guò)定理1中的假設(shè),在R0<r<R上,q0(r)>0和q1(r)>0,故
式中,
改變J2的積分順序,利用G(y,t)在集合{y≤σt+R}上是緊支的,發(fā)現(xiàn)
在t≥R1=(R-R0)/2的假設(shè)下.最內(nèi)層的積分可由下式控制[12],即
由G(y,t)>0,有
并且注意到~G(y,τ)在y>στ+R為零,利用式(16),對(duì)式(25)分部積分,得
記內(nèi)層積分為J4,并且利用施瓦茲不等式可得:
令J5表示式(27)中的積分項(xiàng),估計(jì)如下:
結(jié)合式(21)、(27)、(28),得
利用文獻(xiàn)[13]中的方法就可得到時(shí)間t≤C(常數(shù)),式(29)才有意義,其中,C只和初始條件相關(guān).故式(1)和(4)的光滑解在有限時(shí)間內(nèi)會(huì)發(fā)生爆破,從而得到定理1的證明.
[1] Anile A M.Relativistic fluids and magneto-fluids[M].New York,Cambridge Monographs on Mathematical Physics:Cambridge University Press,1989:80-82.
[2] Landau L D,Lifchitz M.Fluid mechnics[M].2nd ed.Oxford:Pergamon,1987:505-512.
[3] Li T,Qin T.Physics and parital differential Equations[M].2nd ed.Beijing:Higher Eudcation Press,2005:183-196.
[4] Smoller J,Temple B.Global solutions of the relativistic Euller equation[J].Commun Math Phys,1993,156:67-99.
[5] Lu Min,Ukai S.Non-relativistic global limits of weak solutions of the relativistic Euler equation[J].J Math Kyoto Univ,1998,38(3):525-537.
[6] Chen G Q,Li Y C.Relativistic Euler equations for isentropic fluids:Stability of Riemann solutions with large oscillation[J].Z Angew Math Phys,2004,55(6):903-926.
[7] Li Y C,F(xiàn)eng D,Wang Z.Global entropy solutions to the relativistic Euler equations for a class of large initial data[J].Z Angew Math Phys,2005,56(2):239-253.
[8] Chen J.Conservation Laws for the relativistic p-system[J].Commu Partial Diff Eqs,1995,20(9/10):1605-1646.
[9] Chen G Q,Li Y C.Stability of Riemann solutions with large oscillation for the relativistic Euler equations[J].J Diff Eqs,2004,202(2):332-353.
[10] Lax P D.Hyperbolic systems of conservation laws and the mathematical theory of shock waves[M]. New York:Society for Industrial and Appl Math Philadelphia,1973.33-38.
[11] Ruan L,Zhu C.Existence of global smooth to the relativistic Euler equations[J].Nonl Anal,2005,60(6):993-1001.
[12] Sideris T.Global behavior of solutions to nonlinear wave equations in three space dimensions[J].Comm Partial Differ Equations,1983,8:1291-1323.
[13] Sideris T C.Formation of singularities in three-dimensional compressible fluids[J].Comm Math Phys,1985,101:475-485.
[14] Pan R,Smoller J.Blowup of smooth solutions for relativistic Euler equations[J].Comm Math Phys,2006,262(3):729-755.
(編輯 呂丹)
Singularities Formation to the lsothermal Relativistic Euler Equations with Arbitrary lnitial Data
GENG Yong-cai, LIU Jian
(School of Sciences,Shanghai Institute of Technology,Shanghai 201418,China)
The singularities formation of the isothermal relativistic Euler equations was testified in the condition of the compression of the initial data and the external flow of the initial fluid.By introducing proper functionals coming from the smooth solutions,it was proved that the functionals would match the differential inequalities,and the singularities would occur in the solutions of the differential inequalities. Thus,the singularities formation results were obtained.
isothermal relativistic Euler equations;smooth solutions;singularities formation
O 29
A
1671-7333(2015)01-0095-04
10.3969/j.issn.1671-7333.2015.01.017
2014-07-09
國(guó)家自然科學(xué)基金資助項(xiàng)目(11201308);上海市創(chuàng)新基金資助項(xiàng)目(13ZZ136);上海市優(yōu)秀青年基金資助項(xiàng)目(ZZyyy12025)
耿永才(1979-),女,講師,博士,主要研究方向?yàn)槠⒎址匠?E-mail:ycgengjj@sit.edu.cn