• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于BP神經(jīng)網(wǎng)絡(luò)預(yù)測硫在高含硫氣體中溶解度

      2015-12-04 11:30:20李長俊
      石油與天然氣化工 2015年3期
      關(guān)鍵詞:含硫溶解度氣體

      陳 磊 李長俊

      西南石油大學(xué)石油與天然氣工程學(xué)院

      抽氣處理與加工

      基于BP神經(jīng)網(wǎng)絡(luò)預(yù)測硫在高含硫氣體中溶解度

      陳 磊 李長俊

      西南石油大學(xué)石油與天然氣工程學(xué)院

      元素硫在高含硫氣體中溶解度的研究是硫沉積機理研究、硫沉積預(yù)測和處理技術(shù)研究的前提和基礎(chǔ),也是元素硫沉積室內(nèi)研究工作的核心課題。為了關(guān)聯(lián)和預(yù)測硫在高含硫氣體中的溶解度,提出誤差逆向傳播人工神經(jīng)網(wǎng)絡(luò)(BP ANN)模型,并設(shè)計了該模型的計算過程,討論了該模型的參數(shù)設(shè)置。計算結(jié)果表明,該模型可作為模擬和內(nèi)推硫在高含硫氣體中溶解度的一種較好手段,但外推效果較差。與現(xiàn)有其他硫溶解度計算模型相比,該模型計算結(jié)果優(yōu)于Chrastil締合模型和經(jīng)驗公式,與狀態(tài)方程法和六參數(shù)締合模型的計算結(jié)果相當(dāng)。

      硫沉積 BP神經(jīng)網(wǎng)絡(luò) 預(yù)測 元素硫 高含硫氣體 溶解度

      高含硫氣藏在開發(fā)過程中,隨著溫度、壓力的變化,可能會發(fā)生元素硫沉積的現(xiàn)象。在地層、井筒中出現(xiàn)硫沉積會造成地層孔隙度和滲透率的降低,影響氣井的產(chǎn)能和正常生產(chǎn)。地面集輸系統(tǒng)一旦形成硫沉積,管線及設(shè)備會出現(xiàn)“硫堵”和腐蝕,從而影響氣體的正常輸送[1-2]。元素硫在高含硫氣體中溶解度的研究是硫沉積機理研究、硫沉積預(yù)測和處理技術(shù)研究的前提和基礎(chǔ),也是元素硫沉積室內(nèi)研究工作的核心課題,對于保障高含硫氣藏的安全、高效開發(fā)至關(guān)重要。

      目前,國內(nèi)外確定元素硫在高含硫氣體中溶解度的方法主要有:實驗測試法獲得實驗數(shù)據(jù)[3-7],根據(jù)獲得的實驗數(shù)據(jù)建立預(yù)測模型,如締合模型[8-9]、經(jīng)驗公式[10-11]、狀態(tài)方程法[12-13]、蒙特卡羅法[14]和人工神經(jīng)網(wǎng)絡(luò)模型[15]等。采用實驗測試法具有一定的危險性、成本高;締合模型和經(jīng)驗公式根據(jù)實驗數(shù)據(jù)擬合回歸得到,適用性差;狀態(tài)方程法中硫與各組分之間的二元交互作用參數(shù)難以確定,造成模型的精度也較差;采用蒙特卡羅法時,由于S8分子的基礎(chǔ)數(shù)據(jù)不足,導(dǎo)致計算誤差仍偏大。高含硫混合物體系中各溶質(zhì)組分間性質(zhì)差別大,相平衡復(fù)雜多變,硫在高含硫氣體中的溶解度與相平衡條件呈現(xiàn)強烈的非線性關(guān)系,較難用固定簡化的模型關(guān)聯(lián),而人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,以下簡稱ANN)能模擬復(fù)雜的非線性映射,且無需知道溶質(zhì)的物理性質(zhì),但ANN模型參數(shù)設(shè)計不合理也會造成較大的誤差。本研究將以公開文獻[7]中的實驗數(shù)據(jù)為樣本,優(yōu)化逆向人工神經(jīng)網(wǎng)絡(luò)(Back Propagation Artificial Neural Network,以下簡稱BP ANN)模型的有關(guān)參數(shù),利用該模型預(yù)測和關(guān)聯(lián)硫在高含硫氣體中的溶解度,對預(yù)測結(jié)果進行全面的誤差分析,驗證模型的內(nèi)外推效果。

      1 BP ANN預(yù)測模型的建立

      MATLAB神經(jīng)網(wǎng)絡(luò)工具箱為BP ANN的預(yù)測提供了極大的方便,通過簡單的調(diào)用即可獲得結(jié)果。

      1.1 學(xué)習(xí)測試樣本的確定

      應(yīng)用BP ANN建立預(yù)測硫在高含硫氣體中溶解度的模型,首先,必須有足夠多、典型性好、精度高的學(xué)習(xí)樣本。其次,為了評價所建立的BP ANN模型的性能,還必須有少量的測試樣本。因此,需要將文獻[7]中的實驗數(shù)據(jù)劃分為兩部分。同時,為了檢驗該模型的內(nèi)外推效果,又將測試樣本進一步分成了內(nèi)推和外推兩部分數(shù)據(jù)點,如表1所示。

      表1 氣體中硫含量的實驗數(shù)據(jù)及BPANN預(yù)測結(jié)果Table1 ExperimentalandpredicteddataofsulfurcontentingasusingBPANN試驗序號氣體體積分數(shù)溫度/K壓力/MPa溶解度測試值/(g·m-3)BPANN計算值/(g·m-3)相對誤差/%1①2②345678H2S:4.95%CO2:7.40%CH4:87.65%303.2300.0570.07328.07303.2400.1050.0959.52323.2300.0830.0863.61323.2400.1280.1312.34343.2350.1520.1658.55343.2400.1750.1855.71363.2400.2200.2200.00363.2450.2840.25111.6291011②1213141516①H2S:9.93%CO2:7.16%CH4:82.91%303.2300.0890.07812.36303.2400.1200.1117.50323.2300.1180.1288.47323.2400.1510.17717.22343.2350.1570.18920.38343.2400.1960.2149.18363.2400.2760.2822.17363.3450.3560.3642.2517①181920②21222324H2S:14.98%CO2:7.31%CH4:77.71%303.2300.1180.09420.34303.2400.1390.15511.51323.2300.1420.1516.34323.2400.1900.22116.32343.2350.2310.2214.33343.2400.2870.2773.48363.2400.4970.4529.05363.2450.6660.6571.352526272829②30313233①H2S:17.71%CO2:6.81%CH4:75.48%303.2200.0120.01016.67303.2300.1330.11612.78303.2400.1620.1683.70323.2300.1480.1522.70323.2400.2440.2440.00343.2350.2670.2487.12343.2400.3510.3412.85363.2400.6180.6200.32363.2450.8140.8949.8334①3536373839②4041H2S:26.62%CO2:7.00%CH4:66.38%303.2300.1930.30055.44303.2400.2480.28314.11323.2300.2400.2493.75323.2400.3680.3977.88343.2350.4880.43710.45343.2400.6570.76215.98363.2401.1941.1970.25363.2451.4551.3765.43

      續(xù)表1試驗序號氣體體積分數(shù)溫度/K壓力/MPa溶解度測試值/(g·m-3)BPANN計算值/(g·m-3)相對誤差/%42434445464748②49①H2S:10.00%CO2:0.86%CH4:89.14%303.2300.0810.0801.23303.2400.1130.09714.16323.2300.1170.08329.06323.2400.1240.1337.26343.2350.1520.1482.63343.2400.1800.1790.56363.2400.2550.19423.92363.2450.3170.25419.8750①51②525354555657H2S:10.03%CO2:10.39%CH4:79.58%303.2300.0910.07418.68303.2400.1270.1302.36323.2300.1300.11610.77323.2400.1550.18318.06343.2350.1600.1653.13343.2400.2040.2102.94363.2400.2930.25911.60363.2450.3660.3762.73 注:①意為外推數(shù)據(jù)點。②意為內(nèi)推數(shù)據(jù)點。

      1.2 數(shù)據(jù)標準化處理

      BP ANN由輸入層、隱含層及輸出層構(gòu)成,輸入層和輸出層的節(jié)點數(shù)由實際問題確定,輸入層神經(jīng)元的個數(shù)由影響硫在高含硫氣體中溶解度的因素確定。分析可知[16],本研究可將溫度、壓力、H2S摩爾分數(shù)、CO2摩爾分數(shù)和CH4摩爾分數(shù)5個因素作為BP ANN的輸入層,輸出層為溶解度。用于神經(jīng)網(wǎng)絡(luò)訓(xùn)練的溶解度數(shù)據(jù)中,壓力20~45 MPa,溫度303.2~363.2 K,H2S摩爾分數(shù)4.95%~26.62%,CO2摩爾分數(shù)0.86%~10.39%,CH4摩爾分數(shù)66.38%~89.14%,溶解度為0.012~1.455 g/m3,各訓(xùn)練數(shù)據(jù)存在數(shù)量級的差別。若直接用于訓(xùn)練網(wǎng)絡(luò),會使網(wǎng)絡(luò)的權(quán)值差別過大,網(wǎng)絡(luò)性質(zhì)很差,需將訓(xùn)練數(shù)據(jù)進行歸一化處理,同時,也可滿足所選擇傳輸函數(shù)的有限輸出特性。最常用的歸一化處理公式見式(1):

      (1)

      研究發(fā)現(xiàn),將網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)進行歸一化處理之后,BP ANN的訓(xùn)練速度和訓(xùn)練精度均有較大的提高。

      1.3 BP ANN結(jié)構(gòu)與參數(shù)的確定

      1.3.1隱含層層數(shù)及節(jié)點數(shù)的確定

      由圖1可見,在節(jié)點數(shù)≤10時,網(wǎng)絡(luò)誤差隨節(jié)點數(shù)的變化不明顯,在區(qū)間內(nèi)發(fā)生微小波動;當(dāng)節(jié)點數(shù)為11時,網(wǎng)絡(luò)誤差增大到最高點;隨后,當(dāng)節(jié)點數(shù)為12時,網(wǎng)絡(luò)誤差由最大值下降到最低;節(jié)點數(shù)gt;12以后,誤差隨隱層節(jié)點數(shù)而增加。綜合考慮后認為,隱含層節(jié)點數(shù)選擇12為宜。

      1.3.2隱含層層數(shù)及節(jié)點數(shù)的確定

      BP ANN的訓(xùn)練算法采用Levenberg-Marquardt算法,隱含層和輸出層的傳輸函數(shù)都采用雙曲正切S型函數(shù),目標誤差為0.000 001,最大訓(xùn)練次數(shù)為10 000,學(xué)習(xí)效率為0.18,動量因子為0.95,網(wǎng)絡(luò)訓(xùn)練顯示間隔為50。MATLAB神經(jīng)網(wǎng)絡(luò)工具箱中的其他設(shè)置保持默認狀態(tài)。

      1.4 網(wǎng)絡(luò)的訓(xùn)練和預(yù)測

      用訓(xùn)練樣本中的實驗數(shù)據(jù)對BP ANN進行訓(xùn)練,用測試樣本中的實驗數(shù)據(jù)來驗證BP ANN的預(yù)測精度。訓(xùn)練之后獲得輸入層與隱含層間的權(quán)閾值及隱含層與輸出層間的權(quán)閾值,分別如表2和表3所示。該BP ANN模型在訓(xùn)練到步22時訓(xùn)練精度就已經(jīng)達到要求,如圖2所示。此時模型的預(yù)測均方誤差為0.009 8,預(yù)測的相關(guān)系數(shù)為0.997 99,擬合結(jié)果理想(如圖3所示),模型預(yù)測效果很好。

      表2 輸入層與隱含層間的權(quán)值和閾值Table2 Weightsandthresholdsbetweeninputlayerandhiddenlayer權(quán)值閾值0.981221.470400.287051.10760-1.32240-2.14490-1.35320-0.694480.236180.575251.653101.942301.331200.63338-1.48080-0.02844-1.58180-1.79380-0.348091.09250-0.89307-0.694320.663460.98683-1.715100.01418-0.83843-0.984611.952900.81651-1.073800.127911.273901.248501.330000.405600.47296-1.20560-0.74558-1.02550-1.210400.40892-0.92063-1.946100.855940.85962-1.23040-1.78460-0.63844-0.59537-1.605900.823810.41985-1.661501.317000.822890.072981.584300.974091.330600.057161.34590-0.48586-0.739640.223162.455500.18443-1.402200.60061-0.189131.682402.36170

      表3 隱含層與輸出層間的權(quán)值和閾值Table3 Weightsandthresholdsbetweenhiddenlayerandoutputlayer權(quán)值閾值-0.43954-0.38559-0.062220.087420.345630.193200.194660.071831.954300.386650.184070.23673-0.33346

      2 模型預(yù)測精度

      模型預(yù)測硫在高含硫氣體中溶解度的結(jié)果如表1所示。由表1可見,優(yōu)化后的模型對訓(xùn)練數(shù)據(jù)集進行擬合的平均相對誤差為9.82%,且大部分相對誤差都在15%以下,故該模型能對硫在高含硫氣體中溶解度與工藝參數(shù)溫度、壓力以及氣體組分之間的關(guān)系進行較好的模擬。優(yōu)化后的模型對內(nèi)推數(shù)據(jù)點進行預(yù)測的相對誤差最大為23.92%,最小為0%,且大部分值在10%以下,故該模型能對硫在高含硫氣體中的溶解度進行較好的內(nèi)推預(yù)測。優(yōu)化后的模型對外推數(shù)據(jù)點進行預(yù)測的相對誤差部分在10%以下,說明該模型對硫在高含硫氣體中的溶解度具有一定的外推功能,但其中大部分數(shù)據(jù)點的預(yù)測誤差值卻高達20%以上,故該模型不適用于硫在高含硫氣體中溶解度的外推預(yù)測。這與文獻[18]中得出BP神經(jīng)網(wǎng)絡(luò)用于預(yù)測固體在超臨界流體中溶解度時具有較好的內(nèi)推功能及較差外推效果的結(jié)論是一致的。

      將表1中的實驗數(shù)據(jù)進行重新編號:Ⅰ(1~8)、Ⅱ(9~16)、Ⅲ(17~24)、Ⅳ(25~33)、Ⅴ(34~41)、Ⅵ(42~49)、Ⅶ(50~57),調(diào)研發(fā)現(xiàn),文獻[7]、[9]、[11]和[19]也曾利用上述7大組實驗數(shù)據(jù)對狀態(tài)方程法、締合模型和經(jīng)驗公式進行過精度驗證。因此,為了進一步驗證本模型在硫溶解度預(yù)測精度方面的優(yōu)越性和可靠性,仍以上述7大組實驗數(shù)據(jù)為依據(jù),并采用平均相對誤差對上述模型進行對比評價,比較結(jié)果列于表4。

      表4 模型預(yù)測誤差的比較結(jié)果Table4 Predictiondeviationcomparisonofdifferentmodels組別BPANN模型相對誤差/%狀態(tài)方程法相對誤差/%六參數(shù)締合模型相對誤差/%Chrastil締合模型相對誤差/%經(jīng)驗公式相對誤差/%Ⅰ8.685.266.37587.65Ⅱ9.945.392.19966.74Ⅲ9.098.612.301458.16Ⅳ6.226.703.142429.08Ⅴ14.164.862.822426.05Ⅵ12.347.205.121045.90Ⅶ8.876.845.021042.39

      由表4可知,BP ANN模型預(yù)測結(jié)果的平均相對誤差基本控制在10%以內(nèi),模型的精度與狀態(tài)方程法和六參數(shù)締合模型相當(dāng),比Chrastil締合模型和經(jīng)驗公式的精度高出不少,再次證明BP神經(jīng)網(wǎng)絡(luò)可以用于預(yù)測硫在高含硫氣體中的溶解度。

      3 結(jié) 論

      硫在高含硫氣體中的溶解度與相平衡條件是高度非線性的,BP ANN模型在描述非線性問題上有其穩(wěn)定的優(yōu)勢,本研究表明用BP ANN模型預(yù)測硫在高含硫氣體中溶解度的方法是可行的,用該模型進行模擬具有較好的內(nèi)推預(yù)測,但其外推預(yù)測效果較差。與其他預(yù)測模型相比較,BP ANN模型優(yōu)于Chrastil締合模型和經(jīng)驗公式所計算的結(jié)果,與狀態(tài)方程法和六參數(shù)締合模型的計算結(jié)果相當(dāng),但BP ANN模型計算過程更加簡便,通過簡單地調(diào)用MATLAB神經(jīng)網(wǎng)絡(luò)工具箱就可以實現(xiàn)運算,避免了復(fù)雜的數(shù)學(xué)公式運算,同時,也不需要高含硫氣體體系的一些臨界物理性質(zhì)。

      [1] ROBERTS B E. The effect of sulfur deposition on gas well inflow performance[C]. SPE 36707, 1996.

      [2] CHESNOY A B, Pack D J. S8threatens natural gas operations, environment[J]. Oil amp; Gas Journal, 1997, 95(17): 74-79.

      [3] ROOF J G. Solubility of sulfur in hydrogen sulfide and in carbon disulfide at elevated temperature and pressure[J]. Society of Petroleum Engineers Journal, 1971, 11(3): 272-276.

      [4] BRUNNER E, WOLL W. Solubility of sulfur in hydrogen sulfide and sour gases[J]. Society of Petroleum Engineers Journal, 1980, 20(5): 377-384.

      [5] BRUNNER E, PLACE J M C, WOLL W H. Sulfur solubility in sour gas[J]. Journal of Petroleum Technology, 1988, 40(12): 1587-1592.

      [6] GU M X, LI Q, ZHOU S Y, et al. Experimental and modeling studies on the phase behavior of high H2S-content natural gas mixtures[J]. Fluid Phase Equilibria, February 1993( 82): 173-182.

      [7] SUN C Y, CHEN G J. Experimental and modeling studies on sulfur solubility in sour gas[J]. Fluid Phase Equilibria, 2003, 214(2): 187-195.

      [8] CHRASTIL J. Solubility of solids and liquids in supercritical gases[J]. The Journal of Physical Chemistry, 1982, 86(15): 3016-3021.

      [9] 卞小強, 杜志敏, 陳靜, 等. 一種關(guān)聯(lián)元素硫在酸性氣體中的溶解度新模型[J]. 石油學(xué)報: 石油加工, 2009, 25(6): 889-895.

      [10] ROBERTS B E. The effect of sulfur deposition on gas well inflow performance[J]. SPE Reservoir Engineering, 1997, 12(2): 118-123.

      [11] HU J, ZHAO J, WANG L, et al. Prediction model of elemental sulfur solubility in sour gas mixtures[J]. Journal of Natural Gas Science and Engineering, 2014(18): 31-38.

      [12] 谷明星, 里群, 陳衛(wèi)東, 等. 固體硫在超臨界/近臨界酸性流體中的溶解度(Ⅱ)熱力學(xué)模型[J]. 化工學(xué)報, 1993, 44(3): 321-327.

      [13] KARAN K, HEIDEMANN R A, BEHIE L A. Sulfur solubility in sour gas: predictions with an equation of state model[J]. Industrial amp; Engineering Chemistry Research, 1998, 37(5): 1679-1684.

      [14] KADOURA A, SALAMA A, SUN S, et al. An NPT monte carlo molecular simulation-based approach to investigate solid-vapor equilibrium: Application to elemental sulfur-H2S system[J]. Procedia Computer Science, 2013(18): 2109-2116.

      [15] MEHRPOOYA M, MOHAMMADI A H, RICHON D. Extension of an artificial neural network algorithm for estimating sulfur content of sour gases at elevated temperatures and pressures[J]. Industrial amp; Engineering Chemistry Research, 2009, 49(1): 439-442.

      [16] 曾平, 楊滿平, 胡海燕, 等. 硫在天然氣中的溶解機理實驗研究[J]. 天然氣工業(yè), 2005, 25(4): 31-33.

      [17] 高大文, 王鵬, 蔡臻超. 人工神經(jīng)網(wǎng)絡(luò)中隱含層節(jié)點與訓(xùn)練次數(shù)的優(yōu)化[J]. 哈爾濱工業(yè)大學(xué)學(xué)報, 2003, 35(2): 207-209.

      [18] 胡德棟, 王威強, 魏東, 等. 固體在超臨界流體中溶解度的BP人工神經(jīng)網(wǎng)絡(luò)模擬[J]. 山東大學(xué)學(xué)報: 工學(xué)版, 2006, 36(2): 8-11.

      [19] ESLAMIMANESH A, MOHAMMADI A H, RICHON D. Determination of sulfur content of various gases using Chrastil-type equations[J]. Industrial amp; Engineering Chemistry Research, 2011(50): 7682-7687.

      PredictionofsulfursolubilityinhighsulfurgasbasedonBPneuralnetwork

      ChenLei,LiChangjun

      (SchoolofPetroleumEngineering,SouthwestPetroleumUniversity,Chengdu610500,China)

      Research on the elemental sulfur solubility in high sulfur gas is the premise and foundation of sulfur deposition mechanism, sulfur deposition prediction and treatment technology research, as well as the core subject of indoor sulfur deposition research work. To associate and predict the sulfur solubility in high sulfur gas, a Back Propagation Artificial Neural Network (abbreviated as BP ANN) model was proposed. Implementation procedure and parameters setting of this model were introduced in detail. The results showed that the model could simulate and interpolate the solubility of sulfur in high sulfur gas, while the extrapolative effect was poor. Compared with other existing model, the caculation results of BP ANN was model better than that of the Chrastil association model and the empirical formula, which was in accord with the calculation results of the equation of state method and the six parameters association model.

      sulfur deposition, BP neural network, prediction, elemental sulfur, high sulfur gas, solubility

      國家自然科學(xué)基金“天然氣管道跨越結(jié)構(gòu)清管動力響應(yīng)實驗及理論研究”(51174172);教育部博士點專項科研基金“高溫高壓復(fù)雜天然氣集輸工藝基礎(chǔ)理論研究”(20125121110003)。

      陳磊(1989-),男,江蘇揚州人,西南石油大學(xué)油氣儲運專業(yè)在讀碩士研究生,現(xiàn)主要從事復(fù)雜含硫天然氣相態(tài)的研究。E-mailjiangduchenlei@126.com

      TE642

      A

      10.3969/j.issn.1007-3426.2015.03.001

      2014-11-08;編輯溫冬云

      猜你喜歡
      含硫溶解度氣體
      “溶解度曲線”考點擊破
      二維定常Chaplygin氣體繞直楔流動
      一種應(yīng)用于高含硫氣井的智能取垢器系統(tǒng)設(shè)計
      含硫柳汞廢水處理方法研究
      非等熵Chaplygin氣體測度值解存在性
      吃氣體,長大個
      溶解度曲線的理解與應(yīng)用例析
      全球向低含硫清潔燃料看齊
      石油知識(2016年2期)2016-02-28 16:19:49
      CO2捕集的吸收溶解度計算和過程模擬
      鋁合金三元氣體保護焊焊接接頭金相
      焊接(2015年8期)2015-07-18 10:59:14
      明溪县| 垣曲县| 军事| 枞阳县| 石首市| 五峰| 老河口市| 满洲里市| 舒城县| 泰和县| 潜山县| 林甸县| 琼海市| 泰来县| 建德市| 南陵县| 获嘉县| 柯坪县| 武陟县| 紫阳县| 徐汇区| 香港| 东兰县| 溧水县| 民权县| 化德县| 光山县| 台东市| 桂平市| 文安县| 定襄县| 安徽省| 泽普县| 绥江县| 宣化县| 丰县| 安吉县| 高要市| 丹棱县| 莱芜市| 德州市|