• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluating Water Vapor Permeance Measurement Techniques for Highly Permeable Membranes

    2015-12-13 06:46:39BuiDucThuanWongYonghuiChuaKianJonandNgKimChoon
    Computers Materials&Continua 2015年8期
    關(guān)鍵詞:糞尿排泄物豬糞

    Bui Duc Thuan,Wong Yonghui,Chua Kian Jonand Ng Kim Choon

    Evaluating Water Vapor Permeance Measurement Techniques for Highly Permeable Membranes

    Bui Duc Thuan1,2,Wong Yonghui2,Chua Kian Jon2and Ng Kim Choon2

    The cup method and dynamic moisture permeation cell(DMPC)method are two common techniques used to determine the water vapor permeation properties of a membrane.Often,ignoring the resistance of boundary air layers to the transport of water vapor results in the water vapor permeance of the membrane being underestimated in practical tests.The measurement errors are higher with highly permeable membranes.In this study,the two methods were simulated using COMSOL Multiphysics platform and the extent of the error was evaluated.Initial results showed that the error is equally high in both methods.With the correction for the still air gap,the cup method produces a relatively reduced error.In the DMPC method,reducing the error caused by the boundary air layer by increasing the sweep speed can produce higher instrument error.Highly accurate and precise instrument is needed for DMPC method;however,its error is still higher than that in the cup method.Simulations also show that lowering the test pressure is favorable to both methods.

    cup method simulation,dynamic moisture permeation cell method simulation,water vapor permeability

    1 Introduction

    The use of membranes for applications involving the removal or transfer of high amount of water vapor has driven the need for the evaluation of water vapor permeance of membranes with high water vapor permeance(upto6.8×10?6mol/m2.s.Pa[Xing,Rao,TeGrotenhuis,Canf i eld,Zheng,Winiarski and Liu(2013)])and high selectivity.Such applications include air dehumidif i cation[Yang,Yuan,Gao and Guo(2015);Metz,Van de Ven,Potreck,Mulder and Wessling(2005)],membrane heat and vapor recovery[Zhang and Jiang(1999)]and vapor/gas separation[Lin,Thompson,Serbanescu-Martin,Wijmans,Amo,Lokhandwala and Merkel(2012);Krull,Fritzmann and Melin(2008);Metz,Van De Ven,Mulder and Wessling(2005);Roy,Hussain and Mitra(2013);Scovazzo(2010);Sijbesma,Nymeijer,van Marwijk,Heijboer,Potreck and Wessling(2008)].

    There are currently two widespread methods,the cup method[ASTM(2014)]and the dynamic moisture permeation cell(DMPC)method[ASTM(2009)],used for measuring water vapor transmission rates(WVTR)and thus water vapor permeance.Each method has its own variations[Metz,Van de Ven,Potreck,Mulder and Wessling(2005);Gennadios,Weller and Gooding(1994);Huang(2008);Huang and Qian(2008);Zhang(2006)],advantages and disadvantages[Huang and Qian(2008);McCullough,Kwon and Shim(2003)].

    In the cup method,a membrane of a specif i c area covers an upright cup(Figs.1 a)or inverted cup(Fig.1 b),with the cup being filled with desiccant,water or salt solution to keep the relative humidity(RH)inside the cup fixed at a certain value.The cup is placed inside a temperature and humidity chamber with air or nitrogen atmosphere at controlled RH.In order to refresh the air/gas outside the cup,the air/gas in the chamber is circulated at a speed higher than 152 m/min as recommended in ASTM E96-14[ASTM(2014);McHugh,Avena-Bustillos and Krochta(1993)].In this cup method,the change in the mass of the cup’s content is monitored and used to quantify the water vapor permeation of the membrane.The advantage of this method is that it employs simple apparatus to conduct the test.

    In the dynamic moisture permeation cell(DMPC)method,one side of the membrane is kept at fixed RH by blowing a fast-f l owing feed stream of air or gas over the membrane(Figs.1 c).On the other side of the membrane,a sweep air,helium or nitrogen is passed over.The fluid flows at the opposing sides of the membrane can be countercurrent or concurrent.They can be blown from one end to the opposite end of a rectangular membrane(Fig.1 c),or radially from the center of a circular membrane surface to the circumference or in the opposite direction[Metz,Van de Ven,Potreck,Mulder and Wessling(2005)].Water vapor diffuses through the membrane from a space with higher RH to one with lower RH,causing a change in RH of the sweep stream.The RH change is measured and used to calculate the permeability characteristic of the membrane.This method can be coupled with a gas chromatograph system to determine the permeability and selectivity of several gases or vapors at the same time,though the apparatus setup and operations are more complicated[Xing,Rao,TeGrotenhuis,Can field,Zheng,Winiarski and Liu(2013)].There are also setups,which are hybrids of the cup and DMPC methods,reported in literature[Huang(2008);Zhang(2006)].

    Figure 1:Some examples of experimental setups to determine water vapor permeance:(a)upright cup method;(b)inverted cup method and;(c)counter-current f l ow DMPC method

    For the cup method,the WVTR(mol/m2.s)is given as[ASTM(2014)]:

    where Δmis the change in mass of the cup(g),tis the time taken for that change in mass(s),Ais the area of the membrane(m2),andMwis the molecular weight of water(g/mol).

    For the DMPC method,it is determined from[ASTM(2009)]:

    where δRHis the change in relative humidity between the incoming and outgoing stream of the sweep air/gas,Psis the saturation pressure of water vapour(Pa),Vis the volumetric f l ow rate(m3/s),R is the universal gas constant(J/mol.K),andTis the temperature of the measurement(K).

    In order to quantify the ease with which water vapor can go through a membrane,vapor permeance(k,mol/m2.s.Pa)is employed and def i ned as the amount of water vapor that goes across a unit area of the membrane under a unit water vapor transmembrane pressure.With the assumption that the air resistance to the water vapor transport is negligible,the apparent water vapor transmembrane pressure,and thus apparent permeance,can be determined by

    where ΔPw,appis the apparent water vapor transmembrane pressure(Pa),the driving force for water transmission through the membrane[ASTM(2014)].

    For the cup method,the apparent water vapor transmembrane pressure is the water vapor pressure difference between the desiccant/water/salt solution surface inside the cup and the air/gas outside the cup.For the DMPC method,generally,the water vapor transmembrane pressure is the average water vapor pressure difference between feed stream and sweep stream[Metz,Van de Ven,Potreck,Mulder and Wessling(2005);ASTM(2009)].

    For both methods,treating the resistance of air as negligible leads to an underestimation of water vapor permeance and causes a certain error for the measurement[Metz,Van de Ven,Potreck,Mulder and Wessling(2005);Gennadios,Weller and Gooding(1994);McHugh,Avena-Bustillos and Krochta(1993);Hu,Topolkaraev,Hiltner and Baer(2001)].The error is small for a low permeance membrane,whose resistance is much larger than the resistance of air on both sides of the membrane.The error is higher for a high permeance membrane if no correction is appropriately applied.So far,only the resistance of still air has been determined and considered for permeance calculations in the cup method[ASTM(2014)].The resistance of a moving gas and how it affects the measurement error are still not determined and evaluated in both methods.

    Water vapor permeances obtained experimentally are not actual but apparent values.Therefore,although experimental analysis and comparison of the two methods have been done[Gennadios,Weller and Gooding(1994)],the extent of the measurement errors due to air resistance in both methods is not well-known.In particular,the error in the DMPC method,in which no applicable correction has been reported,is completely unknown.Therefore,what is the most appropriate method for a certain membrane and how to minimize the error in each method are questions yet to be addressed.

    In this study,computational analysis was utilized to simulate the extent of the errors due to air resistance in a cup setup and a counter current f l ow DMPC setup.The error after the applicable corrections for the cup method was evaluated.The effects of relative humidity,temperature and pressure on the error of measured apparent and corrected permeances were also simulated.Favorable testing conditions to minimize the error are subsequently discussed.

    2 Simulation

    2.1 Assumptions

    2D simulations for the experimental setup were developed employing the COMSOL Multiphysics 5.0 platform,an engineering modeling software based on the well-developed f i nite element method[Atluri(2005)].The consistency between experimental and simulation results for heat and mass transfer involving air f l ows using COMSOL has been reported in literatures[Bui,Chen,Nida,Chua and Ng(2015);Toujani,Djebali,Hassini,Azzouz and Belghith(2014);Lamloumi,Hassini,Lecomte-Nana,Elcafsi,Smith,Li,Huang,Ai and Tian(2014)].The following assumptions were made when developing these models:

    1.Humid air approximates an ideal gas and the fluid f l ow of air is plug f l ow.

    2.Water vapor transport is governed by the Fick’s law of diffusion and convection.The mass balance equation under isothermal steady state equilibrium is

    wherecis the concentration of the water vapor(mol/m3),D is the water vapor diffusion coefficient(m2/s),uis the velocity vector(m/s).cis related to water vapor partial pressure and relative humidity as below:

    Pwis the water vapor partial pressure(Pa),RH is the relative humidity andPsis the saturation pressure of water vapor(Pa).

    The water vapor diffusion coefficient(D)is calculated from the empirical equation[Massman(1998)]:

    wherePis the ambient pressure(Pa),Pois the standard atmospheric pressure(101325 Pa)andTis the temperature(K).

    3.The water vapour permeance of the membrane is fixed and does not depend on the air RH.The water vapor transmission rate is proportional to the partial pressure difference between the two sides of the membrane,as in the below equation:wherekis the water vapor permeance of the membrane(mol/m2.s.Pa),ΔPwis transmembrane pressure andP1wandP2ware the water vapor partial pressure at two sides the membrane(Pa).

    4.For the cup method,the changes in temperature and air gap due to the water evaporation/absorption are ignored.

    Figure 2:Schematic diagrams for simulations of(a)cup setup and(b)DMPC setup

    2.2 Cup method setup

    The upright cup setup shown in Fig.1 a is modeled and simulated.The working membrane is modeled as a 10 mm long thin permeable barrier having constant water vapor permeance(k),placed between an outside layer of conditioned air and a still air layer in the cup as shown in Fig.2 a.In order to reduce the resistance to mass transfer,the outside air layer is moving atum/s.Water vapor transport in the outside air is governed by the Fick’s law of diffusion and convection.Its mass transfer process is depicted via equation(4).Water vapor transport in the still air gap inside the cup is governed only by the Fick’s law of diffusion.Its mass transfer process is simulated using equation(4)without the first term on the left hand side,which accounts for convective transport due to the velocity u.

    The apparent water vapor permeance can be determined:

    wherekappis the apparent water vapor permeance(mol/m2.s.Pa),PoutwandPinware the water vapor partial pressure of outside conditioned air and at the water/desiccant/salt solution surface respectively(Pa).

    The error ofkappcompared withkis determined as:

    The influence of the thickness of the still air gap(d),the conditioned air’sRH,temperature and pressure on theerroris studied judiciously.

    2.3 DMPC method setup

    The counter fl ow DMPC setup shown in Fig.1 c is simulated.The working membrane is a 10 mm long thin permeable barrier between a feed and a sweep flows,as shown in Fig.2 b.Flow velocities of feed air and sweep gas areufandusrespectively.Water vapor transport in both feed and sweep flows are governed by the Fick’s law of diffusion and convection and the mass balance equation for both flows is equation(4).

    The apparent water vapor permeance can be determined:

    在傳統(tǒng)的生豬規(guī)模化養(yǎng)殖中,對于大量糞尿無法進行有效處理,通過對異位發(fā)酵床技術(shù)這一新型豬糞尿排泄物處理技術(shù)的應(yīng)用,能在源頭上對傳統(tǒng)規(guī)?;i場的糞尿污染問題進行處理,可以為養(yǎng)殖人員帶來良好的經(jīng)濟效益。

    wherePfeedinwandPfeedoutware the water vapor partial pressures at the inlet and outlet of the feed f l ow respectively(Pa),andPsweepinwandPsweepoutware the water vapor partial pressures at the inlet and outlet of the sweep f l ow respectively(Pa).The error ofkappcompared withkis determined using equation(9).The inf l uence of the sweep gas velocity,pressure,conditioned air’sRHand temperature on the error is analyzed and quantified.

    3 Results and discussion

    3.1 Transmembrane water vapor partial pressure,

    Figure 3:(a)water vapor partial pressure along the y axis and(b)transmembrane pressure in dry cup method setup.

    Fig.3 a shows the water vapor partial pressure along theyaxis in a dry cup method setup at different membrane permeances.The relative humidity of the outside conditioned air is set at 70%.A desiccant like silica gel or calcium chloride is modelled in this setup and the relative humidity at the desiccant surface is set at 0%.The temperature is 298K.The outside air layer is moving atu=10 m/s.The water vapor permeance of the membrane(k)is varied from 10?8to 5 10?6mol/m2.s.Pa.The result shows that there is an accumulation of water vapor on the inner side of the membrane,causing an increase in water vapor partial pressure near the membrane.This accumulation is small with low water vapor permeance spanning from 10?8to 10?7mol/m2.s.Pa and increases sharply with higher water vapor permeance.There is still a significant amount of water vapor dissipation on the outer side of the membrane when water vapor permeance is high,causing a drop in pressure near the membrane,even though the conditioned air is moving at 10 m/s,4 times higher recommended velocity in ASTM 96[ASTM(2014)].As a result,the actual water vapor transmembrane pressure(ΔPw)is much lower than the water vapor pressure difference between the desiccant surface and outside conditioned air.

    Fig.3 b shows the dependence of the water vapor transmembrane pressure on the membrane permeance and the thickness of the still air(d)between the desiccant surface and the membrane.The actual water vapor transmembrane pressure decreases with higher water vapor permeance and thicker air gap.

    Fig.4 a shows the water vapor partial pressure along theyaxis in a DMPC setup.The relative humidity of the feed air and the sweep gas is set at 70%and 0%,respectively.The temperature is 298K.The feed air and the sweep gas are moving at 10 and 0.5 m/s,respectively.The water vapor permeance of the membrane(k)varies from 10?8to 5 10?6mol/m2.s.Pa.Similar as the cup method,there are significant water vapor accumulation and dissipation caused by the resistance of air phases on both sides of the membrane in this DMPC setup.This results in a lower water vapor transmembrane pressure compared with the mean water vapor partial pressure difference between the feed air and the sweep gas.As shown in Fig.4 b,the actual water vapor transmembrane pressure decreases with higher water vapor permeance and slower sweep gas velocity.

    Figure 4:(a)water vapor partial pressure along the y axis and(b)transmembrane pressure in a dynamic moisture permeation cell setup.

    3.2 Apparent and actual permeance

    Figure 5:Comparision between apparent and actual permeances in(a)cup setup and(b)DMPC method

    During the practical testing of both methods,water vapor permeance is determined based on the assumption that the mass transport resistance of the air on both sides of the membrane is negligible.This leads the apparent permeance computed using equations(8)and(10)to be lower than the actual water vapor permeance.The underestimation of water vapor permeance is shown in Fig.5.From the two graphs,it is seen that the apparent permeance diverges from the actual permeance as membrane permeance increases.Further,the divergence increases with higher air gap in the cup method and slower sweep velocity in the DMPC method.It is therefore apparent that the resistances to mass transfer in the gas boundary layers on both sides of the membrane cannot be neglected,especially in case of highly water permeable membranes.Simplifying calculations in practical tests by ignoring this resistance will cause error of the measurement.The errors determined by equation(9)for the two methods are shown in Fig.6.

    Figure 6:Error caused by ignorance of mass transport resistance of air boundary layers in(a)the cup method and(b)the DMPC method.

    As shown in Fig.6,both methods potentially evolve large errors if the resistances of the air boundary layers are not taken into account.The error increases with higher water vapor permeance.A thicker air gap in the cup method and a lower sweep velocity in the DMPC method also cause higher error.

    3.3 Correction for resistance of still air

    According to ASTM E96-14[ASTM(2014)],all measurements that result in permeance values of more than 2-perms(6.33×10?9mol/m2s Pa)require corrections.The correction for resistance due to the still air is based on the water vapor permeance of air(kair,mol/m2.s.Pa):

    The water vapor permeance with the correction(kcor,mol/m2.s.Pa)is determined as follows:

    For the inverted cup method in which there is no still air gap,the measured water vapour permeance would be similar to the corrected water vapour permeance values shown in Fig.7 a.For the convenience of not applying the corrections,the inverted cup method can be used.

    Figure 8:RH change between sweep gas inlet and outlet

    In the DMPC method,there has been no reported literature on such a kind of correction for the DMPC method.Therefore,only by increasing the sweeping velocity,the error can be reduced as shown in Fig.6 b.However,the change in RH also becomes smaller as shown in Fig.8.The smaller change in water content can magnify the instrument error.This means that there is always a tradeoff between the error caused by the resistance of the air boundary layers and the instrument error with the increase of sweeping velocity.Highly accurate and precise instrument is needed for the DMPC method.However,this does not ensure that the measurement error of the DMPC method is lower than that of the cup method.This is because with the sweep velocity of 10 m/s,at which the sweep stream’s RH is almost unchanged(as shown in Fig.8),the error of the DMPC method(shown in Fig.6 b)is still higher than the error after correction of the cup method with fresh velocity higher 10 m/s(shown in Fig.7 c.).

    3.4 Effects of RH,temperature and pressure on measurement error

    Adopting the assumption that the water vapor permeance of a membrane does not change with RH of the air,the simulation results show that the measurement error also does not depend on the difference in RH values between both sides of the membranes.As shown in Fig.9 a,the curves for the error ofkappandkcoroverlap at differing RH values outside the cup while the RH inside the cup controlled using desiccant is kept at 0%.The result is also applicable for the wet-cup method.

    The independence of measurement error from RH is also observed in the case of the DMPC method as shown in Fig.9 b.The error curves overlap at different feed RH values while the sweep inlet RH is kept at 0%.However,the lowering of the feed RH leads to small RH changes in the sweep stream as shown in Fig.9 c,causing higher instrument errors.Therefore,when the DMPC method is to be considered,a higher RH difference between the two f l ows is desirable.

    Figure 9:Effects of RH(a,b and c),temperature(d,e)and pressure(f,g)on measurement errors in the cup(a,d,f)and DMPC(b,e and g)methods and sweep gas’s RH change in DMPC method(c).

    Adopting the assumption that the water vapor permeance of a membrane is independent of temperature,it follows that a change in temperature just affects the diffusion of water vapor in the air.In both methods,increasing process temperature leads to higher water vapor diffusion and a lower resistance of the boundary air layer.Consequently,lower errors are achieved,as shown in Fig.9 d and e.However,when the temperature increases from 293 K to 323 K,the error ofkappfor both the cup and DMPC methods decrease only slightly while the error ofkcoris almost unchanged for the cup method.

    Pressure affects the water vapor diffusion in air as apparent through equation(6).A decrease in pressure will result in higher diffusion effect while lowering the resistance of air to water vapor transport.In both methods,higher errors are obtained under high pressure conditions as shown in Fig.9 f and g.This result is consistent with the report that concentration polarization effects cannot be neglected in high pressure applications[Lüdtke,Behling and Ohlrogge(1998)].

    4 Conclusions

    In this work,two commonly used techniques,the cup and DMPC methods,were studied by numerical analysis to evaluate water vapor permeance of highly permeable membranes.Under room condition and without proper corrective intervention,both methods give high errors due to the effect of water vapor transport resistance of the boundary air layers on both sides of the membrane not being considered.Because the resistance of still air can be determined,the cup method provides a corrected water vapor permeance value closer to the actual one without compro-mising instrument error.Highly accurate and precise instrument does not ensure a lower error in the DMPC method than the cup method.Both methods can be markedly improved by lowering process pressure.

    Acknowledgement: The authors gratefully acknowledge the financial support provided by both Agency for Science,Technology and Research(A*Star)and Ministry of National Development(MND)through their Green Building Joint Grant(no:112 176 0023)and National Research Foundation(NRF)Competitive Research Programme(CRP)NRF2011NRF_CRP003_003.

    ASTM(2009): ASTM F2298-03(2009)e1:Standard Test Methods for Water Vapor Diffusion Resistance and Air Flow Resistance of Clothing Materials Using the Dynamic Moisture Permeation Cell(Withdrawn 2015).West Conshohocken,Penn.ASTM International.

    ASTM(2014): ASTM E96/E96M-14:Standard Test Methods for Water Vapor Transmission of Materials.West Conshohocken,Penn.ASTM International.

    Atluri,S.N.(2005):Methods of Computer Modeling in Engineering&the Sciences,Volume 1.Tech Science Press.

    Bui,T.D.;Chen,F.;Nida,A.;Chua,K.J.;Ng,K.C.(2015):Experimental and modeling analysis of membrane-based air dehumidification.Sep.Purif.Technol.,vol.144,pp.114-122.

    Gennadios,A.;Weller,C.L.;Gooding,C.H.(1994):Measurement errors in water vapor permeability of highly permeable,hydrophilic edible f i lms.J.Food Eng.,vol.21,pp.395-409.

    Hu,Y.;Topolkaraev,V.;Hiltner,A.;Baer,E.(2001):Measurement of water vapor transmission rate in highly permeable films.J.Appl.Polym.Sci.,vol.81,pp.1624-1633.

    Huang,J.(2008):A Device for Characterizing Water Vapor Permeability of Polymer Membranes.Int.J.Polym.Anal.Charact.,vol.13,pp.37-48.

    Huang,J.;Qian,X.(2008):Comparison of Test Methods for Measuring Water Vapor Permeability of Fabrics.Text.Res.J.,vol.78,pp.342-352.

    Krull,F.;Fritzmann,C.;Melin,T.(2008):Liquid membranes for gas/vapor separations.J.Membr.Sci.,vol.325,pp.509-519.

    Lamloumi,R.;Hassini,L.;Lecomte-Nana,G.;Elcafsi,M.;Smith,D.;Li,W.;Huang,H.;Ai,B.;Tian,Y.(2014): Modeling of Hydro-Viscoelastic State of Deformable and Saturated Product During Convective Drying.CMC:Computers,Materials&Continua,vol 23,pp.137-151.

    Lin,H.;Thompson,S.M.;Serbanescu-Martin,A.;Wijmans,J.G.;Amo,K.D.;Lokhandwala,K.A.;Merkel,T.C.(2012):Dehydration of natural gas using membranes.Part I:Composite membranes.J.Membr.Sci.,vol 413–414,pp.70-81.

    Lüdtke,O.;Behling,R.-D.;Ohlrogge,K.(1998):Concentration polarization in gas permeation.J.Membr.Sci.,vol.146,pp.145-157.

    Massman,W.(1998):A review of the molecular diffusivities of H2O,CO2,CH4,CO,O3,SO2,NH3,N2O,NO,andNO2inair,O2andN2nearSTP.Atmos.Environ.,vol.32,pp.1111-1127.

    McCullough,E.A.;Kwon,M.;Shim,H.(2003):A comparison of standard methods for measuring water vapour permeability of fabrics.Meas.Sci.Technol.,vol.14,pp.1402-1408.

    McHugh,T.H.;Avena-Bustillos,R.;Krochta,J.(1993): Hydrophilic Edible Films:Modif i ed Procedure for Water Vapor Permeability and Explanation of Thickness Effects.J.Food Sci.,vol.58,pp.899-903.

    Metz,S.;Van De Ven,W.;Mulder,M.;Wessling,M.(2005):Mixed gas water vapor/N2 transport in poly(ethylene oxide)poly(butylene terephthalate)block copolymers.J.Membr.Sci.,vol.266,pp.51-61.

    Metz,S.;Van de Ven,W.;Potreck,J.;Mulder,M.;Wessling,M.(2005):Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes.J.Membr.Sci.,vol.251,pp.29-41.

    Roy,S.;Hussain,C.M.;Mitra,S.(2013):Poly(acrylamide-co-acrylic acid)hydrophilization of porous polypropylene membrane for dehumidif i cation.Sep.Purif.Technol.,vol.107,pp.54-60.

    Scovazzo,P.(2010): Testing and evaluation of room temperature ionic liquid(RTIL)membranes for gas dehumidif i cation.J.Membr.Sci.,vol.355,pp.7-17.

    Sijbesma,H.;Nymeijer,K.;van Marwijk,R.;Heijboer,R.;Potreck,J.;Wessling,M.(2008):Flue gas dehydration using polymer membranes.J.Membr.Sci.,vol.313,pp.263-276.

    Toujani,M.;Djebali,R.;Hassini,L.;Azzouz,S.;Belghith,A.(2014):Hydrothermo-viscoelastic Based Finite Element Modeling of Apple Convective Drying Process.CMES:Computer Modeling in Engineering&Sciences,vol.98,pp.469-485.

    Xing,R.;Rao,Y.;TeGrotenhuis,W.;Canfield,N.;Zheng,F.;Winiarski,D.W.;Liu,W.(2013): Advanced thin zeolite/metal f l at sheet membrane for energy efficient air dehumidif i cation and conditioning.Chem.Eng.Sci.,vol.104,pp.596-609.

    Yang,B.;Yuan,W.;Gao,F.;Guo,B.(2015):A review of membrane-based air dehumidification.Indoor Built Environ.,vol.24,no.1,pp.11-26.

    Zhang,L.-Z.(2006):Evaluation of moisture diffusivity in hydrophilic polymer membranes:A new approach.J.Membr.Sci.,vol.269,pp.75-83.

    Zhang,L.;Jiang,Y.(1999):Heat and mass transfer in a membrane-based energy recovery ventilator.J.Membr.Sci.,vol.163,pp.29-38.

    1Corresponding author E-mail:mpebuid@nus.edu.sg/buiducthuan@gmail.com

    2National University of Singapore,Department of Mechanical Engineering,9 Engineering Drive 1,Singapore 117575,Singapore

    猜你喜歡
    糞尿排泄物豬糞
    陜西省畜禽糞尿養(yǎng)分資源及耕地負荷分析
    亞洲象浮膜性腸炎排泄物的病理學(xué)診斷
    好氧堆肥降低豬糞中重金屬生物有效性的可行性概述
    豬糞變有機肥一年賣了3個億
    豬糞中添加腐殖酸添加劑可降低糞便中的臭氣
    養(yǎng)殖場糞尿處理與綜合利用探討
    異位發(fā)酵床豬糞尿處理技術(shù)綜述
    延邊地區(qū)畜禽糞便污染現(xiàn)狀及產(chǎn)沼氣潛力分析
    便于清潔的兔籠
    豬糞與奶牛糞混合半連續(xù)厭氧共發(fā)酵產(chǎn)沼氣研究
    一个人观看的视频www高清免费观看| 亚洲国产欧洲综合997久久,| 亚洲成人久久爱视频| 在线观看午夜福利视频| 久久久色成人| 在线免费观看不下载黄p国产 | a在线观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 亚洲性夜色夜夜综合| 少妇高潮的动态图| 五月伊人婷婷丁香| 欧美色欧美亚洲另类二区| 国产成人av激情在线播放| 亚洲真实伦在线观看| 午夜福利在线在线| 日韩欧美国产一区二区入口| 婷婷精品国产亚洲av在线| 99久久综合精品五月天人人| 午夜福利在线在线| 色老头精品视频在线观看| 欧美黄色片欧美黄色片| 天堂网av新在线| 精品熟女少妇八av免费久了| 一本久久中文字幕| 国产精品三级大全| 丰满人妻一区二区三区视频av | 久久精品91蜜桃| 校园春色视频在线观看| 亚洲欧美日韩卡通动漫| 黄片小视频在线播放| 欧美bdsm另类| 最新美女视频免费是黄的| 亚洲熟妇熟女久久| 身体一侧抽搐| 国产欧美日韩精品一区二区| 免费看美女性在线毛片视频| x7x7x7水蜜桃| 一a级毛片在线观看| 国产麻豆成人av免费视频| 久久香蕉精品热| 国产精品久久久人人做人人爽| 国产精品免费一区二区三区在线| 成年女人看的毛片在线观看| 精品福利观看| 国产精品影院久久| 亚洲精品影视一区二区三区av| 国产成人精品婷婷| 久久久久精品久久久久真实原创| 男人舔女人下体高潮全视频| 淫秽高清视频在线观看| 国产激情偷乱视频一区二区| 一级黄片播放器| 免费观看无遮挡的男女| 免费观看的影片在线观看| 日韩精品青青久久久久久| 国内精品美女久久久久久| 国产黄a三级三级三级人| 亚洲人成网站高清观看| 日日干狠狠操夜夜爽| av网站免费在线观看视频 | 国产午夜福利久久久久久| 免费少妇av软件| 亚洲一区高清亚洲精品| 18禁在线播放成人免费| kizo精华| 能在线免费看毛片的网站| 国产精品一及| 乱码一卡2卡4卡精品| 菩萨蛮人人尽说江南好唐韦庄| 少妇高潮的动态图| 国产亚洲精品久久久com| 亚洲成人中文字幕在线播放| 午夜免费男女啪啪视频观看| 99热网站在线观看| 中文字幕人妻熟人妻熟丝袜美| 美女内射精品一级片tv| 淫秽高清视频在线观看| 久久久亚洲精品成人影院| 看十八女毛片水多多多| 在线观看美女被高潮喷水网站| 欧美不卡视频在线免费观看| 男女视频在线观看网站免费| 18禁动态无遮挡网站| 国产伦一二天堂av在线观看| 亚洲欧美一区二区三区国产| 国产成人a∨麻豆精品| 搡女人真爽免费视频火全软件| 日本午夜av视频| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜添av毛片| kizo精华| 成人一区二区视频在线观看| 日本爱情动作片www.在线观看| 亚洲最大成人av| 80岁老熟妇乱子伦牲交| 亚洲乱码一区二区免费版| 国产片特级美女逼逼视频| 九九久久精品国产亚洲av麻豆| 亚洲av在线观看美女高潮| av一本久久久久| 精品不卡国产一区二区三区| 国产亚洲5aaaaa淫片| 免费看av在线观看网站| 免费观看在线日韩| 高清在线视频一区二区三区| 欧美另类一区| 成人亚洲精品一区在线观看 | 非洲黑人性xxxx精品又粗又长| 午夜福利网站1000一区二区三区| 卡戴珊不雅视频在线播放| 国产免费又黄又爽又色| 国产一区二区在线观看日韩| 亚洲av男天堂| 久久精品国产亚洲网站| 国产国拍精品亚洲av在线观看| 国产午夜福利久久久久久| 十八禁网站网址无遮挡 | 日本-黄色视频高清免费观看| 只有这里有精品99| 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 国产91av在线免费观看| 亚洲性久久影院| 一级毛片aaaaaa免费看小| 天堂av国产一区二区熟女人妻| 国产在线男女| 97超碰精品成人国产| 国产视频首页在线观看| 少妇熟女aⅴ在线视频| 美女高潮的动态| 午夜老司机福利剧场| 日韩欧美三级三区| 国产伦一二天堂av在线观看| 51国产日韩欧美| 久久99热这里只频精品6学生| 国产极品天堂在线| 亚洲av成人精品一区久久| 国产 亚洲一区二区三区 | 永久网站在线| av线在线观看网站| 一级a做视频免费观看| 国产不卡一卡二| 欧美日本视频| 国产免费又黄又爽又色| 国产精品99久久久久久久久| 少妇高潮的动态图| 国产成人午夜福利电影在线观看| 天堂影院成人在线观看| av卡一久久| 亚洲精品aⅴ在线观看| 99热这里只有是精品50| 人人妻人人看人人澡| 亚洲精品成人av观看孕妇| 亚洲国产欧美人成| 99九九线精品视频在线观看视频| 国产精品嫩草影院av在线观看| 亚洲欧美清纯卡通| 大片免费播放器 马上看| 国产一区亚洲一区在线观看| 国产午夜精品久久久久久一区二区三区| 黄色配什么色好看| 国产精品久久久久久久电影| 不卡视频在线观看欧美| 欧美97在线视频| 水蜜桃什么品种好| 乱人视频在线观看| 日韩av不卡免费在线播放| 亚州av有码| 国产在视频线精品| 成人综合一区亚洲| 欧美三级亚洲精品| 熟女电影av网| 永久免费av网站大全| www.色视频.com| 91av网一区二区| 一区二区三区高清视频在线| 又粗又硬又长又爽又黄的视频| 日本一二三区视频观看| 毛片一级片免费看久久久久| 少妇裸体淫交视频免费看高清| 精品一区二区免费观看| 淫秽高清视频在线观看| 午夜福利在线在线| 亚洲欧美精品专区久久| 丰满乱子伦码专区| 自拍偷自拍亚洲精品老妇| 亚洲精品视频女| 中文欧美无线码| av在线天堂中文字幕| 久久国内精品自在自线图片| 中文字幕制服av| 久久精品国产亚洲av涩爱| 亚洲成人精品中文字幕电影| 激情 狠狠 欧美| www.色视频.com| 国产综合精华液| 亚洲欧美日韩无卡精品| 美女内射精品一级片tv| 国产精品一区www在线观看| 国产大屁股一区二区在线视频| 全区人妻精品视频| 国产 亚洲一区二区三区 | 99久久精品国产国产毛片| 午夜爱爱视频在线播放| 日韩国内少妇激情av| 国产午夜精品久久久久久一区二区三区| 色哟哟·www| 水蜜桃什么品种好| 国产成人一区二区在线| 26uuu在线亚洲综合色| 搡老乐熟女国产| 国产麻豆成人av免费视频| 日韩视频在线欧美| 成人一区二区视频在线观看| 亚洲人成网站高清观看| 干丝袜人妻中文字幕| 一级黄片播放器| 欧美高清成人免费视频www| 国产三级在线视频| 免费看美女性在线毛片视频| 极品少妇高潮喷水抽搐| 亚洲欧美精品自产自拍| 亚洲精品aⅴ在线观看| 午夜福利在线观看免费完整高清在| 精品久久久久久电影网| 国产片特级美女逼逼视频| 国产精品蜜桃在线观看| 黄色一级大片看看| 日韩精品有码人妻一区| 最近中文字幕2019免费版| 丰满人妻一区二区三区视频av| 男女啪啪激烈高潮av片| 亚洲一区高清亚洲精品| 亚洲av成人av| 国产探花在线观看一区二区| 一级黄片播放器| 日本免费a在线| 搡老乐熟女国产| 色综合站精品国产| 国产av不卡久久| 一夜夜www| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 国产真实伦视频高清在线观看| 特级一级黄色大片| 亚洲精品456在线播放app| 天堂中文最新版在线下载 | 亚洲av日韩在线播放| 国产久久久一区二区三区| 亚洲av在线观看美女高潮| 亚洲国产欧美在线一区| 国产有黄有色有爽视频| 久久6这里有精品| 日韩欧美 国产精品| 亚洲av二区三区四区| 国产美女午夜福利| 久久国内精品自在自线图片| 国产一区亚洲一区在线观看| 亚洲国产精品成人久久小说| 精品少妇黑人巨大在线播放| 哪个播放器可以免费观看大片| 国产黄片视频在线免费观看| 午夜精品在线福利| 久久久精品免费免费高清| 黄色欧美视频在线观看| 精品人妻偷拍中文字幕| av免费在线看不卡| 毛片女人毛片| 亚洲av电影不卡..在线观看| 寂寞人妻少妇视频99o| 国产黄a三级三级三级人| 国产男人的电影天堂91| 国产av不卡久久| 亚洲国产精品专区欧美| 简卡轻食公司| 久久久久免费精品人妻一区二区| 亚洲综合色惰| 天堂√8在线中文| 美女内射精品一级片tv| 波多野结衣巨乳人妻| 在线观看一区二区三区| 亚洲国产精品成人久久小说| 久久久久国产网址| 亚洲成人中文字幕在线播放| 亚洲怡红院男人天堂| 最新中文字幕久久久久| 日日撸夜夜添| 青春草亚洲视频在线观看| 一级黄片播放器| 欧美 日韩 精品 国产| 国产精品一二三区在线看| 伊人久久精品亚洲午夜| 伦精品一区二区三区| 国产熟女欧美一区二区| 亚洲欧洲日产国产| 亚洲综合精品二区| 久久精品久久久久久久性| 亚洲av不卡在线观看| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利在线观看吧| 大香蕉97超碰在线| 欧美丝袜亚洲另类| 久久精品久久精品一区二区三区| 亚洲最大成人av| 性插视频无遮挡在线免费观看| 亚洲天堂国产精品一区在线| 亚洲精品乱码久久久v下载方式| 国产激情偷乱视频一区二区| 天堂中文最新版在线下载 | 免费av不卡在线播放| 国产成人91sexporn| 亚洲av福利一区| 亚洲欧美清纯卡通| 成人av在线播放网站| 人妻系列 视频| 直男gayav资源| 国产亚洲av片在线观看秒播厂 | 特级一级黄色大片| 美女大奶头视频| 深爱激情五月婷婷| 精品久久久精品久久久| eeuss影院久久| 国产免费一级a男人的天堂| 成人高潮视频无遮挡免费网站| 国产午夜精品一二区理论片| 26uuu在线亚洲综合色| 亚洲第一区二区三区不卡| 天堂√8在线中文| 成人亚洲精品av一区二区| 国产一区有黄有色的免费视频 | 亚洲18禁久久av| 大片免费播放器 马上看| 亚洲av中文字字幕乱码综合| 少妇的逼水好多| 日日摸夜夜添夜夜添av毛片| 蜜桃久久精品国产亚洲av| 九草在线视频观看| 日本黄大片高清| 国产伦在线观看视频一区| 亚洲av成人精品一二三区| 欧美变态另类bdsm刘玥| 国产黄片美女视频| 在线观看人妻少妇| 亚洲av二区三区四区| 亚洲精品日韩av片在线观看| 亚洲av中文av极速乱| 搡老乐熟女国产| 午夜精品在线福利| 国产精品99久久久久久久久| 亚洲av福利一区| 成人性生交大片免费视频hd| 国产91av在线免费观看| 亚洲图色成人| 全区人妻精品视频| 日韩伦理黄色片| 熟女人妻精品中文字幕| 亚洲在线自拍视频| 免费黄网站久久成人精品| 日韩国内少妇激情av| 成人午夜高清在线视频| 国产精品蜜桃在线观看| 久久热精品热| 性插视频无遮挡在线免费观看| 午夜精品一区二区三区免费看| av在线观看视频网站免费| 国产av国产精品国产| 十八禁国产超污无遮挡网站| 亚洲欧美精品专区久久| 春色校园在线视频观看| 日韩国内少妇激情av| 天堂√8在线中文| 成年免费大片在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲丝袜综合中文字幕| 久久久久精品久久久久真实原创| 久久韩国三级中文字幕| 夫妻性生交免费视频一级片| 精品一区在线观看国产| 九九爱精品视频在线观看| 久久99精品国语久久久| 亚洲av免费高清在线观看| www.av在线官网国产| 床上黄色一级片| 日本三级黄在线观看| 亚洲精品久久久久久婷婷小说| 天天躁日日操中文字幕| 国产午夜精品论理片| 一级片'在线观看视频| 亚洲人成网站在线播| 蜜臀久久99精品久久宅男| 国产精品熟女久久久久浪| 国产精品一区二区三区四区免费观看| 一夜夜www| 免费av观看视频| 国产精品久久久久久精品电影| 麻豆乱淫一区二区| 看免费成人av毛片| 日韩强制内射视频| 免费观看精品视频网站| 久久这里只有精品中国| 亚洲精品国产av蜜桃| 男人舔奶头视频| 高清欧美精品videossex| 丝袜喷水一区| 婷婷六月久久综合丁香| 国产视频内射| 久久久久久九九精品二区国产| 欧美日韩国产mv在线观看视频 | 国产精品久久久久久久电影| 日日干狠狠操夜夜爽| 欧美日韩亚洲高清精品| 精品人妻偷拍中文字幕| 最后的刺客免费高清国语| 亚洲欧美成人精品一区二区| 久久久久久久久久黄片| 内地一区二区视频在线| 亚洲国产精品sss在线观看| av国产久精品久网站免费入址| 可以在线观看毛片的网站| 一区二区三区高清视频在线| 亚洲精品国产av成人精品| 丝袜喷水一区| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产| 精品不卡国产一区二区三区| 91久久精品国产一区二区三区| 国产色爽女视频免费观看| 国产真实伦视频高清在线观看| 国产人妻一区二区三区在| .国产精品久久| 一级毛片我不卡| 91av网一区二区| 老司机影院成人| 日本-黄色视频高清免费观看| 大香蕉97超碰在线| 中文字幕av成人在线电影| 国产精品国产三级国产专区5o| 精品人妻视频免费看| 国产精品蜜桃在线观看| 我的女老师完整版在线观看| 成年女人在线观看亚洲视频 | 国产精品久久久久久精品电影小说 | 久久99热6这里只有精品| 深夜a级毛片| 成年av动漫网址| 九九久久精品国产亚洲av麻豆| 免费黄频网站在线观看国产| 麻豆国产97在线/欧美| 国产精品不卡视频一区二区| 天美传媒精品一区二区| 国产精品一区二区在线观看99 | 看十八女毛片水多多多| 高清欧美精品videossex| 精品人妻偷拍中文字幕| 特大巨黑吊av在线直播| 美女黄网站色视频| 看黄色毛片网站| 久久97久久精品| 成人亚洲欧美一区二区av| 久久久色成人| 亚洲精品,欧美精品| 女的被弄到高潮叫床怎么办| 国产 亚洲一区二区三区 | 国产精品麻豆人妻色哟哟久久 | 亚州av有码| 亚洲精品影视一区二区三区av| 美女脱内裤让男人舔精品视频| 国内精品宾馆在线| 日韩一本色道免费dvd| 女人被狂操c到高潮| 亚洲自拍偷在线| 亚洲不卡免费看| 97超视频在线观看视频| 中文字幕av在线有码专区| 免费观看性生交大片5| 国产精品一区二区在线观看99 | 三级经典国产精品| 男人和女人高潮做爰伦理| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产专区5o| 91av网一区二区| 国产综合懂色| 有码 亚洲区| 国产成人freesex在线| 一区二区三区免费毛片| 久久久久久九九精品二区国产| 国产一级毛片在线| 亚州av有码| 国产精品不卡视频一区二区| 欧美xxxx黑人xx丫x性爽| 1000部很黄的大片| 免费看av在线观看网站| 七月丁香在线播放| 欧美高清成人免费视频www| 日韩av在线大香蕉| 亚洲第一区二区三区不卡| 少妇人妻精品综合一区二区| 日本色播在线视频| 真实男女啪啪啪动态图| 99九九线精品视频在线观看视频| 黄色一级大片看看| 性插视频无遮挡在线免费观看| 欧美精品一区二区大全| 亚洲精品456在线播放app| 我的女老师完整版在线观看| 国产精品不卡视频一区二区| 能在线免费看毛片的网站| 日韩av不卡免费在线播放| 免费看日本二区| 我的女老师完整版在线观看| 看黄色毛片网站| 乱人视频在线观看| 国产有黄有色有爽视频| 青春草国产在线视频| 哪个播放器可以免费观看大片| 午夜久久久久精精品| 男女国产视频网站| 成人亚洲精品一区在线观看 | 激情五月婷婷亚洲| 久久久久久久久久久免费av| 亚洲欧美中文字幕日韩二区| 国产一区二区在线观看日韩| 成人欧美大片| 一二三四中文在线观看免费高清| 两个人的视频大全免费| 久热久热在线精品观看| 五月玫瑰六月丁香| 久久精品国产亚洲av涩爱| 禁无遮挡网站| 我的老师免费观看完整版| 久久99热6这里只有精品| 我的女老师完整版在线观看| 国产成人一区二区在线| 午夜免费激情av| 国产精品国产三级专区第一集| 久久精品国产鲁丝片午夜精品| 综合色av麻豆| 亚洲欧美日韩东京热| 国产高清有码在线观看视频| 亚洲最大成人中文| videossex国产| 天堂中文最新版在线下载 | 久久韩国三级中文字幕| 国产毛片a区久久久久| 老司机影院成人| 国产av在哪里看| 久久精品国产鲁丝片午夜精品| 亚洲最大成人av| 国产av码专区亚洲av| 国产乱来视频区| av免费在线看不卡| 亚洲性久久影院| 毛片女人毛片| 日本午夜av视频| 中文字幕久久专区| 69av精品久久久久久| 成人毛片a级毛片在线播放| 免费黄网站久久成人精品| 精品一区在线观看国产| 全区人妻精品视频| 国产一级毛片在线| 一级a做视频免费观看| .国产精品久久| 建设人人有责人人尽责人人享有的 | 免费观看精品视频网站| 卡戴珊不雅视频在线播放| 久久精品人妻少妇| 91精品国产九色| 日日撸夜夜添| 特级一级黄色大片| 在现免费观看毛片| 欧美日韩精品成人综合77777| 国产探花在线观看一区二区| 日日摸夜夜添夜夜爱| 久久热精品热| 中文字幕人妻熟人妻熟丝袜美| 久久久精品欧美日韩精品| 国产熟女欧美一区二区| 男人狂女人下面高潮的视频| 有码 亚洲区| 精品不卡国产一区二区三区| 国产单亲对白刺激| 亚洲av成人av| 黄色配什么色好看| av女优亚洲男人天堂| 亚洲欧洲国产日韩| 亚洲av中文字字幕乱码综合| 丰满少妇做爰视频| 少妇人妻一区二区三区视频| 久久精品熟女亚洲av麻豆精品 | 91狼人影院| 国产精品熟女久久久久浪| 国内揄拍国产精品人妻在线| 欧美变态另类bdsm刘玥| 一个人观看的视频www高清免费观看| ponron亚洲| 精品亚洲乱码少妇综合久久| 亚洲av电影在线观看一区二区三区 | 日韩av在线免费看完整版不卡| 亚洲精品乱码久久久v下载方式| av在线天堂中文字幕| 午夜福利网站1000一区二区三区| 九九爱精品视频在线观看| 欧美一区二区亚洲| av网站免费在线观看视频 | 永久网站在线| 午夜福利成人在线免费观看| 中国国产av一级| 欧美xxⅹ黑人| 丝瓜视频免费看黄片| 欧美性感艳星| 两个人的视频大全免费| 日韩欧美国产在线观看| 嫩草影院新地址| 国产精品一区二区性色av|