• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      胸腰椎爆裂性骨折模型的快速制備

      2015-12-24 05:04:54程自申
      脊柱外科雜志 2015年3期
      關(guān)鍵詞:脊柱骨折胸椎腰椎

      ·基礎(chǔ)研究·

      胸腰椎爆裂性骨折模型的快速制備

      程自申

      作者單位:200003上海,第二軍醫(yī)大學(xué)附屬長(zhǎng)征醫(yī)院脊柱外科

      【摘要】目的探討快速制備胸腰椎爆裂性骨折模型的方法。方法取20個(gè)豬胸腰段3聯(lián)體標(biāo)本,上下椎體行環(huán)氧樹(shù)脂包埋,中間椎體中部一側(cè)前1/3、2/3處用直徑為3.2 mm的鉆頭鉆孔,平行對(duì)穿椎體,造成中間椎體的有限性損傷,游標(biāo)卡尺測(cè)量骨折前L1椎體前緣高度,記為完整椎體的高度(HInt)。將9 kg不銹鋼錘置于高0.5 m高處,沿引導(dǎo)桿垂直撞擊標(biāo)本,若L1椎體無(wú)骨折跡象則升至0.6 m的高度,若有骨折跡象則將鋼錘降至0.4 m, 在0.5 m的基礎(chǔ)上以0.1 m遞增或遞減進(jìn)行多次撞擊,直至L1形成爆裂性骨折,記錄撞擊總能量,撞擊總能量E=mgh1+mgh2+…+mghn。爆裂性骨折形成后再次測(cè)量L1椎體的前緣高度,記為HFr并對(duì)所形成的爆裂性骨折模型行影像學(xué)檢查。結(jié)果 骨折前椎體前緣高度為(27.405±1.453) mm,骨折后椎體前緣高度為(17.784±1.362) mm,骨折前后差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。當(dāng)撞擊高度為0.5 m時(shí)有4個(gè)爆裂性骨折模型形成,當(dāng)累計(jì)撞擊高度為0.9 m時(shí)有13個(gè)爆裂性骨折模型形成;當(dāng)累計(jì)撞擊高度為1.3 m時(shí)有3個(gè)爆裂性骨折模型形成。累計(jì)平均撞擊高度為0.865 m ;累計(jì)平均撞擊能量為76.313 J。影像學(xué)顯示所有標(biāo)本椎體均造成典型爆裂性骨折。結(jié)論采用上下椎體包埋,中間椎體有限損傷,多次撞擊實(shí)驗(yàn)可以制作典型胸腰椎爆裂性骨折的模型。

      【關(guān)鍵詞】胸椎; 腰椎; 脊柱骨折; 模型,動(dòng)物

      作者簡(jiǎn)介:程自申(1980—), 博士,醫(yī)師

      【中圖分類(lèi)號(hào)】R 683.2

      DOI【】

      收稿日期:(2014-12-21)

      Rapid preparation of model for thoracolumbar burst fractureCHENGZi-shen.DepartmentofOrthopaedics,ChangzhengHospital,SecondMilitaryMedicalUniversity,Shanghai200003,China

      【Abstact】ObjectiveTo investigate the method of rapid preparation of thoracolumbar burst fracture. MethodsTo produce 20 thoracolumbar 3-conjoined porcine specimens, the upper and lower vertebrae was resin-embeded by epoxy,and the middle vertebrae was drilled a hole by drill (3.2 mm) respectively on one side of the middle 1/3, 2/3 to create limited damage. L1anterior border height was measured by vernier caliper (HInt). The 9 kg stainless steel hammer was placed at 0.5 m. Then the specimen was impacted along the vertical guide rod. If the middle vertebrae had no signs of fracture, the stainless steel hammer was promoted by 0.1 m at the basis of 0.5 m. If the middle vertebrae had signs of fracture, the stainless steel hammer was descended by 0.1 m at the basis of 0.5 m. When the middle vertebral body formated the burst fracture, the total impact energy was recorded. After middle vertebral body formated the burst fracture, L1anterior border height was measured again (HFr). Then all the models were examined by radiographic methods. ResultsBefore fracture the height of anterior border was (27.405± 1.453) mm, and after the fracture, the height of anterior border was (17.784±1.362) mm, there has significant difference bewteen before and after fracture (P<0.05). When the impact height was 0.5 m, 4 burst fracture model were observed. When the cumulative impact height was 0.9 m, 13 burst fracture model were observed. When the cumulative impact height was 1.3 m, 3 burst fracture model were observed. The cumulative average impact height was 0.865 m, and the cumulative average impact energy was 76.313 J. The models of burst fracture was confirmed by radiological examination. ConclusionA typical thoracolumbar burst fracture model can be made when the middle vertebrae is limitedly injured, the upper/lower vertebrae resin-embed and impact is given for several times.

      【key words】Thoracic vertebrae; Lumbar vertebrae; Spinal fractures; Models, animal

      J Spinal Surg, 2015,13(3):182-185

      隨著對(duì)脊柱爆裂性骨折的深入研究,無(wú)論是脊柱爆裂性骨折的治療,還是脊柱器械的研制,都需要一個(gè)容易制作、重復(fù)性好的模型。脊柱爆裂性骨折的模型制作有很多方法,但大都與實(shí)際差距太大。本研究綜合文獻(xiàn)分析,找到一種重復(fù)性好又能接近實(shí)際的快速制備胸腰椎爆裂性骨折模型的方法,通過(guò)豬胸腰椎三聯(lián)體上下椎體包埋、中間椎體有限預(yù)損傷、多次自由落體撞擊的方式制作脊柱爆裂性骨折模型。

      1材料和方法

      1.1實(shí)驗(yàn)材料和裝置

      收集新鮮雄性成年豬(120~140 kg,平均128 kg)胸腰段3聯(lián)椎體(T14-L1-L2)20個(gè),國(guó)產(chǎn)環(huán)氧樹(shù)酯及固定液(北京化工),自制撞擊裝置包括重錘9 kg (見(jiàn)圖1)。傾斜15°的楔形壓縮模具(見(jiàn)圖2)。

      1:9 kg不銹鋼重錘2:引導(dǎo)桿3:防重錘彈跳鋸齒結(jié)構(gòu)4:楔形壓縮模具5:椎體過(guò)度破壞保護(hù)裝置

      1:Stainless steel of 9 kg2:Guide rod3:Sawtooth structure preventing heavy hammer bouncing4:Wedge compression mold5:Vertebral bodies protection device preventing excessive broken.

      圖1自制撞擊裝置

      Fig.1Impact device

      圖2傾斜15°楔形壓縮模具

      Fig.215° inclined compression mold

      1.2方法

      保留標(biāo)本橫突(1 mm)、棘突、棘間韌帶、后縱韌帶及關(guān)節(jié)囊的完整性,大量清水沖洗干凈。所有標(biāo)本均在DR機(jī)上拍攝標(biāo)準(zhǔn)前后位及側(cè)位X線片,以除外骨折、畸形或病理變化。雙層塑料袋包裹置入-20℃的冰箱中待用。實(shí)驗(yàn)前將標(biāo)本取出,常溫下(20℃)解凍24 h,將T14及L2分別包埋在邊長(zhǎng)為5 cm、厚為3 cm環(huán)氧樹(shù)脂中,暴露椎間盤(pán),使上下平面平行,完全固化后待用。對(duì)L1椎體中部的一側(cè)前1/3、2/3處用直徑為3.2 mm的電鉆鉆孔,平行對(duì)穿椎體,造成中間椎體的有限性損傷。游標(biāo)卡尺測(cè)量骨折前L1椎體前緣高度,記為完整椎體的高度(HInt)。將標(biāo)本置入撞擊裝置,固定。根據(jù)Panjabi等[1]“自由落體逐級(jí)撞擊原理”進(jìn)行撞擊實(shí)驗(yàn)。具體如下:將不銹鋼錘置于0.5 m高處,沿引導(dǎo)桿垂直撞擊標(biāo)本,若L1椎體無(wú)骨折跡象則升入0.6 m的高度,若有骨折跡象則將鋼錘降至0.4 m,以0.1 m遞增或者遞減進(jìn)行撞擊,直至L1形成爆裂性骨折。撞擊總能量E=mgh1+mgh2+…+mghn(m為鋼錘的重量;g為重力加速度;h為鋼錘低面距標(biāo)本上椎體上平面的高度)。爆裂性骨折形成后再次測(cè)量L1椎體的前緣高度,記為HFr。若有骨折跡象時(shí),行影像學(xué)觀察,至完整形成骨折模型為止,影像學(xué)包括X線、CT。

      1.3統(tǒng)計(jì)方法

      2結(jié)果

      2.1L1椎體前緣高度的變化

      20個(gè)標(biāo)本L1前緣初始高度HInt為(27.405±1.453) mm;骨折后L1前緣平均高度HFr為 (17.784±1.362) mm,骨折前后椎體前緣高度差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。

      2.2撞擊能量及撞擊累計(jì)高度

      本研究20例標(biāo)本,當(dāng)不銹鋼錘升至0.5 m時(shí)有4個(gè)標(biāo)本發(fā)生爆裂性骨折,余均有骨折跡象。當(dāng)撞擊累計(jì)高度為0.9 m時(shí)有13個(gè)標(biāo)本爆裂性骨折形成,當(dāng)撞擊累計(jì)高度為1.2 m時(shí)其余3例均形成爆裂性骨折。撞擊累計(jì)平均高度為0.865 m;累計(jì)平均能量為76.313 J。

      2. 3影像學(xué)觀察

      所有標(biāo)本中間椎體均形成重復(fù)性較好的爆裂性骨折的模型,AO分型[2]為A3型(見(jiàn)圖3)。正位X線片示左側(cè)的椎弓根受到破壞,側(cè)位X線片示中間椎體部分壓縮,矢狀面及橫斷面CT示骨折椎體有大量腔隙形成,并有骨折塊突入椎管內(nèi)。

      a,b:正側(cè)位X線片示中間椎體部分壓縮,椎弓根受到破壞c,d 矢狀面及橫斷面CT示骨折椎體有大量腔隙形成,并有骨折塊突入椎管內(nèi)

      a,b: Anteroposterior and lateral roentgenographs show middle vertebral body compression and broken rertebral pediclesc,d: Sagittal and transectional CT show lacuna formation in fractured vertebral body and fragment breaking into spinal canal.

      圖3爆裂性骨折模型

      Fig.3Burst fracture model

      3討論

      隨著現(xiàn)代建筑業(yè)及交通運(yùn)輸業(yè)的迅猛發(fā)展,近年來(lái)胸腰椎損傷特別是爆裂性骨折的發(fā)生率隨之上升。脊柱爆裂性骨折常伴有神經(jīng)功能損害,遺留各種后遺癥,給家庭和社會(huì)造成很大的負(fù)擔(dān)。對(duì)脊柱胸腰椎爆裂性骨折的研究是一個(gè)重要的課題,因此臨床需要建立胸腰椎爆裂性骨折的模型。本研究成功建立了胸腰椎爆裂性骨折的模型。

      在標(biāo)本的選擇上,人的脊柱標(biāo)本最為理想,但人脊柱標(biāo)本來(lái)源受到限制,且受年齡、性別的影響,而且尸體標(biāo)本長(zhǎng)期受到福爾馬林的浸泡,力學(xué)性質(zhì)發(fā)生了改變,所以目前胸腰椎爆裂性骨折標(biāo)本的研究集中到小動(dòng)物上,主要為小牛[3-6]和豬[7-9]。而且豬的標(biāo)本有來(lái)源廣泛、均一性好、涉及倫理少、與人脊柱具有一定的相似性等優(yōu)點(diǎn)[10-13]。本實(shí)驗(yàn)選擇豬作為實(shí)驗(yàn)標(biāo)本,很好地解決了標(biāo)本的統(tǒng)一性。

      采用上下椎體包埋、中間椎體預(yù)損傷的方法,上下椎體可以得到更好的保護(hù),避免上下椎體骨折,而且由于楔形模具的作用,應(yīng)力主要集中到中間椎體前中薄弱處,容易制成中間椎體的爆裂性骨折模型。本組20例標(biāo)本,骨折前中間椎體前緣椎體高度HInt為(27.405±1.453)mm, 骨折后中間椎體前緣椎體高度HFr為 (17.784±1.362) mm,兩者差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。說(shuō)明成功造成了中間椎體爆裂性骨折。而且在對(duì)椎體預(yù)損傷的方式上盡量減少對(duì)椎體的破壞,這樣更接近真實(shí)情況。在椎體預(yù)損傷上傳統(tǒng)采用椎體部分或全部切除來(lái)模擬爆裂骨折[14-16],但這種方法與臨床相差較遠(yuǎn)。有文獻(xiàn)報(bào)道先通過(guò)線鋸切割或大量鉆孔對(duì)椎體產(chǎn)生預(yù)損傷,然后在力學(xué)實(shí)驗(yàn)機(jī)壓縮或用落錘撞擊方法產(chǎn)生骨折[17-19],該方法能較好地控制骨折的部位和損傷程度,重復(fù)性較好,但對(duì)脊柱骨折形成機(jī)制缺乏深入了解,對(duì)目標(biāo)骨折椎體損傷較大,雖有較好的重復(fù)性,卻很難模擬真實(shí)脊柱骨折情況。既要較好地模擬脊柱骨折的真實(shí)情況,又要有較好的重復(fù)性,椎體有限損傷是較好的解決辦法。而之所以只有目標(biāo)椎體骨折,是因?yàn)閷?duì)目標(biāo)骨折椎體的上下椎體進(jìn)行保護(hù),可通過(guò)對(duì)上下椎體包埋實(shí)現(xiàn)。但單純對(duì)上下椎體保護(hù),進(jìn)行多次撞擊形成骨折模型的重復(fù)性較差,在實(shí)踐應(yīng)用中效果較差。故本實(shí)驗(yàn)采用對(duì)L1椎體中部的一側(cè)前1/3、2/3處用直徑為3.2 mm的電鉆鉆孔,平行對(duì)穿椎體,造成中間椎體的有限性損傷的方法。實(shí)驗(yàn)中發(fā)現(xiàn)中間椎體仍能較好的形成爆裂性骨折模型,有較好的重復(fù)性,并能充分模擬爆裂性骨折的形成機(jī)制。

      本實(shí)驗(yàn)采用鉆孔有限預(yù)損傷及多次撞擊的方式提高到了制備模型的成功率,爆裂性骨折模型也具有較好的一致性。單次撞擊可重復(fù)性欠佳,為達(dá)到椎體的損傷程度一致,常采用多次撞擊的方式。在撞擊中,對(duì)累計(jì)撞擊高度和爆裂性骨折形成的數(shù)目進(jìn)行分析,發(fā)現(xiàn)爆裂性骨折分布具有較好的對(duì)稱(chēng)性,從另一方面也說(shuō)明了多次逐級(jí)撞擊能較好的形成爆裂性骨折。

      綜上所述,采用標(biāo)本上下椎體進(jìn)行包埋,中間椎體有限預(yù)損傷、多次撞擊方法能成功制作爆裂性骨折模型,模擬骨折形成機(jī)制。

      參 考 文 獻(xiàn)

      [1] Panjabi MM, Kifune M, Wen L, et al.Dynamic canal encroachment during thoracolumbar burst fractures[J].J Spinal Disord, 1995, 8(1):39-48.

      [2] Magerl F, Aebi M, Gertzbein SD, et al.A comprehensive classification of thoracic and lumbar injuries[J].Eur Spine J, 1994, 3(4):184-201.

      [3] Zeng ZL, Zhu R, Li SZ, et al.Formative mechanism of intracanal fracture fragments in thoracolumbar burst fractures: a finite element study[J].Chin Med J (Engl), 2013, 126(15):2852-2858.

      [4] Cain JE Jr, DeJong JT, Dinenberg AS, et al.Pathomechanical analysis of thoracolumbar burst fracture reduction. A calf spine model[J].Spine (Phila Pa 1976), 1993, 18(12):1647-1654.

      [5] Wilcox RK, Allen DJ, Hall RM, et al.A dynamic investigation of the burst fracture process using a combined experimental and finite element approach[J].Eur Spine J, 2004, 13(6):481-488.

      [6] Wilcox RK, Boerger TO, Allen DJ, et al.A dynamic study of thoracolumbar burst fractures[J].J Bone Joint Surg Am, 2003, 85-A(11):2184-2189.

      [7] Tarsuslugil SM, O’Hara RM, Dunne NJ, et al.Experimental and computational approach investigating burst fracture augmentation using PMMA and calcium phosphate cements[J].Ann Biomed Eng, 2014, 42(4):751-762.

      [8] Hartensuer R, Gehweiler D, Schulze M, et al.Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures[J].BMC Musculoskelet Disord, 2013, 14:360.

      [9] Gurwitz GS, Dawson JM, McNamara MJ, et al.Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation[J].Spine (Phila Pa 1976), 1993, 18(8):977-82. MM, Kifune M, Wen L, et al.Dynamic canal encroachment during thoracolumbar burst fractures[J].J Spinal Disord, 1995, 8(1):39-48.

      [2] Magerl F, Aebi M, Gertzbein SD, et al.A comprehensive classification of thoracic and lumbar injuries[J].Eur Spine J, 1994, 3(4):184-201.

      [3] Zeng ZL, Zhu R, Li SZ, et al.Formative mechanism of intracanal fracture fragments in thoracolumbar burst fractures: a finite element study[J].Chin Med J (Engl), 2013, 126(15):2852-2858.

      [4] Cain JE Jr, DeJong JT, Dinenberg AS, et al.Pathomechanical analysis of thoracolumbar burst fracture reduction. A calf spine model[J].Spine (Phila Pa 1976), 1993, 18(12):1647-1654.

      [5] Wilcox RK, Allen DJ, Hall RM, et al.A dynamic investigation of the burst fracture process using a combined experimental and finite element approach[J].Eur Spine J, 2004, 13(6):481-488.

      [6] Wilcox RK, Boerger TO, Allen DJ, et al.A dynamic study of thoracolumbar burst fractures[J].J Bone Joint Surg Am, 2003, 85-A(11):2184-2189.

      [7] Tarsuslugil SM, O’Hara RM, Dunne NJ, et al.Experimental and computational approach investigating burst fracture augmentation using PMMA and calcium phosphate cements[J].Ann Biomed Eng, 2014, 42(4):751-762.

      [8] Hartensuer R, Gehweiler D, Schulze M, et al.Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures[J].BMC Musculoskelet Disord, 2013, 14:360.

      [9] Gurwitz GS, Dawson JM, McNamara MJ, et al.Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation[J].Spine (Phila Pa 1976), 1993, 18(8):977-82.

      [10]Smit TH.The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations[J].Eur Spine J, 2002, 11(2):137-144.

      [11]Wilke HJ, Geppert J, Kienle A.Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine[J].Eur Spine J, 2011, 20(11):1859-1868.

      [12]Sheng SR, Wang XY, Xu HZ, et al.Anatomy of large animal spines and its comparison to the human spine: a systematic review[J].Eur Spine J, 2010, 19(1):46-56.

      [13]Turker M, Tezeren G, Tukenmez M, et al.Indirect spinal canal decompression of vertebral burst fracture in calf model[J].Arch Orthop Trauma Surg, 2005, 125(5):336-341.

      [14]Chen HH, Wang WK, Li KC, et al.Biomechanical effects of the body augmenter for reconstruction of the vertebral body[J].Spine (Phila Pa 1976), 2004, 29(18):E382-387.

      [15]Wahba GM, Bhatia N, Bui CN, et al.Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model[J].Spine (Phila Pa 1976), 2010, 35(3):278-285.

      [16]Schreiber U, Bence T, Grupp T, et al.Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A biomechanical in vitro investigation[J].Eur Spine J, 2005, 14(2):197-204.

      [17]Baier M, Staudt P, Klein R, et al.Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats[J].J Orthop Surg Res, 2013, 8:16.

      [18]Hartensuer R, Gehweiler D, Schulze M, et al.Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures[J].BMC Musculoskelet Disord, 2013, 14:360.

      [19]Mermelstein LE, McLain RF, Yerby SA.Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. A biomechanical study[J].Spine (Phila Pa 1976), 1998, 23(6):664-670. TH.The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations[J].Eur Spine J, 2002, 11(2):137-144.

      [11]Wilke HJ, Geppert J, Kienle A.Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine[J].Eur Spine J, 2011, 20(11):1859-1868.

      [12]Sheng SR, Wang XY, Xu HZ, et al.Anatomy of large animal spines and its comparison to the human spine: a systematic review[J].Eur Spine J, 2010, 19(1):46-56.

      [13]Turker M, Tezeren G, Tukenmez M, et al.Indirect spinal canal decompression of vertebral burst fracture in calf model[J].Arch Orthop Trauma Surg, 2005, 125(5):336-341.

      [14]Chen HH, Wang WK, Li KC, et al.Biomechanical effects of the body augmenter for reconstruction of the vertebral body[J].Spine (Phila Pa 1976), 2004, 29(18):E382-387.

      [15]Wahba GM, Bhatia N, Bui CN, et al.Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model[J].Spine (Phila Pa 1976), 2010, 35(3):278-285.

      [16]Schreiber U, Bence T, Grupp T, et al.Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A biomechanical in vitro investigation[J].Eur Spine J, 2005, 14(2):197-204.

      [17]Baier M, Staudt P, Klein R, et al.Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats[J].J Orthop Surg Res, 2013, 8:16.

      [18]Hartensuer R, Gehweiler D, Schulze M, et al.Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures[J].BMC Musculoskelet Disord, 2013, 14:360.

      [19]Mermelstein LE, McLain RF, Yerby SA.Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. A biomechanical study[J].Spine (Phila Pa 1976), 1998, 23(6):664-670.

      (本文編輯于倩)

      ·讀者 作者 編者·

      《脊柱外科雜志》啟用“中國(guó)知網(wǎng)不端檢測(cè)”的聲明

      近年的投稿中屢有學(xué)術(shù)不端行為出現(xiàn),如抄襲剽竊、篡改他人學(xué)術(shù)成果、偽造或篡改數(shù)據(jù)、虛假署名、一稿多投等。這些無(wú)視學(xué)術(shù)規(guī)范的行為不僅違反了國(guó)家的有關(guān)法律、法規(guī),而且給編輯工作造成了一定困擾?!都怪饪齐s志》一貫堅(jiān)持“學(xué)術(shù)至上,質(zhì)量第一”的原則,堅(jiān)決抵制學(xué)術(shù)不端行為。為維護(hù)學(xué)術(shù)規(guī)范、保證期刊質(zhì)量和學(xué)術(shù)聲譽(yù),本刊愿與廣大作者、讀者一起,共同抵制學(xué)術(shù)不端行為,努力營(yíng)造規(guī)范健康的學(xué)術(shù)風(fēng)氣。因此,本刊特作以下聲明:

      1.本刊將采用“學(xué)術(shù)不端文獻(xiàn)檢測(cè)系統(tǒng)”對(duì)初審稿件、刊前待用稿件進(jìn)行不端檢測(cè),對(duì)發(fā)現(xiàn)存在不端行為稿件堅(jiān)決退稿,并視情節(jié)決定是否通報(bào)作者所在單位。

      2.對(duì)已發(fā)表的論文一經(jīng)查實(shí)有學(xué)術(shù)不端行為,本刊將第一時(shí)間刊登撤銷(xiāo)聲明,并立即終止該論文在各相關(guān)數(shù)據(jù)庫(kù)、文摘庫(kù)中的傳播。

      3.本刊已加入“《中國(guó)學(xué)術(shù)文獻(xiàn)網(wǎng)絡(luò)出版總庫(kù)》刪除學(xué)術(shù)不端文獻(xiàn)系統(tǒng)”,該系統(tǒng)協(xié)助本刊對(duì)已發(fā)表論文的學(xué)術(shù)不端行為進(jìn)行全面復(fù)核。

      猜你喜歡
      脊柱骨折胸椎腰椎
      “胖人”健身要注意保護(hù)腰椎
      中老年保健(2021年6期)2021-08-24 06:55:22
      胸椎脊索瘤1例
      俯臥位手法整復(fù)結(jié)合電針治療胸椎小關(guān)節(jié)紊亂
      胸椎真菌感染誤診結(jié)核一例
      經(jīng)皮椎弓根釘治療胸腰段骨折的效果
      不同方法治療脊柱骨折伴硬脊膜損傷術(shù)后腦脊液漏的效果觀察
      脊柱骨折應(yīng)用放射平片與CT的臨床診斷價(jià)值對(duì)照
      后路手術(shù)內(nèi)固定對(duì)脊柱骨折患者的治療價(jià)值及效果初步研究
      腰椎術(shù)后腦脊液漏的治療
      針推治療腰椎骨質(zhì)增生80例
      微山县| 堆龙德庆县| 千阳县| 自贡市| 灯塔市| 彭阳县| 华亭县| 无锡市| 名山县| 吉木乃县| 汉中市| 威远县| 裕民县| 乌苏市| 巩留县| 武邑县| 睢宁县| 都江堰市| 探索| 嘉禾县| 山东省| 泾川县| 婺源县| 涞源县| 台南县| 大竹县| 休宁县| 抚顺市| 红原县| 沈丘县| 克山县| 南充市| 禹州市| 虞城县| 天台县| 于都县| 改则县| 宁河县| 元江| 内乡县| 濮阳县|