喬瑞芳,儀 民,儀慧蘭,*
(1.山西大學(xué)生命科學(xué)學(xué)院,山西 太原 030006;2.密蘇里大學(xué)哥倫比亞分校統(tǒng)計(jì)系,哥倫比亞 MO 65211,美國(guó))
焦亞硫酸鈉對(duì)酵母細(xì)胞的毒性作用
喬瑞芳1,儀 民2,*,儀慧蘭1,*
(1.山西大學(xué)生命科學(xué)學(xué)院,山西 太原 030006;2.密蘇里大學(xué)哥倫比亞分校統(tǒng)計(jì)系,哥倫比亞 MO 65211,美國(guó))
為探討焦亞硫酸鈉的保鮮防腐機(jī)制,采用毒理學(xué)方法研究保鮮劑對(duì)酵母細(xì)胞的毒性效應(yīng)。結(jié)果表明:在100~1 000 μmol/L濃度范圍內(nèi),焦亞硫酸鈉可抑制酵母細(xì)胞生長(zhǎng)分裂,誘發(fā)細(xì)胞死亡;隨著焦亞硫酸鈉濃度升高和作用時(shí)間延長(zhǎng),其對(duì)酵母細(xì)胞的毒性效應(yīng)也逐漸增強(qiáng)。經(jīng)100 μmol/L焦亞硫酸鈉作用2 h后,酵母細(xì)胞生長(zhǎng)曲線與對(duì)照組產(chǎn)生差異;300 μmol/L焦亞硫酸鈉處理6 h后,酵母細(xì)胞死亡率顯著高于對(duì)照組,用抗壞血酸或LaCl3預(yù)處理可阻止焦亞硫酸鈉誘發(fā)的酵母細(xì)胞死亡,表明焦亞硫酸鈉通過誘導(dǎo)酵母細(xì)胞內(nèi)活性氧和Ca2+水平升高來(lái)引發(fā)細(xì)胞死亡。研究還發(fā)現(xiàn),相同濃度的焦亞硫酸鈉作用后,pH 4.0組酵母細(xì)胞的死亡率明顯高于pH 7.0組,即酸性環(huán)境能增強(qiáng)焦亞硫酸鈉對(duì)酵母細(xì)胞的毒性作用,有助于保鮮劑的抑菌防腐。
焦亞硫酸鈉;保鮮劑;酵母細(xì)胞;生長(zhǎng)抑制;細(xì)胞死亡
葡萄(Vitis vinifera L.)是世界上第四大水果,在我國(guó)銷量很大,但由于鮮食葡萄在貯藏和運(yùn)輸期間易腐爛,需要采取一定的保鮮措施。二氧化硫(SO2,由焦亞硫酸鈉釋放)是傳統(tǒng)的葡萄保鮮劑,也是目前為止葡萄果實(shí)貯藏期間最為有效的防腐保鮮劑[1-2],SO2能抑制病原菌生長(zhǎng)、延緩果實(shí)衰老,但SO2貯藏會(huì)影響果實(shí)品質(zhì),導(dǎo)致果實(shí)中SO2殘留量增加,對(duì)果實(shí)的食用安全性造成影響[3-4]。為了尋求更為安全的保鮮措施,研究人員采用物理手段(紫外線輻照或氣調(diào)方式)、化學(xué)藥物(H2O2、氯化鈣等)或生物材料(植物油、幾丁質(zhì)酶、殼聚糖等)對(duì)葡萄果實(shí)保鮮,取得了一定效果,但保鮮作用均不如SO2[1,5-7]。因此,研究控制SO2適宜的濃度成為葡萄保鮮領(lǐng)域的難題[8]。
SO2易溶于水生成和(SO2水合物)[9-10],因此,在葡萄貯藏箱內(nèi)焦亞硫酸鈉(Na2S2O5)釋放SO2,箱內(nèi)的高濕度(相對(duì)濕度約95%)環(huán)境使SO2溶于水分子中形成SO2水合物,SO2水合物作用于果穗及其攜帶的酵母菌、病原菌等,從而發(fā)揮防腐保鮮作用。SO2水合物滯留在果穗表面或進(jìn)入果實(shí)中,果穗表面的SO2水合物能直接作用于微生物,進(jìn)入果實(shí)內(nèi)部的和在植物細(xì)胞內(nèi)的代謝轉(zhuǎn)化可能激活細(xì)胞氧化應(yīng)激防御系統(tǒng)[1,9],提高自身防御能力。但目前為止,SO2的防腐保鮮機(jī)制尚不清楚,其通過何種機(jī)制影響葡萄果實(shí)衰老和病原菌致病性還有待研究。
葡萄果實(shí)表面攜帶有大量酵母菌,對(duì)酵母細(xì)胞具有抑制效應(yīng)的化合物具有對(duì)葡萄果實(shí)保鮮的作用[11]。而酵母細(xì)胞具有生長(zhǎng)周期短、易培養(yǎng)的特點(diǎn),已成為研究真核生物細(xì)胞學(xué)機(jī)制的模式生物,環(huán)境理化因素如紫外線、有害金屬離子As3+和Al3+等均可誘導(dǎo)酵母細(xì)胞死亡[12-14]。因此,本實(shí)驗(yàn)以酵母菌為材料,研究特定條件下SO2對(duì)酵母細(xì)胞的毒性效應(yīng),以揭示SO2保鮮防腐的作用機(jī)制。
1.1 菌種與試劑
釀酒酵母(Saccharomyces cerevisiae),實(shí)驗(yàn)室自行保存,挑取單菌落用YPD培養(yǎng)基活化。
焦亞硫酸鈉 美國(guó)Sigma公司。
1.2 方法
1.2.1 酵母菌生長(zhǎng)速率測(cè)定
取活化酵母菌液,接入新培養(yǎng)基(葡萄糖10 g、硫酸銨3 g、磷酸二氫鉀3 g、酵母提取物1 g、硫酸鎂25 mg、無(wú)水氯化鈣20 mg,用檸檬酸-檸檬酸鈉緩沖溶液調(diào)pH值至4.0)中,250 r/min、30 ℃培養(yǎng),待酵母細(xì)胞濃度達(dá)到4×106個(gè)/mL時(shí)加入一定量的焦亞硫酸鈉繼續(xù)振蕩培養(yǎng),間隔一定時(shí)間取發(fā)酵液,用分光光度計(jì)在600 nm波長(zhǎng)處檢測(cè)光密度(OD600nm)值,繪制酵母菌生長(zhǎng)曲線。
1.2.2 酵母細(xì)胞活性檢測(cè)
以pH 4.0或pH 7.0的檸檬酸-檸檬酸鈉緩沖液配制特定濃度的焦亞硫酸鈉溶液。取活化酵母細(xì)胞接入YPD培養(yǎng)基中培養(yǎng),收集對(duì)數(shù)生長(zhǎng)期細(xì)胞,用pH 7.0磷酸鹽緩沖液洗滌后加入一定濃度的焦亞硫酸鈉溶液制備細(xì)胞懸液使酵母細(xì)胞濃度為106個(gè)/mL,于30 ℃、200 r/min孵育6 h。干預(yù)組采用抗壞血酸(ascorbic acid,AsA)或LaCl3預(yù)處理10 min后,再與焦亞硫酸鈉同時(shí)作用6 h。檢測(cè)時(shí)間效應(yīng)時(shí),在藥物作用期間,每間隔一定時(shí)間取細(xì)胞檢測(cè)細(xì)胞活性。
藥物作用結(jié)束后,采用美藍(lán)染色法檢測(cè)細(xì)胞活性,利用活細(xì)胞新陳代謝旺盛,能將進(jìn)入細(xì)胞內(nèi)的美藍(lán)還原為無(wú)色,而死細(xì)胞或衰老細(xì)胞因不能將美藍(lán)有效還原而呈現(xiàn)藍(lán)色的特點(diǎn),鑒定細(xì)胞活力。藥物處理后,取適量酵母細(xì)胞用美藍(lán)染液染色,于光學(xué)顯微鏡下觀察并統(tǒng)計(jì)著色細(xì)胞和總細(xì)胞數(shù)目,按照下式計(jì)算細(xì)胞死亡率。每個(gè)處理至少重復(fù)3 次,每次重復(fù)至少觀察1 000 個(gè)細(xì)胞。
1.3 數(shù)據(jù)分析
用SPSS v16.0對(duì)所得結(jié)果進(jìn)行方差分析,采用Duncan’s多重比較法比較分析不同處理組之間的差異顯著性。
2.1 焦亞硫酸鈉對(duì)酵母細(xì)胞生長(zhǎng)的影響
檢測(cè)葡萄常規(guī)貯藏過程中(0 ℃低溫與SO2保鮮劑結(jié)合)貯藏箱內(nèi)葡萄果粒表面液滴的pH值發(fā)現(xiàn),果實(shí)表面pH值在3.0~4.2之間,雖然不同葡萄品種間pH值存在一定差異,但使用SO2保鮮劑的實(shí)驗(yàn)組果實(shí)表面pH值均低于無(wú)SO2的對(duì)照組,貯藏40 d時(shí),SO2處理組玫瑰香葡萄果粒表面pH值約為3.5,對(duì)照組pH值為4.0。以此為據(jù),本實(shí)驗(yàn)采用pH 4.0的培養(yǎng)基培養(yǎng)酵母細(xì)胞,發(fā)現(xiàn)添加焦亞硫酸鈉的4 組培養(yǎng)液中酵母菌OD600nm值均低于同期無(wú)焦亞硫酸鈉處理的對(duì)照組(圖1),焦亞硫酸鈉濃度越高,其與對(duì)照組間的差異越大;隨著培養(yǎng)時(shí)間的延長(zhǎng),各焦亞硫酸鈉處理組與對(duì)照組OD600nm值的差異增大。1 000 μmol/L焦亞硫酸鈉處理組的酵母細(xì)胞生長(zhǎng)緩慢,在接種8 h后OD600nm提高了0.041 0,而同期對(duì)照組OD600nm提高了0.903 0。由此可見,一定濃度的焦亞硫酸鈉能夠抑制酵母細(xì)胞的生長(zhǎng)分裂,且抑制效應(yīng)具有濃度和時(shí)間依賴性。
圖1 焦亞硫酸鈉對(duì)酵母細(xì)胞生長(zhǎng)的影響Fig.1 Effect of sodium metabisulfite on yeast cell growth
2.2 焦亞硫酸鈉對(duì)酵母細(xì)胞活性的影響
為證實(shí)焦亞硫酸鈉對(duì)酵母細(xì)胞的毒性作用,采用美藍(lán)染色法對(duì)細(xì)胞活性進(jìn)行觀測(cè),結(jié)果如圖2所示。在pH 4.0時(shí),4 個(gè)不同濃度焦亞硫酸鈉作用6 h后,酵母細(xì)胞存活率均低于對(duì)照組,部分酵母細(xì)胞死亡,隨著焦亞硫酸鈉濃度的升高,酵母細(xì)胞相對(duì)存活率降低,相應(yīng)地,細(xì)胞死亡率增大,焦亞硫酸鈉對(duì)酵母細(xì)胞的毒性效應(yīng)表現(xiàn)一定的劑量依賴性。焦亞硫酸鈉低濃度長(zhǎng)期作用或高濃度短期作用均表現(xiàn)出明顯的細(xì)胞毒性,可致酵母細(xì)胞死亡。
圖2 焦亞硫酸鈉對(duì)酵母細(xì)胞的致死效應(yīng)Fig.2 Lethal effect of sodium metabisulfite on yeast cells
不同pH值條件下酵母細(xì)胞活性檢測(cè)結(jié)果如圖3所示,當(dāng)介質(zhì)pH值由中性變?yōu)樗嵝詴r(shí),焦亞硫酸鈉的細(xì)胞毒性效應(yīng)明顯增強(qiáng):濃度300 μmol/L的焦亞硫酸鈉在酸性(pH 4.0)條件下對(duì)酵母細(xì)胞具有致死效應(yīng),而中性(pH 7.0)條件下對(duì)酵母細(xì)胞不具有明顯致死效應(yīng);在pH 7.0條件下,焦亞硫酸鈉濃度達(dá)到600 μmol/L以上時(shí),才對(duì)酵母菌產(chǎn)生細(xì)胞毒性。由此可見,酸性條件有助于焦亞硫酸鈉發(fā)揮對(duì)酵母細(xì)胞的毒性作用。
圖3 pH值影響焦亞硫酸鈉對(duì)酵母細(xì)胞的毒性Fig.3 Effect of pH on the toxicity of sodium metabisulfite to yeast cells
2.3 AsA和LaCl3對(duì)焦亞硫酸鈉毒性的緩解作用
用外源抗氧化劑AsA或質(zhì)膜Ca2+通道特異性抑制劑LaCl3與600 μmol/L焦亞硫酸鈉同時(shí)作用酵母細(xì)胞6 h后,細(xì)胞存活率明顯升高(圖4),即用AsA降低胞內(nèi)活性氧(reactive oxygen species,ROS)水平后可緩解焦亞硫酸鈉對(duì)酵母細(xì)胞的毒性作用,而LaCl3阻止胞外Ca2+內(nèi)流,同樣可以抑制焦亞硫酸鈉的細(xì)胞毒性,該結(jié)果說明保鮮劑SO2對(duì)酵母細(xì)胞的毒性與其誘導(dǎo)細(xì)胞內(nèi)ROS和Ca2+水平升高有關(guān)。
圖4 外源AsA和LaCl3對(duì)焦亞硫酸鈉處理酵母細(xì)胞毒性的影響Fig.4 Effect of ascorbic acid and LaCl3on the toxicity of sodium metabisulfite to yeast cells
焦亞硫酸鈉(貯藏過程中釋放出SO2)是常用的保鮮防腐劑,在水果貯藏保鮮、果脯加工、紅酒釀制等過程中被廣泛使用。研究表明,較高濃度的SO2對(duì)多種植物細(xì)胞具有毒性,可引發(fā)遺傳損傷、細(xì)胞死亡等[15-16]。本實(shí)驗(yàn)采用葡萄果實(shí)貯藏保鮮劑焦亞硫酸鈉釋放SO2的原理,研究了濃度100~1 000 μmol/L的焦亞硫酸鈉對(duì)酵母細(xì)胞的毒性效應(yīng),發(fā)現(xiàn)一定濃度的焦亞硫酸鈉可抑制酵母細(xì)胞生長(zhǎng)分裂,還能引起細(xì)胞死亡,說明SO2對(duì)微生物細(xì)胞具有毒性;隨著暴露時(shí)間的延長(zhǎng),酵母細(xì)胞相對(duì)存活率下降,死亡細(xì)胞數(shù)目增加,表現(xiàn)出了一定的時(shí)間依賴性。為了證實(shí)保鮮過程中焦亞硫酸鈉對(duì)果實(shí)表面微生物的毒性作用,實(shí)驗(yàn)同時(shí)采用菌落平板計(jì)數(shù)法檢測(cè)了焦亞硫酸鈉處理后酵母細(xì)胞的活性,取得了一致的結(jié)果;在前期對(duì)購(gòu)自中國(guó)科學(xué)院標(biāo)注為“模式生物”的釀酒酵母菌株的測(cè)試中發(fā)現(xiàn),50 μmol/L焦亞硫酸鈉作用12 h后該酵母菌株的細(xì)胞死亡率達(dá)到85%,死亡率高于本實(shí)驗(yàn)所用酵母菌株,說明不同酵母菌株對(duì)焦亞硫酸鈉的敏感性存在差異。因此,在貯藏期間焦亞硫酸鈉可能對(duì)葡萄果實(shí)表面的不同酵母菌株表現(xiàn)出不同程度的毒性,并對(duì)其他病原菌產(chǎn)生毒性,從而發(fā)揮其保鮮防腐作用。
培養(yǎng)介質(zhì)中加入焦亞硫酸鈉后,酵母菌的OD600nm值出現(xiàn)差異的原因可能有兩方面:一是焦亞硫酸鈉抑制酵母細(xì)胞生長(zhǎng)和分裂,部分細(xì)胞可能因胞內(nèi)DNA合成受到抑制而脫離細(xì)胞增殖周期轉(zhuǎn)入休眠狀態(tài),在顯微鏡下也觀察到了焦亞硫酸鈉處理組的酵母細(xì)胞出芽生殖被抑制(圖2b);二是焦亞硫酸鈉長(zhǎng)期作用導(dǎo)致部分酵母細(xì)胞活性降低或死亡,使具有增殖能力的酵母細(xì)胞數(shù)量減少,子細(xì)胞產(chǎn)生速率下降。上述兩者共同導(dǎo)致焦亞硫酸鈉處理組酵母細(xì)胞生長(zhǎng)緩慢,細(xì)胞總數(shù)量減少,相應(yīng)的OD600nm值降低。
用H2O2、紫外輻照處理雖然也能誘發(fā)葡萄果實(shí)細(xì)胞抗氧化防御應(yīng)答,但其保鮮效果不及SO2[1],原因可能還與SO2水合過程及在植物細(xì)胞內(nèi)的代謝和轉(zhuǎn)化過程有關(guān)。進(jìn)入果實(shí)內(nèi)部的和可經(jīng)過植物細(xì)胞內(nèi)的硫代謝途徑得以轉(zhuǎn)化,其中氧化途徑可將轉(zhuǎn)化為,還原途徑生成半胱氨酸,半胱氨酸是細(xì)胞內(nèi)其他含硫氨基酸、肽和蛋白質(zhì)的前體,SO2處理后植物細(xì)胞內(nèi)硫代謝途徑增強(qiáng),細(xì)胞內(nèi)、及還原性含硫產(chǎn)物水平提高[1,10,17]。細(xì)胞內(nèi)含硫產(chǎn)物如半胱氨酸、谷胱甘肽、蛋白質(zhì)巰基及谷胱甘肽硫轉(zhuǎn)移酶等參與細(xì)胞防御應(yīng)答和代謝解毒過程,在生物和非生物脅迫中發(fā)揮作用[18-19],因此,SO2處理后植物細(xì)胞內(nèi)含硫抗氧化物水平的升高可能在果實(shí)保鮮過程中參與調(diào)控了細(xì)胞對(duì)環(huán)境的適應(yīng)性,并增強(qiáng)了其抗逆性。但細(xì)胞代謝的同時(shí)產(chǎn)生ROS,如超氧陰離子自由基(·)、過氧化氫(H2O2)、羥自由基(·OH)等[1,9-10],使胞內(nèi)ROS水平升高。脅迫引發(fā)細(xì)胞內(nèi)ROS水平升高具有雙重作用,一是作為毒性分子攻擊生物大分子引發(fā)細(xì)胞損傷,二是作為信號(hào)分子參與多種細(xì)胞生理過程[20-22];SO2脅迫組擬南芥和蠶豆葉細(xì)胞中ROS水平升高同樣具有氧化損傷和信號(hào)分子雙重功效,其效應(yīng)與SO2濃度及ROS水平相關(guān)[23-24]。因此,SO2處理組葡萄果實(shí)內(nèi)部高水平的ROS不僅能激活細(xì)胞抗氧化防御應(yīng)答,發(fā)揮保鮮作用[1],還可能對(duì)周圍的酵母菌和其他微生物細(xì)胞產(chǎn)生氧化損傷,導(dǎo)致微生物生長(zhǎng)抑制和細(xì)胞死亡,其效應(yīng)取決于SO2濃度和果實(shí)組織中ROS的水平。本實(shí)驗(yàn)加入外源ROS清除劑AsA,降低酵母細(xì)胞內(nèi)ROS水平后,細(xì)胞死亡率顯著下降,說明SO2處理誘導(dǎo)酵母細(xì)胞ROS水平升高是酵母細(xì)胞死亡的一個(gè)誘因,該結(jié)果也為葡萄果實(shí)內(nèi)ROS水平升高可能參與抑菌作用提供了間接證據(jù)。
本課題組前期研究發(fā)現(xiàn),SO2可誘導(dǎo)蠶豆、擬南芥細(xì)胞凋亡,并伴隨著細(xì)胞內(nèi)Ca2+濃度的升高,高水平的Ca2+可介導(dǎo)細(xì)胞死亡,其中細(xì)胞外Ca2+內(nèi)流是細(xì)胞內(nèi)Ca2+水平升高的一個(gè)誘因[16]。本研究發(fā)現(xiàn),在SO2處理過程中加入質(zhì)膜Ca2+通道特異性抑制劑LaCl3后,酵母細(xì)胞死亡率降低,表明SO2處理組酵母細(xì)胞死亡與細(xì)胞內(nèi)Ca2+水平升高有關(guān)。有研究發(fā)現(xiàn),ROS可以激活質(zhì)膜Ca2+通道,介導(dǎo)植物細(xì)胞外Ca2+內(nèi)流[25];在酵母細(xì)胞中可能也存在類似的機(jī)制,SO2脅迫引發(fā)的ROS合成增加可能會(huì)影響質(zhì)膜Ca2+通道的通透性,引發(fā)細(xì)胞外Ca2+內(nèi)流,促使細(xì)胞內(nèi)Ca2+水平升高,繼而介導(dǎo)細(xì)胞死亡。此外,SO2處理組酵母細(xì)胞內(nèi)高水平的ROS也可能直接攻擊生物大分子DNA、蛋白質(zhì)、膜脂等,造成細(xì)胞氧化損傷,引發(fā)細(xì)胞死亡。
葡萄保鮮劑焦亞硫酸鈉可抑制酵母細(xì)胞生長(zhǎng)分裂,高劑量短期作用或低劑量長(zhǎng)期作用均能誘導(dǎo)酵母細(xì)胞死亡,因此貯藏初期采用較高濃度SO2抑制微生物生長(zhǎng)繁殖,之后以低濃度SO2長(zhǎng)期作用抑制微生物活性,可有效控制果實(shí)外部微生物,發(fā)揮防腐保鮮作用。焦亞硫酸鈉的保鮮作用與其降低果實(shí)表面pH值有關(guān),酸性pH值條件下SO2對(duì)酵母細(xì)胞的毒性作用明顯增強(qiáng)。
[1] GIRAUD E, IVANOVA A, GORDON C S, et al. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses[J]. Plant Cell and Environment, 2011, 35: 405-417.
[2] KOKKALOS T I. Posthavest decay control of grapes by using sodium metabisulfite in cartons enclosed in plastic bags[J]. American Journal of Enology and Viticulture, 1986, 37: 149-151.
[3] 武建明, 鐘梅, 吳斌, 等. 新疆鮮食葡萄保鮮過程中SO2殘留行為的研究[J]. 食品科學(xué), 2008, 29(3): 486-489.
[4] 李志文, 張平, 黃艷鳳, 等. 貯藏保鮮中SO2傷害對(duì)紅提葡萄香氣組分的影響[J]. 西北植物學(xué)報(bào), 2011, 31(2): 385-392.
[5] D’HALLEWIN G, LADU G, PANI G, et al. Postharvest physiopathological disorders in table grapes as affected by UV-C light[J]. Communications in Agricultural and Applied Biological Sciences, 2012, 77(4): 515-525.
[6] PETIT A N, BAILLIEUL F, VAILLANT-GAVEAU N, et al. Low responsiveness of grapevine flowers and berries at fruit set to UV-C irradiation[J]. Journal of Experimental Botany, 2009, 60(4): 1155-1162.
[7] SHIN M H, KIM J H, CHOI H W, et al. Effect of thymol and linalool fumigation on postharvest diseases of table grapes[J]. Mycobiology, 2014, 42(3): 262-268.
[8] 趙猛, 王春生, 李建華, 等. SO2兩段釋放處理對(duì)紅提葡萄貯藏品質(zhì)的影響[J]. 果樹學(xué)報(bào), 2011, 28(4): 685-688.
[9] LI Lihong, YI Huilan. Differential expression of Arabidopsis defenserelated genes in response to sulfur dioxide[J]. Chemosphere, 2012, 87: 718-724.
[10] KOPRIVA S. Regulation of sulfate assimilation in Arabidopsis and beyond[J]. Annals of Botany, 2006, 97(4): 479-495.
[11] CRISTINA C, ANNALISA L, AMALIA C, et al. In vitro and in vivo application of active compounds with anti-yeast activity to improve the shelf life of ready-to-eat table grape[J]. World Journal of Microbiology and Biotechnology, 2013, 29(6): 1075-1084.
[12] WU Lihua, YI Huilan, ZHANG Hufang. Reactive oxygen species and Ca2+are involved in sodium arsenite-induced cell killing in yeast cells[J]. FEMS Microbiology Letter, 2013, 343: 57-63.
[13] del CARRATORE R, DELLA CROCE C, SIMILI M, et al. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2002, 513: 183-191.
[14] ZHENG Ke, PAN Jianwei, YE Lan, et al. Programmed cell deathinvolved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals[J]. Plant Physiology, 2007, 143: 38-49.
[15] 儀慧蘭, 姜林. SO2水合物誘發(fā)蠶豆(Vicia faba)根尖細(xì)胞染色體畸變效應(yīng)[J]. 生態(tài)學(xué)報(bào), 2007, 27(6): 2318-2324.
[16] YI Huilan, YIN Jingjing, LIU Xin, et al. Sulfur dioxide induced programmed cell death in Vicia guard cells[J]. Ecotoxicology and Environment Safety, 2012, 78: 281-286.
[17] 李利紅, 儀慧蘭, 武冬梅. 二氧化硫脅迫誘發(fā)擬南芥植株含硫抗氧化物水平提高[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2010, 16(5): 613-616.
[18] NOCTOR G, MHAMDI A, CHAOUCH S, et al. Glutathione in plants: an integrated overview[J]. Plant Cell and Environment, 2012, 35: 454-484.
[19] H?LLER K, KIRáLY L, KüNSTLER A, et al. Enhanced glutathione metabolism is correlated with sulfur-induced resistance in tobacco mosaic virus: infected genetically susceptible Nicotiana tabacum plants[J]. Molecular Plant-Microbe Interactions, 2010, 23(11): 1448-1459.
[20] BREUSEGEM F V, DAT J F. Reactive oxygen species in plant cell death[J]. Plant Physiology, 2006, 141: 384-390.
[21] FOYER C, NOCTOR G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant, Cell and Environment, 2005, 28: 1056-1071.
[22] SUZUKI N, KOUSSEVITZKY S, MITTLER R, et al. ROS and redox signalling in the response of plants to abiotic stress[J]. Plant, Cell and Environment, 2012, 35: 259-270.
[23] YI Huilan, LIU Xin, YI Min. Dual role of hydrogen peroxide in Arabidopsis guard cells in response to sulfur dioxide[J/OL]. Advances in Toxicology, 2014. http://dx.doi.org/10.1155/2014/407368.
[24] ZHAO Jun, YI Huilan. Genome-wide transcriptome analysis of Arabidopsis response to sulfur dioxide fumigation[J]. Molecular Genetics and Genomics, 2014, 289: 989-999.
[25] PEI Ziming, MURATA Y, BENNING G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells[J]. Nature, 2000, 406: 731-734.
Toxicity of Sodium Metabisulfite on Yeast Saccharomyces cerevisiae
QIAO Ruifang1, YI Min2,*, YI Huilan1,*
(1. College of Life Science, Shanxi University, Taiyuan 030006, China; 2. Department of Statistics, University of Missouri-Columbia, Columbia MO 65211, USA)
Sodium metabisulfite is commonly used as a food preservative and antioxidant for dried foods, fruit concentrate juices and fresh fruits. It is the most efficiently preservative for table grape since table grapes are subject to serious water loss and decay while making the long trip from the vine to tables around the world. Herein, the effects of sodium metabisulfite on cell viability were explored in the model eukaryote Saccharomyces cerevisiae. The growth curve of yeast cells was measured by optical density, and cell viability was examined based on methylene blue staining method. Randomly selected views on the tested yeast cells were monitored under a microscope to determine the number of dead cells and the total number of scored cells. The results indicated that sodium metabisulfite could inhibit yeast cell growth and division, and even cause cell death. The toxicity of sodium metabisulfite was increased with increasing concentration and prolonged duration. Either high concentration for a shorter-term exposure or low concentration for a long-term exposure showed significant toxic effects on yeast cells. Exposure to 100 to 1 000 μmol/L sodium metabisulfite for 6 h could cause significant cell death, and both antioxidant ascorbic acid and plasma membrane Ca2+channel inhibitor LaCl3blocked sodium metabisulfite-induced cell death. These results indicated that sodium metabisulfite could cause yeast cell death via reactive oxygen species (ROS) production and Ca2+influx. However, the death rate increased in acidic environment. The cell death rate in pH 4.0 treatment group was higher than that in pH 7.0 treatment group, demonstrating the enhanced sulfur dioxide (SO2) toxicity in acidic medium. It was found that the pH of waterdrop on the surface of SO2-fumigated table grapes was around 3.5 to 4.0, which was lower than the control without SO2fumigation, suggesting that acid environment caused by SO2fumigation is a way to prevent infection and prolong the shelf life of table grapes.
sodium metabisulfite; preservative; yeast cell; growth inhibition; cell death
Q945.6
A
1002-6630(2015)21-0010-05
10.7506/spkx1002-6630-201521003
2014-12-20
國(guó)家自然科學(xué)基金面上項(xiàng)目(30870454;30470318;31371868);
2012年度高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金項(xiàng)目(20121401110007)
喬瑞芳(1985—),女,碩士,研究方向?yàn)榄h(huán)境生物學(xué)。E-mail:574150223@qq.com
*通信作者:儀民(1987—),男,博士,研究方向?yàn)榄h(huán)境生物學(xué)。E-mail:myfd2@mail.missouri.edu
儀慧蘭(1963—),女,教授,博士,研究方向?yàn)榄h(huán)境生物學(xué)。E-mail:yihl@sxu.edu.cn