秦偉偉,高友鶴,2
?
加熱洗脫硝酸纖維膜上保存的尿蛋白質(zhì)
秦偉偉1,高友鶴1,2
1 中國(guó)醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所醫(yī)學(xué)分子生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100005 2 北京師范大學(xué)生命科學(xué)學(xué)院生物化學(xué)系,北京 100875
秦偉偉, 高友鶴. 加熱洗脫硝酸纖維膜上保存的尿蛋白質(zhì). 生物工程學(xué)報(bào), 2015, 31(9): 1387–1392.Qin WW, Gao YH. Elution of urinary proteins preserved on nitrocellulose membrane with heating. Chin J Biotech, 2015, 31(9): 1387–1392.
用膜保存尿蛋白質(zhì)對(duì)于生物標(biāo)志物的研發(fā)意義重大,從保存尿蛋白質(zhì)的硝酸纖維膜上洗脫蛋白質(zhì)的有效性,決定著保存方法被接受的程度和應(yīng)用的范圍。加熱洗脫蛋白質(zhì)的方法,通過(guò)提高硝酸纖維膜溶解時(shí)的溫度等方式;并運(yùn)用SDS-PAGE和LC-MS/MS分析加熱洗脫方法所制備的尿蛋白質(zhì)樣品,將其與強(qiáng)烈渦旋洗脫方法和直接丙酮沉淀方法所制備的尿蛋白質(zhì)樣品比較。結(jié)果顯示,加熱洗脫方法比強(qiáng)烈渦旋洗脫方法獲得更多的蛋白質(zhì)(<0.05),且蛋白質(zhì)無(wú)降解;加熱洗脫方法和直接丙酮沉淀方法制備的蛋白質(zhì)樣品,質(zhì)譜所鑒定到蛋白質(zhì)重疊率無(wú)明顯差異(分別是92.6%、96.8%),蛋白質(zhì)豐度CV值<20%的蛋白質(zhì)占總蛋白質(zhì)的比例均很高(分別是85.2%、94.4%)。加熱洗脫法具有很好的技術(shù)重復(fù)性,操作更加高效、簡(jiǎn)單,有利于用膜保存尿蛋白質(zhì)方法的推廣應(yīng)用。
尿蛋白質(zhì)保存,硝酸纖維膜,蛋白質(zhì)組學(xué),生物樣本保存
血液受穩(wěn)態(tài)機(jī)制調(diào)節(jié),各理化成分保持相對(duì)恒定。尿液作為血液濾過(guò)排出的廢物,包含更多能夠反映機(jī)體變化的信息。生物標(biāo)志物的本質(zhì)是變化,因此尿液是更好的尋找生物標(biāo)志物的來(lái)源[1-3]。目前,據(jù)Urinary Protein Biomarker Database所收錄的信息[4],尿液中一些能夠反映不同疾病狀態(tài)的候選標(biāo)志物被報(bào)道[5-7]。尿液作為重要的生物樣本,如果能將其與臨床病歷在疾病的每個(gè)階段一同保存下來(lái),那么在未來(lái)尋找生物標(biāo)志物的回顧性和前瞻性研究中,特別是在大規(guī)模臨床驗(yàn)證實(shí)驗(yàn)中,將起到不可估量的作用[8-11]。
傳統(tǒng)–80 ℃凍存尿液樣本的方法,高能耗且面臨蛋白質(zhì)降解的風(fēng)險(xiǎn),限制了尿液樣本的大規(guī)模長(zhǎng)期保存。膜保存尿蛋白質(zhì):將尿蛋白質(zhì)吸附在一張薄膜上,干燥后保存在真空袋中[12]。此方法經(jīng)濟(jì)、環(huán)保、占用存儲(chǔ)空間小,干燥保存避免蛋白質(zhì)降解,從而使系統(tǒng)全面的收集尿液樣本成為可能。但是現(xiàn)存的從硝酸纖維膜(Nitrocellulose membrane,NC) 上洗脫蛋白質(zhì)的方法并不是最優(yōu)化的,需要強(qiáng)烈渦旋10 min使NC膜完全溶解、在干燥蛋白質(zhì)沉底時(shí)膜易再次形成,這束縛了用膜保存尿蛋白質(zhì)的應(yīng)用[13]。本實(shí)驗(yàn)旨在通過(guò)提高溫度來(lái)減少?gòu)?qiáng)烈渦旋的時(shí)間,從而進(jìn)一步簡(jiǎn)化蛋白質(zhì)洗脫方法。
胰蛋白酶購(gòu)自Promega公司。碘乙酰胺 (Iodoacetamide,IAA)、二硫蘇糖醇 (Dithiothreitol,DTT購(gòu)自Sigma公司。Oasis小柱購(gòu)自Waters公司。硝酸纖維膜0.22 μm購(gòu)自Millipore公司。其他試劑均為分析純級(jí)別。
收集4位健康受試者(2男2女,24–28歲) 混合尿液樣本約200 mL。經(jīng)中國(guó)醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所倫理委員會(huì)評(píng)審,該研究項(xiàng)目的風(fēng)險(xiǎn)與預(yù)期利益的權(quán)衡是合理的,獲取知情同意的程序符合倫理學(xué)原則。此研究通過(guò)倫理審查委員會(huì)審查 (項(xiàng)目編號(hào):040-2014)。
硝酸纖維膜保存尿蛋白質(zhì)操作方法參照文獻(xiàn)[12],每張膜保存20 mL尿液。
1.3.1 加熱洗脫蛋白質(zhì)方法
將吸附尿蛋白質(zhì)的硝酸纖維膜剪碎置于 2 mL離心管中,依次加入1.7 mL丙酮,0.2 mL 0.5% NH4HCO3;溶解:將混合物室溫強(qiáng)烈振蕩20 s,置于55 ℃干浴器60 min,且每隔20 min停止加熱強(qiáng)烈振蕩30 s;尿蛋白質(zhì)沉淀:4 ℃輕搖2 h,12 000 r/min、18 ℃離心15 min,棄上清,室溫放置5?10 min,晾干;重溶蛋白質(zhì):加入300 μL裂解緩沖液,吹打后超聲3 min;12 000 r/min、18 ℃離心15 min,取上清,Bradford法測(cè)蛋白質(zhì)濃度。詳細(xì)步驟見(jiàn)圖1A。
1.3.2 強(qiáng)烈渦旋洗脫蛋白質(zhì)方法
強(qiáng)烈渦旋洗脫蛋白質(zhì)方法參照文獻(xiàn)[12],詳細(xì)步驟如圖1B所示。
丙酮沉淀尿蛋白質(zhì)方法參照文獻(xiàn)[14],20 mL尿液上清,加入60 mL預(yù)冷的丙酮,–20 ℃沉淀4 h。Bradford法測(cè)蛋白質(zhì)濃度。
取200 μg尿蛋白質(zhì),按Wisniewski等[15]方法酶切,酶切后肽段用Oasis小柱除鹽。除鹽后肽段溶于0.1%甲酸,色譜分離 (Waters UPLC):洗脫時(shí)間60 min,色譜柱流速0.3 μL/min,洗脫梯度為5%?28%流動(dòng)相B (0.1%甲酸+99.9%乙腈+10%水)。反相柱洗脫下的多肽用AB SCIEX Triple-TOF 5600進(jìn)行質(zhì)譜掃描。每個(gè)樣品做兩次技術(shù)重復(fù)。
圖1 加熱洗脫蛋白質(zhì)方法和強(qiáng)烈渦旋洗脫蛋白質(zhì)方法操作流程
所有二級(jí)質(zhì)譜結(jié)果用Mascot[16](Matrix Science公司,版本2.4.0) 軟件進(jìn)行數(shù)據(jù)庫(kù)檢索。所用數(shù)據(jù)庫(kù)為Swissprot_human database (數(shù)據(jù)截止至2013年5月3日)。檢索條件:胰酶酶切;允許最多2個(gè)漏切位點(diǎn);固定修飾為半胱氨酸的脲基甲基化;母離子和子離子質(zhì)量精確度均為0.05 Da。
采用Progenesis (Nonlinear公司,版本4.1) 軟件對(duì)蛋白進(jìn)行定量,方法參照文獻(xiàn)[17]。選擇進(jìn)行定量的譜峰電荷數(shù)為+2、+3、+4;Mascot肽段評(píng)分 (Ions score) >30,假陽(yáng)性率 (FDR) < 1%[18];若蛋白只有一條肽段得到鑒定,即認(rèn)為該蛋白不具有定量信息。
加熱洗脫蛋白質(zhì)方法得到的蛋白質(zhì)的量((374±15.74) μg,=3) 多于強(qiáng)烈渦旋洗脫方法得到的蛋白質(zhì)的量 ((307±12.59) μg,=3) (<0.05)。
每個(gè)樣品取25 μg尿蛋白質(zhì)進(jìn)行SDS-PAGE分析 (圖2)。用加熱洗脫蛋白質(zhì)方法所制備的尿蛋白質(zhì)樣品,與強(qiáng)烈渦旋洗脫方法和丙酮沉淀所制備的蛋白質(zhì)樣品相比,涵蓋了絕大部分相同條帶、無(wú)明顯的蛋白質(zhì)降解,具有很好的重復(fù)性 (圖2)。
用加熱洗脫蛋白質(zhì)方法處理3張結(jié)合相同尿蛋白質(zhì)的硝酸纖維膜,共鑒定了530個(gè)蛋白質(zhì) (分別鑒定到492、498和503個(gè)蛋白質(zhì)),其中461個(gè)蛋白質(zhì)在3個(gè)樣品中均被鑒定到,蛋白質(zhì)鑒定的重疊率 (重疊率=共同鑒定出的蛋白質(zhì)數(shù)/平均鑒定出的蛋白質(zhì)數(shù)×100%) 為92.6% (圖3A);用丙酮沉淀處理3份相同的尿液,總共鑒定530個(gè)蛋白質(zhì) (分別鑒定到489、508和512個(gè)蛋白質(zhì)),其中467個(gè)蛋白質(zhì)在3個(gè)樣品中均被鑒定到,蛋白質(zhì)鑒定的重疊率為92.8% (圖3B)。其中有425個(gè)蛋白質(zhì)在以上兩種方法處理的6個(gè)相同的樣品中均被鑒定到,即兩種方法鑒定蛋白質(zhì)的重疊率為80% (圖3C)。
用加熱洗脫蛋白質(zhì)方法處理3個(gè)樣品,共同鑒定到461個(gè)蛋白質(zhì),其豐度CV值的均數(shù)是9.2%,且85.2%的蛋白質(zhì)豐度CV值< 20%;用丙酮沉淀方法處理3個(gè)樣品,共同鑒定到467個(gè)蛋白質(zhì)的豐度CV值的均數(shù)是12.6%,且94.4%的蛋白質(zhì)豐度CV值<20% (圖4)。
圖2 三種方法制備尿蛋白質(zhì)SDS-PAGE圖譜
圖3 加熱洗脫蛋白質(zhì)方法和丙酮沉淀法鑒定蛋白質(zhì)重疊率
圖4 加熱洗脫蛋白質(zhì)法和丙酮沉淀法鑒定蛋白質(zhì)豐度變異系數(shù)分布
尿液作為尋找生物標(biāo)志物的“金礦”,其保存對(duì)于生物標(biāo)志物的研發(fā)意義重大,而膜上蛋白質(zhì)洗脫的有效性決定著用膜保存方法被接受的程度和應(yīng)用的范圍。加熱洗脫蛋白質(zhì)方法,通過(guò)提高NC膜溶解時(shí)的溫度,從而減少了強(qiáng)烈渦旋的時(shí)間、簡(jiǎn)化了操作過(guò)程,而且加熱并沒(méi)有使蛋白質(zhì)降解 (圖2)。尤其在處理多個(gè)樣品 (≥6) 時(shí),加熱洗脫蛋白質(zhì)方法在60 min可以使20?30個(gè)NC膜完全溶解,而強(qiáng)烈渦旋洗脫方法則需要持續(xù)強(qiáng)烈渦旋200?300 min (圖1)。其次,在蛋白質(zhì)沉淀時(shí),不同于強(qiáng)烈渦旋洗脫方法將樣品4 ℃靜置1 h,而是置于旋轉(zhuǎn)混勻儀4 ℃旋轉(zhuǎn)2 h (圖1),這有效地防止溶解的NC膜沉淀分層,從而在離心后能夠徹底的將蛋白質(zhì)沉淀分離出來(lái),有效阻止NC膜的再次形成,提高了蛋白質(zhì)的洗脫效率。
本實(shí)驗(yàn)著重就加熱洗脫蛋白質(zhì)方法的技術(shù)重復(fù)性進(jìn)行評(píng)估,并將其與常用的尿蛋白質(zhì)提取方法丙酮沉淀法[19-20]作了比較。尿液中蛋白質(zhì)濃度低,應(yīng)用丙酮沉淀法直接從尿液中提取蛋白質(zhì)要消耗大量有機(jī)溶劑;膜保存尿蛋白質(zhì)的洗脫只需少量的有機(jī)溶劑。用這兩種方法分別處理3個(gè)同樣的樣品,兩者質(zhì)譜鑒定蛋白質(zhì)的重疊率均很高且無(wú)差別。通過(guò)對(duì)每種方法共同鑒定到的蛋白質(zhì)定量分析、計(jì)算蛋白質(zhì)豐度的CV值并比較,本研究發(fā)現(xiàn)改良后蛋白質(zhì)洗脫方法稍遜色于丙酮沉淀法,但其自身依舊具有很好的技術(shù)重復(fù)性,并且比強(qiáng)烈渦旋洗脫方法操作更加簡(jiǎn)捷,有利于用膜保存尿蛋白質(zhì)方法的推廣應(yīng)用。
[1] Gao YH. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci, 2013, 56(12): 1145–1146.
[2] Li ML, Zhao MD, Gao YH. Changes of proteins induced by anticoagulants can be more sensitively detected in urine than in plasma. Sci China Life Sci, 2014, 57(7): 649–656.
[3] Payne SR, Serth J, Schostak M, et al. DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate, 2009, 69(12): 1257–1269.
[4] Shao C, Li ML, Li XD, et al. A tool for biomarker discovery in the urinary proteome: a manually curated human and animal urine protein biomarker database. Mol Cell Proteomics, 2011, 10(11): M111.010975.
[5] Smith ER, Zurakowski D, Saad A, et al. Urinary biomarkers predict brain tumor presence and response to therapy. Clin Cancer Res, 2008, 14(8): 2378–2386.
[6] Kentsis A, Shulman A, Ahmed S, et al. Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease. EMBO Mol Med, 2013, 5(2): 210–220.
[7] Raimondo F, Morosi L, Corbetta S, et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol BioSyst, 2013, 9(6): 1220–1233.
[8] Szefler SJ, Wenzel S, Brown R, et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol, 2012, 129(3): S9–S23.
[9] Huang JT, Chaudhuri R, Albarbarawi O, et al. Clinical validity of plasma and urinary desmosine as biomarkers for chronic obstructive pulmonary disease. Thorax, 2012, 67(6): 502–508.
[10] Pejcic M, Stojnev S, Stefanovic V. Urinary proteomics-a tool for biomarker discovery. Renal Failure, 2010, 32(2): 259–268.
[11] Rodriguez-Suarez E, Siwy J, Zurbig P, et al. Urine as a source for clinical proteome analysis: from discovery to clinical application. Biochim Biophys Acta, 2014, 1844(5): 884–898.
[12] Jia LL, Liu XJ, Liu L, et al. Urimem, a membrane that can store urinary proteins simply and economically, makes the large-scale storage of clinical samples possible. Sci China Life Sci, 2014, 57(3): 336–339.
[13] Wang XR, Li XD, Jia LL,et al. Comparison of two urinary protein preparation methods: nitrocellulose membrane preservation and acetone precipitation. Chin J Biotech, 2014, 30(6): 982–989 (in Chinese).王小蓉, 李遜斗, 賈露露, 等. 硝酸纖維膜和丙酮沉淀尿蛋白質(zhì)保存方法的比較. 生物工程學(xué)報(bào), 2014, 30(6): 982–989.
[14] Thongboonkerd V, Mcleish K, Arthur J, et alProteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int, 2002, 62(4): 1461–1470.
[15] Wisniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nat Methods, 2009, 6(5): 359–363.
[16] Perkins DN, Pappin DJC, Creasy DM, et al. Probaility-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999, 20(18): 3551–3567.
[17] Hauck S, Dietter J, Kramer R, et al. Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry. Mol Cell Proteomics, 2010, 9(10): 2292–2306.
[18] Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods, 2007, 4(3): 207–214.
[19] Thongboonkerd V, Chutipongtanate S, Kanlaya R. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J Proteome Res, 2006, 5(1): 183–191.
[20] Thongboonkerd V, McLeish KR, Arthur JM, et al. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int, 2002, 62(4): 1461–1469.
(本文責(zé)編 陳宏宇)
Elution of urinary proteins preserved on nitrocellulose membrane with heating
Weiwei Qin1, and Youhe Gao1,2
1 National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences,Beijing 100005, China 2 Department of Biochemistry, School of Life Sciences, Beijing Normal University, Beijing 100875, China
The preservation of urinary proteins on a membrane plays a vital role in biomarker research, and the efficient elution of proteins preserved on nitrocellulose membrane (NC membrane) determines the application of this method. During the heating elution procedure, we raised the temperature to reduce the intense vortexing time, and kept gentle rotating while precipitation to prevent nitrocellulose reformation. We also used SDS-PAGE and LC-MS/MS to analyze the urinary proteins prepared by heating elution procedure, intense vortexing elution procedure and acetone precipitation method. There was no degradation of proteins prepared by heating elution procedure. Compared with proteins prepared by heating elution method and acetone precipitation method, the overlapping rates of the proteins was almost the same (92.6% versus 96.8%) and the ratios of CV values (< 20%) of the proteins were both high (85.2% and 94.4%). The heating elution procedure achieved good technical reproducibility, and was much simpler and more efficient than the previous one. It can facilitate the application of the preservation of urinary proteins on membrane.
urinary proteins preservation, nitrocellulose membrane, proteomics, biological samples preservation
10.13345/j.cjb.150039
January 20, 2015; Accepted:March 23, 2015
National Basic Research Program of China (973 Program) (Nos. 2012CB517605, 2013CB530805), 111 Project (No. B08007).
Youhe Gao. Tel: +86-10-69156493; E-mail: gaoyouhe@pumc.edu.cn, gaoyouhe@bnu.edu.cn.
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃) (Nos. 2012CB517605, 2013CB530805),111計(jì)劃 (No. B08007) 資助。
2015-05-06
http://www.cnki.net/kcms/detail/11.1998.Q.20150506.1034.003.html