白小芳綜述 張俊萍審校
作者單位:030001 太原1山西醫(yī)科大學(xué);2山西醫(yī)科大學(xué)附屬大醫(yī)院腫瘤內(nèi)二科
綜述
乳酸對(duì)惡性腫瘤生物學(xué)行為的影響
白小芳1綜述 張俊萍2審校
作者單位:030001 太原1山西醫(yī)科大學(xué);2山西醫(yī)科大學(xué)附屬大醫(yī)院腫瘤內(nèi)二科
高速率的糖酵解是腫瘤細(xì)胞代謝的標(biāo)志。正常細(xì)胞將葡萄糖代謝為丙酮酸,在有氧條件下轉(zhuǎn)換為二氧化碳并用于氧化磷酸化,在缺氧條件下,丙酮酸代謝為乳酸。而癌細(xì)胞具有有氧糖酵解的特點(diǎn),在氧氣充分供應(yīng)的條件下,癌細(xì)胞會(huì)產(chǎn)生大量乳酸,即“Warburg效應(yīng)”。研究表明,乳酸有助于腫瘤的生長(zhǎng),且高水平的乳酸與臨床不良預(yù)后相關(guān)。本文就乳酸對(duì)惡性腫瘤的生物學(xué)行為進(jìn)行綜述。
腫瘤代謝;有氧糖酵解;乳酸;單羧酸轉(zhuǎn)運(yùn)蛋白
有氧糖酵解是腫瘤細(xì)胞普遍存在的一個(gè)特征。在超過(guò)70%的癌癥中,糖酵解相關(guān)基因呈過(guò)度表達(dá)[1]。為了滿(mǎn)足快速增長(zhǎng)的需要,癌細(xì)胞通過(guò)增加葡萄糖攝取產(chǎn)生大量乳酸。這一現(xiàn)象表明,乳酸并不僅僅是一種代謝產(chǎn)物,還與腫瘤的侵襲、轉(zhuǎn)移、血管生成和免疫逃逸等相關(guān)[2]。本文就乳酸對(duì)惡性腫瘤的生物學(xué)行為作一綜述。
乳酸(2-羥基丙酸)是一種羥基酸,以?xún)煞N同分異構(gòu)體的形式存在于人體內(nèi):一種為L(zhǎng)-乳酸,產(chǎn)生于體內(nèi)丙酮酸的無(wú)糖酵解,哺乳類(lèi)動(dòng)物細(xì)胞產(chǎn)生的乳酸幾乎全是L-乳酸;另一種為D-乳酸,為L(zhǎng)-乳酸濃度的1%~5%,主要由胃腸道細(xì)菌發(fā)酵產(chǎn)生。其他生成D-乳酸的途徑包括從食物中攝取、甲基乙二醛通過(guò)乙二醛的途徑產(chǎn)生。通常情況下,哺乳動(dòng)物組織不能或僅能緩慢代謝D-乳酸,這是因?yàn)椴溉轭?lèi)動(dòng)物體內(nèi)只有L-乳酸脫氫酶,缺乏D-乳酸脫氫酶,D-乳酸通過(guò)D-α-乳酸脫氫酶代謝為丙酮酸鹽,后者在丙酮酸脫氫酶的作用下變?yōu)橐阴]o酶A而進(jìn)入三羧酸循環(huán),少量經(jīng)尿液排出[3]。腫瘤細(xì)胞具有高速率糖酵解的特點(diǎn),其中間產(chǎn)物磷酸二羥丙酮和3-磷酸甘油糖不僅通過(guò)糖酵解途徑生成L-乳酸,也在甲基乙二醛合酶的作用下生成甲基乙二醛[4-5]。雖然甲基乙二醛具有細(xì)胞毒性作用,可通過(guò)多種途徑發(fā)揮抗腫瘤的作用[6-11],但腫瘤細(xì)胞普遍存在乙二醛酶1高表達(dá),部分還高表達(dá)乙二醛酶2[12],生成的甲基乙二醛與還原性谷胱甘肽在乙二醛酶1的作用下生成S-D-乳酸谷胱甘肽,然后在乙二醛酶2的作用下生成D-乳酸[13]。D-乳酸通過(guò)單羧酸轉(zhuǎn)運(yùn)蛋白(monocarboxylate transporter,MCTs)轉(zhuǎn)運(yùn)到細(xì)胞內(nèi),使DNA修復(fù)基因上調(diào),提高化療后腫瘤細(xì)胞的存活,導(dǎo)致腫瘤細(xì)胞對(duì)化療藥物耐藥[14]。另外,腫瘤細(xì)胞還可以在有氧條件下通過(guò)上調(diào)非葡萄糖依賴(lài)途徑獲取能量。因此,腫瘤細(xì)胞通過(guò)有氧糖酵解及增加谷氨酰胺生成和分泌乳酸,導(dǎo)致腫瘤細(xì)胞微環(huán)境酸化,其pH值可從正常細(xì)胞的7.5降至6~6.5,從而妨礙機(jī)體正常的免疫功能[15-17]。
2.1 促進(jìn)腫瘤血管生成
血管生成是腫瘤生長(zhǎng)、浸潤(rùn)和轉(zhuǎn)移的前提之一。腫瘤血管生成不僅有利于腫瘤細(xì)胞的分裂繁殖,而且增加了腫瘤轉(zhuǎn)移的可能性。在腫瘤血管形成過(guò)程中,血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)發(fā)揮著關(guān)鍵作用。乳酸可通過(guò)刺激巨噬細(xì)胞分泌VEGF促進(jìn)內(nèi)皮細(xì)胞遷移和聚集血管中的祖細(xì)胞影響促血管生成活動(dòng),從而促進(jìn)腫瘤的轉(zhuǎn)移。Milovanova等[18]研究發(fā)現(xiàn)乳酸通過(guò)刺激基質(zhì)細(xì)胞衍生因子-1、VEGF的合成引起血管內(nèi)皮細(xì)胞聚集,促進(jìn)腫瘤血管形成。另外,把一些腫瘤細(xì)胞株暴露于乳酸中,可使VEGF生成增加。Sonveaux等[19]發(fā)現(xiàn)腫瘤細(xì)胞排到組織間隙的乳酸可以借助MCT1被內(nèi)皮細(xì)胞攝取,細(xì)胞內(nèi)乳酸抑制非乏氧狀態(tài)下內(nèi)皮細(xì)胞缺氧誘導(dǎo)因子-1α的降解,使內(nèi)皮細(xì)胞產(chǎn)生的VEGF和成纖維細(xì)胞生長(zhǎng)因子顯著上調(diào)。Vegran等[20]將乳酸誘導(dǎo)內(nèi)皮細(xì)胞NF-κB活化與IL-8自分泌血管生成聯(lián)系起來(lái),表明乳酸可通過(guò)這一通路驅(qū)動(dòng)體外內(nèi)皮細(xì)胞遷移和血管形成,誘導(dǎo)體內(nèi)腫瘤血管生成。該研究還發(fā)現(xiàn)通過(guò)給免疫缺陷小鼠注射含人臍靜脈內(nèi)皮細(xì)胞和Warburg WiDr腫瘤細(xì)胞,使用MCT4缺陷的腫瘤細(xì)胞(不能釋放乳酸)、MCT1缺乏的內(nèi)皮細(xì)胞(無(wú)法攝取乳酸)或IL-8阻斷抗體,都能抑制腫瘤血管生成與腫瘤生長(zhǎng)。
2.2 促進(jìn)腫瘤侵襲及轉(zhuǎn)移
腫瘤微環(huán)境的變化賦予腫瘤細(xì)胞增殖優(yōu)勢(shì)從而有利于侵犯癌旁正常組織。在細(xì)胞外低pH環(huán)境下通過(guò)誘導(dǎo)VEGF和IL-8的表達(dá)促進(jìn)血管生成,通過(guò)激活蛋白水解酶促進(jìn)細(xì)胞外基質(zhì)降解,以及抑制抗腫瘤免疫反應(yīng),從而促進(jìn)腫瘤的侵襲及轉(zhuǎn)移。其中最重要的是細(xì)胞外酸化促進(jìn)細(xì)胞外基質(zhì)的降解及重塑,從而促進(jìn)腫瘤的轉(zhuǎn)移。細(xì)胞外低pH值為蛋白酶的激活提供一個(gè)良好的微環(huán)境,包括基質(zhì)金屬蛋白酶、尿激酶纖溶酶原激活劑、組織蛋白酶-B、組織蛋白酶-D和組織蛋白酶-L。通過(guò)激活這些酶,可促進(jìn)細(xì)胞外基質(zhì)的降解及重塑,促進(jìn)腫瘤轉(zhuǎn)移。例如,基質(zhì)金屬蛋白酶-3的最適pH值為5.75~6.25,當(dāng)癌細(xì)胞生成的乳酸導(dǎo)致微環(huán)境酸化時(shí),通過(guò)激活蛋白水解酶的級(jí)聯(lián)反應(yīng)轉(zhuǎn)換前基質(zhì)金屬蛋白酶為基質(zhì)金屬蛋白酶,可促進(jìn)癌細(xì)胞外基質(zhì)的降解和癌細(xì)胞侵襲及轉(zhuǎn)移,因此,通過(guò)提高癌細(xì)胞外的pH值可以抑制腫瘤的轉(zhuǎn)移[21]。pH值調(diào)節(jié)劑的質(zhì)子泵、鈉質(zhì)子交換家族、碳酸氫鹽轉(zhuǎn)運(yùn)蛋白家族和MCT家族已被證實(shí)在腫瘤細(xì)胞中呈高表達(dá)[22]。調(diào)節(jié)碳酸氫鹽已被證明能增加腫瘤的pH值,降低轉(zhuǎn)移性乳腺癌小鼠模型自發(fā)轉(zhuǎn)移的形成,降低淋巴結(jié)轉(zhuǎn)移率[23]。組蛋白乙酰化也能調(diào)節(jié)細(xì)胞內(nèi)pH值。由于pH值下降,組蛋白通過(guò)組蛋白乙?;溉棵撘阴;⑶裔尫乓宜彡庪x子,通過(guò)MCTs與質(zhì)子共輸出細(xì)胞外,防止pH值進(jìn)一步降低[24]。但Xu等[25]利用MDA-MB231和MCF-7細(xì)胞株構(gòu)建的小鼠移植瘤,發(fā)現(xiàn)低轉(zhuǎn)移能力的MCF-7小鼠移植瘤可產(chǎn)生更多的乳酸,表明惡性腫瘤細(xì)胞的侵襲轉(zhuǎn)移與乳酸之間的關(guān)系受兩種細(xì)胞株乳酸脫氫酶活性以及攝取丙酮酸的能力不同而不同,仍有待進(jìn)一步研究。
2.3 免疫逃逸作用
腫瘤細(xì)胞通過(guò)糖酵解生成的大量乳酸,通過(guò)增加Ⅰ型精氨酸酶的表達(dá)抑制機(jī)體的免疫反應(yīng)、激活I(lǐng)L-23/IL-17通路,促進(jìn)腫瘤微環(huán)境中的慢性炎性反應(yīng),從而促進(jìn)腫瘤的進(jìn)展[26]。一方面高濃度的乳酸使M2型巨噬細(xì)胞標(biāo)志分子Ⅰ型精氨酸酶表達(dá)水平增加、M1型巨噬細(xì)胞標(biāo)志分子一氧化氮合酶減少和M1型細(xì)胞因子分泌減少;另一方面乳酸降低腫瘤相關(guān)巨噬細(xì)胞MHC I和MHCⅡ分子的表達(dá),削弱巨噬細(xì)胞的抗原遞呈能力,從而使腫瘤細(xì)胞逃脫免疫殺傷作用[27]。另外,乳酸還可以通過(guò)抑制CD8+T細(xì)胞的增殖,減少細(xì)胞因子IFN-γ的分泌,削弱CD8+T細(xì)胞的細(xì)胞毒性,以及抑制NK細(xì)胞的活性[28-29],從而削弱機(jī)體的免疫功能。腫瘤微環(huán)境中的pH值低至6.0~6.5時(shí)可使T細(xì)胞以及小鼠浸潤(rùn)淋巴細(xì)胞的活性喪失[30]。
2.4 誘導(dǎo)耐藥
Wagner等[14]研究發(fā)現(xiàn)L-乳酸和D-乳酸通過(guò)單羧酸轉(zhuǎn)運(yùn)蛋白轉(zhuǎn)運(yùn)到細(xì)胞內(nèi)抑制Ⅰ、Ⅱ類(lèi)組蛋白去乙?;傅幕钚裕菇M蛋白H3和H4乙?;?、染色質(zhì)松弛、DNA修復(fù)基因上調(diào)、DNA-PKcs激活,使乳酸創(chuàng)建的微環(huán)境能刺激DNA修復(fù),并能顯著增強(qiáng)化療后腫瘤細(xì)胞的存活。這種乳酸誘導(dǎo)腫瘤細(xì)胞DNA修復(fù)的作用受羥基酸受體1/單羧酸轉(zhuǎn)運(yùn)蛋白軸的調(diào)節(jié),因此乳酸受體下調(diào)或抑制MCT對(duì)乳酸的轉(zhuǎn)運(yùn),可以顯著影響DNA修復(fù)效率,從而延緩耐藥。
腫瘤細(xì)胞通過(guò)重組能量代謝生成乳酸,乳酸作為一種免疫抑制代謝產(chǎn)物和血管生成啟動(dòng)子對(duì)腫瘤的生長(zhǎng)起關(guān)鍵的作用。另外,已經(jīng)證實(shí)MCT1和MCT4是不同代謝行為的癌細(xì)胞之間、癌細(xì)胞和間質(zhì)細(xì)胞之間的乳酸轉(zhuǎn)運(yùn)體,能選擇性抑制乳酸轉(zhuǎn)運(yùn)蛋白,與調(diào)節(jié)乳酸的多種生物活性相關(guān),如抑制腫瘤免疫反應(yīng)及抗腫瘤血管生成等。因此,靶向改變腫瘤細(xì)胞產(chǎn)生乳酸的代謝途徑、抑制乳酸轉(zhuǎn)運(yùn)蛋白的活性及表達(dá)可作為腫瘤治療的一種方法。目前有氧糖酵解抑制劑(如miR-34a制劑)已經(jīng)進(jìn)入I期臨床試驗(yàn)(http://clinicaltrials.gov/ct2/show/NCT01829971),第一個(gè)MCT1抑制劑AZD3965已進(jìn)入I期晚期實(shí)體腫瘤的臨床試驗(yàn)(NCT01791595),LDH抑制劑AT-101已進(jìn)入Ⅱ期臨床試驗(yàn)[31],這些研究結(jié)果將為乳酸作為腫瘤治療新靶點(diǎn)的臨床應(yīng)用奠定更堅(jiān)實(shí)的基礎(chǔ)。
[1] Altenberg B,Greulich KO.Genes of glycolysis are ubiquitously overexpressedin24cancerclasses[J].Genomics,2004,84(6):1014-1020.
[2] Vlachostergios PJ,Oikonomou KG,Gibilaro E,et al.Elevated lactic acid is a negative prognostic factor in metastatic lung cancer[J]. Cancer Biomark,2015,15(6):725-734.
[3] 陳韻名,鄧烈華,姚華國(guó).D-乳酸的臨床研究進(jìn)展[J].醫(yī)學(xué)研究雜志,2012,41(5):188-190.
[4] GatenbyRA,GilliesRJ.Whydocancershavehighaerobicglycolysis?[J]. Nat Rev Cancer,2004,4(11):891-899.
[5] Tennant DA,Duran RV,Gottlieb E.Targeting metabolic transformation for cancer therapy[J].Nat Rev Cancer,2010,10(4):267-277.
[6] 張涓娟,蒲宇,李勇,等.甲基乙二醛對(duì)胰腺癌PANC-1細(xì)胞增殖及凋亡蛋白表達(dá)的影響[J].中華臨床醫(yī)師雜志,2013,(18):8286-8289.
[7] Aniguchi H,Horinaka M,Yoshida T,et,al.Targeting the glyoxalase pathway enhances TRAIL efficacy in cancer cells by downregulating the expression of antiapoptotic molecules[J].Mol Cancer Ther,2012,11(10):2294-2300.
[8] Antognelli C,Mezzasoma L,F(xiàn)ettucciari K,et al.A novel mechanism of methylglyoxal cytotoxicity in prostate cancer cells[J].Int J Biochem Cell Biol,2013,45(4):836-844.
[9] Guo Y,Zhang Y,Yang X,et al.Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation,invasion,and apoptosis through modulation of MAPKs,MMP9,and Bcl-2[J].Cancer Biol Ther,2016,17(2):169-180.
[10]Bo J,Xie S,Guo Y,et al.Methylglyoxal impairs insulin secretion of pancreatic β-Cells through increased production of ROS and mitochondrial dysfunction mediated by upregulation of UCP2 and MAPKs[J].J Diabetes Res,2016:2029854.
[11]Geng X,Ma J,Zhang F,et al.Glyoxalase I in tumor cell proliferation and survival and as a potential target for anticancer therapy[J]. Oncol Res Treat,2014,37(10):570-574.
[12]Sousa Silva M,Gomes RA,F(xiàn)erreira AE,et al.The glyoxalase pathway: the first hundred years and beyond[J].Biochem J,2013,453(1):1-15.
[13]Mannervik B,Ridderstrom M.Catalytic and molecular properties of glyoxalase I[J].Biochem Soc Trans,1993,21(2):515-517.
[14]Wagner W,Ciszewski WM,Kania KD.L-and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation[J].Cell Commun Signal,2015,13:36.
[15]Webb BA,Chimenti M,Jacobson MP,et al.Dysregulated pH:a perfect storm for cancer progression[J].Nature Rev Cancer,2011,11(9):671-677.
[16]CalcinottoA,F(xiàn)ilipazziP,GrioniM,etal.Modulationofmicroenvironment acidity reverses anergy in human and murine tumorinfiltrating T lymphocytes[J].Cancer Res,2012,72(11):2746-2756.
[17]De Milito A,Canese R,Marino ML,et al.pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity[J].Int J Cancer,2010,127(1): 207-219.
[18]Milovanova TN,Bhopale VM,Sorokina EM,et al.Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1[J]. Mol Cell Biol,2008,28(20):6248-6261.
[19]Sonveaux P,Copetti T,De Saedeleer CJ,et al.Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis[J].PLoS One,2012,7(3):e33418.
[20]Vegran F,Boidot R,Michiels C,et al.Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis[J].Cancer Res,2011,71(7):2550-2560.
[21]Dhup S,Dadhich RK,Porporato PE,et al.Multiple biological activities of lactic acid in cancer:influences on tumor growth,angiogenesis and metastasis[J].Curr Pharm Des,2012,18(10):1319-1330.
[22]Izumi H,Torigoe T,Ishiguchi H,et al.Cellular pH regulators: Potentially promising molecular targets for cancer chemotherapy[J]. Cancer Treat Rev,2003,29(6):541-549.
[23]Robey IF,Baggett BK,Kirkpatrick ND,et al.Bicarbonate increases tumor pH and inhibits spontaneous metastases[J].Cancer Res,2009,69(6):2260-2268.
[24]McBrian MA,Behbahan IS,F(xiàn)errari R,et al.Histone acetylation regulates intracellular pH[J].Mol Cell,2013,49(2):310-321.
[25]Xu HN,Kadlececk S,Profka H,et al.Is higher lactate an indicator of tumor metastatic risk?A pilot MRS study using hyperpolarized(13)C-pyruvate[J].Acad Radiol,2014,21(2):223-231.
[26]Ohashi T,Akazawa T,Aoki M,et al.Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumorimmunoreactivity[J].IntJCancer,2013,133(5):1107-1118.
[27]劉妍,陳翀,曹峰琦,等.腫瘤微環(huán)境中乳酸對(duì)巨噬細(xì)胞表型極化和功能的影響[J].基礎(chǔ)醫(yī)學(xué)與臨床,2014,34(6):740-745.
[28]Brand A,Singer K,Koehl GE,et al.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells[J]. Cell Metab,2016,24(5)657-671.
[29]Husain Z,Huang Y,Seth P,et al.Tumor-derived lactate modifies antitumor immune response:effect on myeloid-derived suppressor cells and NK cells[J].J Immunol,2013,191(3):1486-1495.
[30]Calcinotto A,F(xiàn)ilipazzi P,Grioni M,et al.Modulation of microenvironment acidity reverses anergy in human and murine tumorinfiltrating T lymphocytes[J].Cancer Res,2012,72(11):2746-2756.
[31]Schelman WR,Mohammed TA,Traynor AM,et al.A phase I study of AT-101 with cisplatin and etoposide in patients with advanced solid tumors with an expanded cohort in extensive-stage small cell lung cancer[J].Invest New Drugs,2014,32(2):295-302.
[2016-08-19收稿][2016-10-21修回][編輯 江德吉]
R730.2
A
1674-5671(2016)06-03
10.3969/j.issn.1674-5671.2016.06.15
張俊萍。E-mail:junpingzhang_118@163.com