張 力,周成斌
?
心肌細(xì)胞鈣離子代謝與胎兒心肌保護(hù)
張 力,周成斌
[關(guān)鍵詞]:鈣離子代謝;心肌保護(hù);胎兒心功能
作者單位:510080廣州,南方醫(yī)科大學(xué),廣東省心血管病研究所,廣東省人民醫(yī)院(張 力);510080廣州,廣東省心血管病研究所,廣東省人民醫(yī)院(周成斌)
隨著胎兒心臟超聲診斷技術(shù)的提高和推廣,大量先天性心臟病(先心病)能夠產(chǎn)前診斷[1]。宮內(nèi)矯治胎兒心臟結(jié)構(gòu)畸形,避免心臟大血管繼發(fā)性改變是提高復(fù)雜先心病救治成功率的重要選擇。在胎羊心臟轉(zhuǎn)流模型的研究中,國(guó)內(nèi)外學(xué)者認(rèn)識(shí)到胎兒心功能的損害可能與體外循環(huán)過程中胎兒心肌細(xì)胞的鈣離子(Ca2+)代謝有關(guān)。本文探討胎兒心肌細(xì)胞Ca2+代謝與心功能受損的關(guān)系,為胎兒心肌保護(hù)提供新思路。
胎兒在宮內(nèi)處于低氧環(huán)境,經(jīng)胎盤氧合后的臍靜脈血氧分壓僅為20~30 mm Hg,是成人動(dòng)脈血氧分壓的1/4~1/5。胎兒為了適應(yīng)在宮內(nèi)低氧環(huán)境的生長(zhǎng)需要,其營(yíng)養(yǎng)攝取、廢物排泄及氣體交換都由臍帶血管經(jīng)胎盤循環(huán)來完成[2]。胎兒的心臟發(fā)育貫穿整個(gè)孕期,胎兒的心肌細(xì)胞成分以非收縮成分為主(約占60%),在生長(zhǎng)發(fā)育過程中,由于其心臟的儲(chǔ)備能力低下,心排量的維持依賴較高的心率。研究表明增加胎兒心率可以延長(zhǎng)單位時(shí)間內(nèi)心肌細(xì)胞去極化的累計(jì)時(shí)間,增加鈣內(nèi)流以及肌質(zhì)網(wǎng)(sarcoplasmic reticulum,SR)鈣的儲(chǔ)備;同時(shí),高頻率去極化過程增加心肌細(xì)胞膜下的鈉離子(Na+)濃度,促進(jìn)鈉鈣交換蛋白(Na+/Ca2+exchanger,NCX)的Ca2+內(nèi)流,提高細(xì)胞內(nèi)Ca2+濃度[3]。
研究表明,Ca2+在心臟收縮和舒張過程中發(fā)揮了關(guān)鍵的作用。心肌鈣循環(huán)主要是在心肌細(xì)胞SR內(nèi)進(jìn)行,包括鈣釋放、鈣回?cái)z和鈣存儲(chǔ)三個(gè)部分,任何一個(gè)過程出現(xiàn)異常,都將導(dǎo)致心功能的損害。在正常心肌細(xì)胞鈣循環(huán)過程中,SR為引起興奮-收縮的鈣瞬變提供了約92%的Ca2+[4],為心肌興奮-收縮偶聯(lián)鈣循環(huán)的主要場(chǎng)所。心肌細(xì)胞去極化是少量Ca2+通過心肌細(xì)胞膜上的L型鈣離子通道(LCa)迅速進(jìn)入細(xì)胞質(zhì)使Ca2+濃度增加,Ca2+與SR上的蘭尼堿受體2(ryanodine receptor 2,RyR2)結(jié)合,使SR上的通道開放,導(dǎo)致大量的Ca2+從SR中釋放出來,進(jìn)入胞漿,這一過程被稱為鈣誘導(dǎo)鈣釋放(calcium induced calcium release,CICR)[5]。心肌細(xì)胞收縮后SR鈣泵將細(xì)胞質(zhì)內(nèi)的Ca2+回?cái)z至SR內(nèi)儲(chǔ)存,同時(shí)細(xì)胞膜上的鈉鈣交換體將少量Ca2+運(yùn)至細(xì)胞膜外,Ca2+與肌鈣蛋白C解離,心肌細(xì)胞舒張。在心肌鈣代謝過程中,目前認(rèn)為以下受體或蛋白發(fā)揮重要作用。
2.1 Ryanodine受體 Ryanodine受體是一種Ca2+釋放通道,可分為RyR1、RyR2、RyR3三類。在心肌細(xì)胞中鈣釋放通道的主要類型是RyR2,參與了心肌的興奮收縮耦聯(lián)、心臟起搏和心率失常的過程,CICR是心肌中基礎(chǔ)Ca2+釋放(鈣火花)的主要方式。有研究顯示,在體內(nèi)剔除RyR2將減少Ca2+、ATP和氧化代謝,從而導(dǎo)致代謝重排和細(xì)胞死亡,因此RyR2維持了心肌細(xì)胞ATP的生產(chǎn)和生存[6],對(duì)心肌功能起到重要作用。在心衰個(gè)體中,蛋白激酶A信號(hào)通路誘導(dǎo)的RyR2過度磷酸化被認(rèn)為是導(dǎo)致鈣泄漏及心衰的重要原因之一[7]。然而有很多其他實(shí)驗(yàn)數(shù)據(jù)表明鈣/鈣調(diào)素依賴性蛋白激酶Ⅱ(Ca2+/calmodulin-dependent protein kinaseⅡ,CaMK Ⅱ)依賴的RyR磷酸化是鈣泄漏的重要原因[8-9]。此外,交換蛋白的識(shí)別被cAMP直接激活更進(jìn)一步證實(shí)CaMKⅡ依賴磷酸化通過β受體刺激心臟的重要性[10-12]。最近的報(bào)道提出CaMKⅡ和蛋白激酶A(protein kinase A,PKA)對(duì)RyR均有功能性的調(diào)節(jié)[13]。
2.2 CaMKⅡ CaMKⅡ參與LCa的調(diào)節(jié),應(yīng)用CaM和CaMKⅡ抑制劑觀察對(duì)LCa的鈣依賴性失活(CDI)和鈣依賴性易化(CDF)的影響,發(fā)現(xiàn)在應(yīng)用了CaMKⅡ阻斷劑后,RyRs的磷酸化被抑制,繼而Ca2+釋放減少,導(dǎo)致細(xì)胞內(nèi)Ca2+濃度降低,影響了CDI和CDF的時(shí)程[14]。CaMKⅡ還可以通過下游調(diào)控元件拮抗調(diào)節(jié)子(downstream regulatory element antagonist modulator,DREAM)的易位來抑制心肌LCa的α1亞單位基因的轉(zhuǎn)錄[15]。Ronkainen等人進(jìn)行深入研究得出結(jié)論,CaMKⅡ能夠使Ca2+介導(dǎo)的轉(zhuǎn)錄抑制劑DREAM易位進(jìn)入細(xì)胞核中,從而促進(jìn)DREAM介導(dǎo)的轉(zhuǎn)錄抑制[15]。研究發(fā)現(xiàn),CaMKⅡ與RyR2上的FK506結(jié)合蛋白共同調(diào)節(jié)RyR2的功能[16-17],直接改變?nèi)毖陂g或再灌注期間CaMKⅡ活性,顯示出更顯著的心肌保護(hù)作用。在酸性環(huán)境、缺氧/復(fù)氧等情況下,主要是通過CaMKⅡ途徑來發(fā)揮心肌保護(hù)作用的[18]。
2.3 SR Ca2+-ATP酶 心肌細(xì)胞收縮后,Ca2+的清除主要經(jīng)SR上的鈣回?cái)z,即肌質(zhì)網(wǎng)Ca2+-ATP酶(sarco-endoplasmic reticulum Ca2+-ATP protein,SERCA2a)將Ca2+重新攝取回SR,或由細(xì)胞膜上的鈉-鈣交換泵出細(xì)胞外。SERCA2a基因在鈣回?cái)z中有重要作用,是心臟收縮和舒張的主要調(diào)節(jié)之一,改變SERCA2a的活性對(duì)心臟功能尤其有害。有相關(guān)報(bào)道,在各種形式的缺血性心臟病以及早期低壓缺氧反應(yīng)中,SERCA2a表達(dá)受抑制,表明SERCA2a的表達(dá)可能受氧分壓的調(diào)節(jié)。胚胎的SERCA2a調(diào)控提供了一個(gè)模型來研究低氧依賴性SERCA2a的轉(zhuǎn)錄,胚胎在低氧(1%~5%O2)的子宮環(huán)境下發(fā)育[19],最初,胚胎的增大導(dǎo)致缺氧,但在發(fā)育的心臟中,四腔心的形成尤其是冠狀動(dòng)脈的形成,缺氧局限在較小的區(qū)域[20]。而從胎兒到成年小鼠心臟組織的氧合逐步改善與SERCA2a表達(dá)的數(shù)倍增長(zhǎng)是一致的[21]。研究發(fā)現(xiàn),在SERCA2a基因剔除的心臟中,可引起鈣循環(huán)重要場(chǎng)所SR的凋亡[22]。新近研究發(fā)現(xiàn)選擇性調(diào)整SERCA的活性對(duì)心臟興奮收縮偶聯(lián)產(chǎn)生深遠(yuǎn)的影響,這歸因于SR鈣攝取的改變,但對(duì)SR鈣泄漏沒有顯著改變[23]。
2.4 鈣離子通道 心肌細(xì)胞膜上主要鈣離子通道有電壓依賴性LCa、電壓依賴性T型鈣離子通道(TCa)和NCX。通過LCa的慢內(nèi)向鈣內(nèi)流是構(gòu)成心室肌細(xì)胞動(dòng)作電位平臺(tái)期的基礎(chǔ),在心肌細(xì)胞正常生理興奮-收縮偶聯(lián)中有重要作用。TCa雖然也能觸發(fā)鈣內(nèi)流誘導(dǎo)SR釋放Ca2+,但作用較小[24-25]。NCX在心肌細(xì)胞膜上是一個(gè)非ATP依賴的雙向鈣離子轉(zhuǎn)運(yùn)蛋白,依賴于細(xì)胞膜內(nèi)外鈉、鈣離子濃度的變化,參與調(diào)節(jié)Ca2+在心肌細(xì)胞內(nèi)外的進(jìn)出。在生理?xiàng)l件下,NCX主要通過正向交換模式將細(xì)胞興奮時(shí)由LCa進(jìn)入細(xì)胞內(nèi)的Ca2+排出細(xì)胞外,對(duì)維持心肌細(xì)胞鈣穩(wěn)態(tài)和收縮偶聯(lián)起著重要作用。在缺氧狀態(tài)下,胞內(nèi)酸性代謝產(chǎn)物的蓄積,激活膜上的Na+/H+交換體,通過Na+/H+交換造成細(xì)胞內(nèi)Na+濃度升高,后者又可以通過增強(qiáng)反向NCX使胞內(nèi)Ca2+濃度升高,引起Ca2+超載。細(xì)胞內(nèi)Ca2+超載是缺血心肌在再灌注過程中細(xì)胞凋亡、壞死、以及心功能降低的重要原因。盡管NCX不依賴ATP,但是當(dāng)ATP充足時(shí),NCX更有利于將Ca2+排出細(xì)胞外[26]。NCX功能的改變可導(dǎo)致SR內(nèi)Ca2+的異常釋放以及心肌電活動(dòng)和收縮運(yùn)動(dòng)的異常。有研究顯示在腦細(xì)胞NCX編碼基因的啟動(dòng)子上有缺氧誘導(dǎo)因子1(hypoxia-inducing factor 1,HIF-1)結(jié)合的缺氧反應(yīng)元件,HIF-1促進(jìn)腦細(xì)胞NCX的表達(dá),參與腦缺血預(yù)處理的保護(hù)作用[27]。鈣預(yù)處理能夠有效對(duì)抗心肌損傷,其機(jī)制涉及鈣預(yù)處理時(shí)NCX反向交換活性的上調(diào)[28]。
2.5 線粒體和SR鈣循環(huán)的相互作用 線粒體和SR鈣循環(huán)是相互影響的,有研究發(fā)現(xiàn)心衰大鼠心肌細(xì)胞質(zhì)Na+濃度的增加引起興奮-收縮耦聯(lián)過程中線粒體鈣回?cái)z減少,破壞了心肌細(xì)胞的能量供應(yīng)[29]。有報(bào)道線粒體-內(nèi)質(zhì)網(wǎng)結(jié)構(gòu)偶聯(lián)中的蛋白分子很多都是與Ca2+相關(guān)的[30],它們形成有效的細(xì)胞器叫Ca2+轉(zhuǎn)運(yùn)機(jī)制。有學(xué)者指出心衰時(shí)胞漿Na+的增加導(dǎo)致心肌細(xì)胞活性氧的增加[31],在缺氧/復(fù)氧過程中,鈣敏感受體激活通過肌醇1,4,5-三磷酸受體途徑,是SR Ca2+釋放入線粒體,引起心肌細(xì)胞的凋亡。心肌細(xì)胞線粒體的鈣釋放主要通過線粒體NCX,研究發(fā)現(xiàn),灌流線粒體NCX特異性阻斷劑CGP37157使成年大鼠心肌組織中環(huán)磷酸腺苷水平升高,這可能與環(huán)磷酸腺苷活化蛋白激酶A,而蛋白激酶A又使RyR2的特異磷酸化位點(diǎn)ser2808、ser2814磷酸化,FKBP12.6結(jié)合蛋白結(jié)合RyR2的能力降低,導(dǎo)致SR在靜息期的鈣泄漏有關(guān)[32]。Neumann認(rèn)為,線粒體NCX特異性阻斷劑CGP37157促進(jìn)了RyR2的活化且抑制了SERCA2a通道[33]。
筆者在已建立的胎羊心臟轉(zhuǎn)流模型中,利用自身胎盤作為氧合器,進(jìn)行氣體交換,提供胎羊生理性低氧(20~30 mm Hg)[34-38]。低氧是胎兒心臟發(fā)育過程中不可或缺的生長(zhǎng)條件,研究顯示低氧激活HIF-1,參與早期胎兒心臟的形成、冠脈血管的生長(zhǎng)、流出道的成形和中后期的胎兒心臟發(fā)育等[39]。HIF-1是一個(gè)由氧敏感的α亞基和結(jié)構(gòu)性表達(dá)的β亞基組成的異源二聚體。HIF-1β在細(xì)胞內(nèi)的表達(dá)水平相對(duì)穩(wěn)定,而HIF-1α的活性和表達(dá)水平受氧濃度的影響[40-41]。常氧下HIF-1α被脯氨酸羥化酶(prolyl hydroxylases,PHD)作用后,經(jīng)泛素-蛋白酶體途徑迅速被降解;低氧下PHD受到抑制,HIF-1α穩(wěn)定性增強(qiáng),轉(zhuǎn)移到細(xì)胞核與HIF-1β形成HIF-1,作用于靶基因的缺氧反應(yīng)元件,激活轉(zhuǎn)錄過程,其調(diào)控基因涉及胎兒心臟發(fā)育的多個(gè)環(huán)節(jié)[42]。胎羊體外循環(huán)誘導(dǎo)全身炎癥反應(yīng)、手術(shù)應(yīng)激,促進(jìn)肝臟內(nèi)核因子(NF-kappa B,NF-KB)的激活[43]。研究表明NF-KB與HIF-1具有相互促進(jìn)作用,進(jìn)一步誘導(dǎo)凋亡、抗凋亡、胎兒糖酵解等相關(guān)基因的表達(dá)[44]。因此,推測(cè)胎羊體外循環(huán)過度增強(qiáng)HIF-1活性,以適應(yīng)體外循環(huán)狀態(tài)下的低氧環(huán)境。為節(jié)約用氧,低氧下合成ATP的氧化磷酸化過程被抑制,HIF-1促進(jìn)無氧糖酵解增強(qiáng),胎盤代謝的再調(diào)整使得供給胎兒的能量底物減少[45]。胎羊體外循環(huán)的研究也顯示胎羊體內(nèi)儲(chǔ)存的肝糖原被大量消耗,乳酸值顯著升高,孕羊提供的血糖減少,使胎羊的血糖水平下降[46]。在過度激活的HIF-1作用下胎羊能量匱乏,對(duì)胎羊各臟器功能產(chǎn)生不利影響。
國(guó)內(nèi)外胎羊體外循環(huán)的研究已證實(shí)心臟不停跳、生理性低氧的體外循環(huán)影響胎羊心室功能,降低心肌細(xì)胞SERCA2a蛋白含量,促進(jìn)心肌肌鈣蛋白的降解[36,38]。相關(guān)研究證實(shí)胎羊體外循環(huán)后心肌細(xì)胞出現(xiàn)明顯Ca2+超載現(xiàn)象。胎兒心肌細(xì)胞SR發(fā)育不成熟,鈣離子儲(chǔ)備少,但是SR仍然是CICR機(jī)制中鈣離子釋放和回收的重要細(xì)胞器。通過上述Ca2+通道進(jìn)入細(xì)胞內(nèi)的Ca2+作用于SR膜上的RyR2,啟動(dòng)CICR機(jī)制,SR釋放Ca2+,與細(xì)胞外進(jìn)入的Ca2+一起產(chǎn)生鈣瞬變,促進(jìn)肌絲的滑動(dòng),發(fā)生心肌收縮現(xiàn)象;達(dá)到鈣瞬變的峰值后,SERCA2a、NCX等轉(zhuǎn)運(yùn)蛋白將胞漿內(nèi)增多的鈣離子回收到SR內(nèi)或泵出細(xì)胞外,使胞漿內(nèi)Ca2+濃度迅速下降,肌絲滑動(dòng)復(fù)員,心肌舒張[47]。在SERCA2a編碼基因的啟動(dòng)子上也有HIF-1結(jié)合的缺氧反應(yīng)元件,研究顯示低氧和HIF-1抑制胚胎心肌細(xì)胞SERCA2a的表達(dá)和活性[48]。
綜上所述,心肌細(xì)胞Ca2+代謝受很多因素的影響,在心肌保護(hù)中起到重要作用。胎兒心肌細(xì)胞興奮收縮耦聯(lián)中的Ca2+代謝依賴細(xì)胞膜Ca2+通道和CICR機(jī)制[49-51]。胎羊生理性低氧體外循環(huán)存在過度激活HIF-1的風(fēng)險(xiǎn),一方面通過無氧糖酵解迅速消耗胎羊有限的糖原儲(chǔ)備和母體來源的能量,使胎羊心肌細(xì)胞處于能量匱乏狀態(tài);另一方面,HIF-1抑制SERCA2a的表達(dá),降低SR攝取鈣離子的能力,同時(shí)HIF-1上調(diào)胎羊心肌細(xì)胞NCX的表達(dá),在能量供應(yīng)不足的情況下,NCX促進(jìn)Ca2+內(nèi)流,減少鈣離子排出,從而產(chǎn)生Ca2+超載,激活鈣離子依賴的蛋白酶,影響心肌收縮蛋白的功能,產(chǎn)生心功能不良。因此,HIF-1可能是胎羊體外循環(huán)心功能不良發(fā)生機(jī)制中的關(guān)鍵環(huán)節(jié)。通過降低HIF-1的活性,提供能量底物促進(jìn)Ca2+的轉(zhuǎn)運(yùn),增強(qiáng)心肌細(xì)胞調(diào)節(jié)Ca2+的能力,為胎羊體外循環(huán)的心肌保護(hù)提供新方法。
參考文獻(xiàn):
[1]Nelle M,Raio L,Pavlovic M,et al.Prenatal diagnosis and treatment planning of congenital heart defects-possibilities and limits[J].World J Pediatr,2009,5(1):18-22.
[2]張珂,賀晶.胎兒心肌電生理的發(fā)育[J].中國(guó)計(jì)劃生育和婦產(chǎn)科.2014,6(5):19-21.
[3]Endoh M.Cardiac Ca2+signaling and Ca2+sensitizers[J].Circ J,2008,72(12):1915-1925.
[4]Gyorke S,Gyorke I,Lukyanenko V,et al.Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle[J].Front Biosci,2002,d1454-d1463.
[5]Yatani A,Shen YT,Yan L,et al.Down regulation of the L-type Ca2+channel,GRK2,and phosphorylated phospholamban:protective mechanisms for the denervated failing heart[J].J Mol Cell Cardiol,2006,40(5):619-628.
[6]Bround MJ,Wambolt R,Luciani DS,et al.Cardiomyocyte ATP production,metabolic flexibility,and survival require calcium flux through cardiac ryanodine receptors in vivo[J].J Biol Chem,2013,288(26):18975-18986.
[7]劉關(guān)省,沈亞峰,王永亮,等.PKA信號(hào)通路與ryanodine受體介導(dǎo)的心肌及肌漿網(wǎng)鈣泄漏關(guān)系的研究[J].電子顯微學(xué)報(bào),2009,28(6):567-572.
[8]Belevych AE,Terentyev D,Terentyeva R,et al.The relationship between arrhythmogenesis and impaired contractility in heart failure:role of altered ryanodine receptor function[J].Cardiovasc Res,2011,90(3):493-502.
[9]Respress JL,van Oort RJ,Li N,Rolim N,et al.Role of RyR2 phosphorylation at S2814 during heart failure progression[J].Circ Res,2012,110(11):1474-1483.
[10]Oestreich EA,Malik S,Goonasekera SA,et al.Epac and phospholipase Cepsilon regulate Ca2+release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinaseⅡ[J].J Biol Chem,2009,284(3):1514-1522.
[11]Sucharov CC,Mariner PD,Nunley KR,et al.A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction[J].Am J Physiol Heart Circ Physiol,2006,291(3):H1299-1308.
[12]Pereira L,Cheng H,Lao DH,et al.Epac2 mediates cardiacβ1-adrenergic-dependent sarcoplasmic reticulum Ca2+leak and ar-rhythmia[J].Circulation,2013,127(8):913-922.
[13]Fischer TH,Herting J,Tirilomis T,et al.Ca2+/calmodulin-dependent protein kinaseⅡand protein kinase A differentially regulate sarcoplasmic reticulum Ca2+leak in human cardiac pathology[J].Circulation,2013,128(9):970-981.
[14]Nie HG,Hao LY,Xu JJ,et al.Distinct roles of CaM and Ca2+/CaM-dependent protein kinaseⅡin Ca2+-dependent facilitation and inactivation of cardiac L-type Ca2+channels[J].J Physiol,Sci,2007,57(3):167-173.
[15]Ronkainen JJ,Hanninen SL,Korhonen T,et al.Ca2+-calmodulin-dependent protein kinaseⅡrepresses cardiac transcription of the L-type calcium channel α1C-subunit gene(Cacnal c) by DREAM translocation[J].J Physiol,2011,589(Pt 11):2669-2686.
[16]Anthony DF,Beattie J,Paul A,et al.Interaction of calcium/calmodulin-dependent protein kinaseⅡdelta C with sorcin in directly modulates ryanodine receptor function in cardiac myocytes[J].J Mol Cell Cardiol,2007,43(4):492-503.
[17]Guo T,Comea RL,Huke S,et al.Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and effects on Ca sparks[J].Circ Res,2010,106(11):1743-1752.
[18]Kemi OJ,Elingsen O,Ceci M,et al.Aerobic interval training enhances cardiomyocyte contractility and Ca2+cycling by phosphorylation of CaMKⅡand Thr-17 of phospholamban[J].J Mol Cell Cardiol,2007,43(3):354-361.
[19]Okazaki K,Maltepe E.Oxygen,epigenetics and stem cell fate[J].Regen Med Jan,2006,1(1):71-83.
[20]Dunwoodie SL.The role of hypoxia in development of the mammalian embryo[J].Dev Cell Dec.2009,17(6):755-773.
[21]Reed TD,Babu GJ,Ji Y,et al.The expression of SR calcium transport ATPase and the Na+/Ca2+exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism[J].J Mol Cell Cardiol Mar,2000,32(3):453-464.
[22]Liu XH,Zhang ZY,Andersson KB,et al.Cardiomyocyte-specific disruption of Serca2 in adult mice causes sarco(endo) plasmic reticulum stress and apoptosis[J].Cell Calcium,2011,49(4):201-207.
[23]Morimoto S,Hongo K,Kusakari Y,et al.Genetic modulation of the SERCA activity does not affect the Ca(2+) leak from the cardiac sarcoplasmic reticulum[J].Cell Calcium,2014,55(1):17-23.
[24]Lalevee N,Rebsamen MC,Barrere Lemaire S,et al.Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes[J].Cardiovasc Res,2005,67(2):216-224.
[25]Kuwahara K,Saito Y,Takano M,et al.NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function[J].EMBO J,2003,22(23):6310-6321.
[26]DiPolo R,Beauge L.Differential up-regulation of Na+-Ca2+exchange by phosphoarginine and ATP in dialysed squid axons[J].J Physiol,1998,507(Pt 3):737-747.
[27]Valsecchi V,Pignataro G,Prete AD,et al.NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning[J].Stroke,2011,42(3):754-763.
[28]畢勝輝,金振曉,王喜明,等.反向鈉鈣交換體在大鼠心臟鈣預(yù)處理中的作用[J].中國(guó)體外循環(huán)雜志,2008,6(1):36-39.
[29]Maack C,Cortassa S,Aon MA,et al.Elevated cytosolic Na+decreases mitochondrial Ca2+uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes[J].Circ res,2006,99(2):172-182.
[30]Raturi A,Simmen T.Where the endoplasmic reticulum and the mitochondrion tie the knot:the mitochondria-associated membrane(MAM)[J].Biochim Biophys Acta,2013,1833(1):213-224.
[31]Ruiz-Meana M,Fernandez-Sanz C,Garcia-Dorado D.The SR-mitochondria interaction:a new player in cardiac pathophysiology.[J].Cardiovasc Res,2010,88(1):30-39.
[32]王永亮,沈亞峰,劉關(guān)省,等.CGP37157對(duì)靜息期心肌細(xì)胞鈣循環(huán)的影響[J].電子顯微學(xué)報(bào),2011,30(3):239-243.
[33]Neumann JT,Diaz-Sylvester PL,Fleischer S,et al.CGP-37157 inhibits the sarcoplasmic reticulum Ca2+ATPase and ativates ryanodine receptor channels in striated musc[J].Mol Phamacol,2011,79(1):141-147.
[34]Reddy VM,Liddicoat JR,Klein JR,et al.Long-term outcome after fetal cardiac bypass:fetal survival to full term and organ abnormalities[J].J Thorac Cardiovasc Surg,1996,111(3):536-544.
[35]Fenton KN,Zinn HE,Heinemann MK,et al.Long-term survivors of fetal cardiac bypass in lambs[J].J Thorac Cardiovasc Surg,1994,107(6):1423-1427.
[36]Duffy JY,Petrucci O,Baker RS,et al.Myocardial function after fetal cardiac bypass in an ovine model[J].J Thorac Cardiovasc Surg.2011,141(4):961-968.
[37]Heeb EA,Baker RS,Lam C,et al.Role of natriuretic peptides in cGMP production in fetal cardiac bypass[J].Ann Thorac Surg,2009,87(3):841-848.
[38]周成斌,張鏡芳,莊建,等.胎羊心臟轉(zhuǎn)流對(duì)胎羊心功能的影響[J].中華胸心外科雜志.2007;23(5):329-331.
[39]Patterson AJ,Zhang L.Hypoxia and fetal heart development[J].Curr Mol Med.2010,10(7):653-666.
[40]Date T,Mochizuki S,Belanger AJ,et al.Expression of constitutively stable hybrid hypoxia-inducible factor-1alpha protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury[J].Am J Physiol Cell Physiol,2005,288(2):C314-320.
[41]Zampino M1,Yuzhakova M,Hansen J,et al.Sex-related dimorphic response of HIF-1α expression in myocardial ischemia[J].Am J Physiol Heart Crie Physiol,2006:291(2):957-964.
[42]Hashmi S,Al-Salam S.Hypoxia-Inducible factor-1 alpha in the heart:A double agent[J]?Cardiol Rev,2012,20(6):268-273.
[43]Zhou CB,Zhuang J,Chen JM,et al.Decrease in inflammatory response does not prevent placental dysfunction after fetal cardiac bypass in goats[J].J Thorac Cardiovasc Surg,2012,143(2):445-450.
[44]Taylor CT.Interdependent roles for hypoxia inducible factor and nuclear factor-κB in hypoxic inflammation[J].Physiol,2008,586(Pt 17):4055-4059.
[45]Illsley NP,Caniggia I,Zamudio S.Placental metabolic reprogramming:do changes in the mix of energy-generating substrates modulate fetal growth[J]?Int J Dev Biol,2010,54(2-3):409-419.
[46]Lam CT,Baker RS,Clark KE,et al.Changes in fetal ovine metabolism and oxygen delivery with fetal bypass[J].Am J Physiol Regul Integr Comp Physiol,2011,301(1):R105-R115.
[47]Endoh M.Cardiac Ca2+signaling and Ca2+sensitizers[J].Circ J,2008,72(12):1915-1925.
[48]Ronkainen VP,Skoumal R,Tavi P.Hypoxia and HIF-1 suppress SERCA2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements[J].J Mol Cell Cardiol,2011,50(6):1008-1016.
[49]Seki S,Nagashima M,Yamada Y,et al.Fetal and postnatal development of Ca2+transients and Ca2+sparks in rat cardiomyocytes[J].Cardiovasc Res,2003,58(3):535-548.
[50]Kawamura Y,Ishiwata T,Takizawa M,et al.Fetal and neonatal development of Ca2+transients and functional sarcoplasmic reticulum in beating mouse hearts[J].Circ J,2010,74(7):142-145.
[51]Takizawa M,Ishiwata T,Kawamura Y,et al.Contribution of sarcoplasmic reticulum Ca2+release and Ca2+transporters on sarcolemmal channels to Ca2+transient in fetal mouse heart[J].Pediatr Res,2011,69(4):306-311.
(修訂日期:2015-11-09)
(收稿日期:2015-09-17)
通訊作者:周成斌,E-mail:zcbwwww@ 163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(81370274)
DOI:10.13498/j.cnki.chin.j.ecc.2016.01.15