TIM-3在慢性HBV感染中的免疫調(diào)節(jié)作用①
余真君朱堅勝綜述
(溫州醫(yī)科大學(xué)附屬臺州醫(yī)院感染科,臨海317000)
①本文受浙江省醫(yī)藥衛(wèi)生一般研究計劃(2012KYB237)基金資助。
慢性乙型肝炎病毒(Hepatitis B virus,HBV)感染是世界范圍內(nèi)最常見的慢性病毒性感染,全球約有 20 億人口有血清學(xué)證據(jù)證實現(xiàn)癥或既往感染HBV,其中約 3.5 億人口罹患慢性HBV感染[1,2];慢性HBV感染可致慢性肝病,與肝硬化、肝癌的發(fā)生密切相關(guān),在 2010 年全球疾病負(fù)擔(dān)研究中,HBV 感染位居首位,在導(dǎo)致死亡的病因中位列第 10(78.6萬/年)[3],基于這些數(shù)據(jù),WHO 將病毒性肝炎列入主要的公共健康問題[4]。
HBV作為一種非致細(xì)胞病變型病毒本身并不直接造成細(xì)胞損壞,其誘發(fā)的宿主固有及獲得性免疫反應(yīng)導(dǎo)致患者病情的發(fā)生發(fā)展。慢性乙型肝炎(CHB)患者自然殺傷細(xì)胞(NK)、樹突狀細(xì)胞(DC)、T淋巴細(xì)胞等免疫功能障礙,尤其是病毒特異性細(xì)胞毒性T淋巴細(xì)胞(CTL)免疫功能障礙是HBV逃避機體免疫系統(tǒng)攻擊、持續(xù)感染的重要原因[5,6]。但CHB發(fā)病機制復(fù)雜,HBV致機體NK、DC、CTL等細(xì)胞免疫功能障礙的確切機制仍不明確。近年來,T細(xì)胞免疫球蛋白黏蛋白分子3(T cell immunoglobulin and mucin domain containing molecule-3,Tim-3)在HBV感染中的免疫調(diào)節(jié)作用成為研究的新熱點,慢性HBV感染致機體免疫細(xì)胞功能障礙可能與其高水平表達(dá)的Tim-3信號蛋白相關(guān)。
1Tim-3與Tim家族
1.1Tim家族廣泛的免疫調(diào)節(jié)作用Tim-3是TIM家族的一員,過往又稱為甲肝病毒細(xì)胞受體2(Hepatitis A Virus Cellular Rreceptor2,HAVCR2)[7]。2001年,Mcintire等[8]在小鼠11號染色體上發(fā)現(xiàn)了一段可編碼具有免疫球蛋白可變域和黏蛋白域的T細(xì)胞膜蛋白的基因,將此基因命名為Tim基因。小鼠Tim基因家族位于染色體11B1.1,包括Tim-1~8,而人Tim基因家族位于染色體5q33.2,包括Tim-1、Tim-3、Tim-4[7]。Tim基因均編碼Ⅰ型細(xì)胞表面糖蛋白,包括N端免疫球蛋白樣結(jié)構(gòu)域、黏蛋白結(jié)構(gòu)域、跨膜區(qū)和胞內(nèi)區(qū)[9]。TIM-1表達(dá)于CD4+T細(xì)胞,參與T細(xì)胞的增殖與分化,抑制外周免疫耐受[10];Tim-2表達(dá)于小鼠Th2細(xì)胞,與配體Sema4A結(jié)合促進T細(xì)胞增殖擴增和炎癥因子分泌,且抑制Th2細(xì)胞活性[11];Tim-4表達(dá)于抗原遞呈細(xì)胞(APC)[12],是Tim-1的天然配體,可促進T細(xì)胞增殖、活化[9,13]。鑒于Tim家族在調(diào)節(jié)免疫反應(yīng)方面的廣泛作用,遠(yuǎn)不止于T淋巴細(xì)胞,也有研究者建議將Tim解釋為“跨膜免疫球蛋白黏蛋白”[14]。
1.2Tim-3的雙重免疫調(diào)節(jié)作用Khademi[15]首先報道人輔助性T細(xì)胞1(Th1)高水平表達(dá)Tim-3,因而最初人們認(rèn)為Tim-3是Th1細(xì)胞特異表達(dá)的膜蛋白[16,17],后來發(fā)現(xiàn)Tim-3也表達(dá)于其他細(xì)胞,如CD4+T 細(xì)胞、CD8+T 細(xì)胞、NK細(xì)胞、DC細(xì)胞、單核細(xì)胞、巨噬細(xì)胞、肥大細(xì)胞等,最近也有研究發(fā)現(xiàn)Tim-3表達(dá)于腫瘤細(xì)胞,如黑色素瘤細(xì)胞、肺癌細(xì)胞、胃癌細(xì)胞等[18-21],并可能為腫瘤患者的獨立預(yù)后因素。
在獲得性免疫反應(yīng)中,Tim-3一直充當(dāng)免疫抑制分子為人們所認(rèn)知,體外環(huán)境下,Tim-3與其配體半乳糖凝甘素-9(Gal-9)結(jié)合可誘導(dǎo)細(xì)胞內(nèi)鈣流出,使Th1細(xì)胞聚合、死亡;體內(nèi)給予Tim-3配體Gal-9,致使干擾素γ等細(xì)胞因子分泌減少,下調(diào)Th1免疫反應(yīng)、誘導(dǎo)免疫耐受[16];在動物實驗研究中人們發(fā)現(xiàn),Tim-3免疫球蛋白可促使小鼠Th1細(xì)胞高度增殖、Th1型細(xì)胞因子分泌增加,但同樣的實驗方法應(yīng)用于Tim-3基因敲出的小鼠時卻無法得到類似的實驗結(jié)果,進一步說明Tim-3與配體的結(jié)合反應(yīng)是抑制Th1細(xì)胞反應(yīng)、誘導(dǎo)免疫耐受的關(guān)鍵[17]。
然而在固有免疫反應(yīng)中情況卻有所不同。在一項體外實驗研究中,Gleason等[22]設(shè)計了過表達(dá)Tim-3信號蛋白的NK92細(xì)胞株,發(fā)現(xiàn)在可溶性rhGal-9存在的情況下,NK92細(xì)胞株IFN-γ分泌量明顯上調(diào),同時利用單克隆抗體阻斷Tim-3反向驗證了這一實驗結(jié)果。同樣地Anderson等[23]研究表明在固有免疫反應(yīng)中,表達(dá)于抗原遞呈細(xì)胞(APCs)表面的Tim-3協(xié)同Toll樣受體(TLRs)促進促炎細(xì)胞因子TNF-α等的分泌,Kanzaki等[24]則證實Gal-9-Tim-3信號通路依劑量依賴方式誘導(dǎo)體外培養(yǎng)的樹突狀細(xì)胞(DC)TNF-α細(xì)胞因子的分泌。以上數(shù)據(jù)充分說明Tim-3信號通路對固有免疫反應(yīng)的促進作用,但也有很多研究恰巧提出相反的觀點。在膿毒癥的相關(guān)研究中,研究者發(fā)現(xiàn)Tim-3信號分子與膿毒癥的病情嚴(yán)重程度相關(guān),膿毒癥患者巨噬細(xì)胞過表達(dá)Tim-3,通過增加PI3K-Akt信號通路的磷酸化作用和A20的活化,抑制脂蛋白-Toll樣受4(LPS-TLR4)介導(dǎo)的NF-κB信號通路激活以及下游促炎細(xì)胞因子的分泌,進而抑制膿毒癥患者的全身炎癥反應(yīng);而阻斷或下調(diào)Tim-3信號蛋白可致巨噬細(xì)胞活化,加重膿毒癥患者病情[25]。Chiba等[26]發(fā)現(xiàn)腫瘤患者體內(nèi)腫瘤相關(guān)樹突狀細(xì)胞(TADCs)高表達(dá)的Tim-3與核蛋白HMGB1結(jié)合阻止核酸進入胞內(nèi)體囊泡抑制核酸介導(dǎo)的抗腫瘤免疫反應(yīng),Monney等[27]證實加入Tim-3單克隆抗體致實驗性自身免疫性腦脊髓炎(EAE)巨噬細(xì)胞增殖激活,增加EAE的臨床嚴(yán)重程度。綜上,Tim-3信號通路在不同的免疫環(huán)境下可促進或者抑制固有免疫反應(yīng);Tim-3信號通路在多種臨床疾病如感染、腫瘤、自身免疫疾病和移植免疫耐受等的發(fā)病機制中扮演重要角色。
2Tim-3和慢性HBV感染
慢性HBV感染致機體免疫功能障礙、失調(diào)和免疫耐受,與病毒的持續(xù)感染及病情預(yù)后密切相關(guān),但其確切的免疫調(diào)節(jié)機制仍不明確。下面將從Tim-3信號通路對CD4+T細(xì)胞、CD8+T細(xì)胞、DC細(xì)胞、NK細(xì)胞等免疫功能的調(diào)節(jié)作用,探討Tim-3信號通路在慢性HBV感染發(fā)生、發(fā)展中的作用。
2.1CD4+T細(xì)胞細(xì)胞免疫是人體免疫系統(tǒng)的重要組成部分,在清除病原體入侵或清除癌變組織中發(fā)揮重大作用,而其中T淋巴細(xì)胞在細(xì)胞免疫中處于中心地位[28]。CD4+的輔助性T細(xì)胞(Th)不是一種單一的細(xì)胞,而是一系列具有不同功能的細(xì)胞群,目前為止至少證明存在4類不同的亞群,Th1細(xì)胞、Th2細(xì)胞、Th17細(xì)胞、調(diào)節(jié)性T細(xì)胞(Treg)[29]。CD4+T細(xì)胞各亞群通過分泌細(xì)胞因子、趨化因子激活或募集靶細(xì)胞進而在細(xì)胞免疫中發(fā)揮重要作用。Th1細(xì)胞介導(dǎo)細(xì)胞內(nèi)免疫反應(yīng)清除細(xì)胞內(nèi)病原體,Th2型免疫反應(yīng)清除細(xì)胞外病原體,兩者平衡是免疫穩(wěn)態(tài)的關(guān)鍵,而慢性HBV感染過程中,多種因素影響Th細(xì)胞增殖、平衡,破壞細(xì)胞因子網(wǎng)絡(luò);選擇性高表達(dá)于Th1細(xì)胞而非Th2細(xì)胞的Tim-3抑制細(xì)胞因子IFN-γ、IL-12等分泌,減弱宿主清除HBV的能力。調(diào)節(jié)性T細(xì)胞(Treg)高表達(dá)細(xì)胞表面標(biāo)志物CD25、Foxp3,在維持外周免疫穩(wěn)態(tài)方面起重要作用,是免疫調(diào)節(jié)的抑制器[30];體外實驗研究表明過表達(dá)的Tim-3可促進Treg細(xì)胞增殖,抑制免疫反應(yīng)[31]。慢性HBV感染過程中Tim-3的表達(dá)變化與CD4+T細(xì)胞群免疫功能障礙密切相關(guān),在CHB患者與健康者的對比研究中,Wang等[32]發(fā)現(xiàn)CHB患者組CD4+T細(xì)胞Tim-3和程序死亡因子1(PD-1)表達(dá)水平均顯著升高;與此結(jié)果相一致的是,Nebbia等[33]發(fā)現(xiàn)與健康對照組相比,CHB患者組表達(dá)Tim-3的CD4+T、CD8+T細(xì)胞比例增高。體外實驗表明阻斷Tim-3-Gal-9信號通路致使Treg細(xì)胞抑制免疫反應(yīng)活性減弱,Th1型細(xì)胞因子分泌水平增高[34];在不久的將來,Tim-3及Tim-3+Treg細(xì)胞有希望成為新的免疫調(diào)節(jié)治療的靶分子,為慢性HBV感染的治療開辟一條新的途徑[35]。
2.2CD8+T細(xì)胞CD8+T淋巴細(xì)胞也即細(xì)胞毒性T細(xì)胞(CTL),可直接對HBV感染肝細(xì)胞產(chǎn)生殺傷作用并分泌抗病毒細(xì)胞因子,是機體清除體內(nèi)HBV病毒的主要機制;在慢性HBV感染過程中,病毒特異性CD8+T細(xì)胞耗竭、免疫功能失調(diào)或障礙是機體無法清除體內(nèi)HBV病毒的直接原因,而CHB患者CD8+T細(xì)胞高水平表達(dá)的Tim-3與其免疫功能失調(diào)或障礙密切相關(guān)。Wu等[36]選取20例CHB組患者和20例健康成人組對比研究發(fā)現(xiàn),CHB患者組外周血病毒特異性CD8+T細(xì)胞Tim-3表達(dá)明顯高于健康對照組;上調(diào)表達(dá)的Tim-3抑制CD8+T細(xì)胞增殖,下調(diào)抗病毒細(xì)胞因子IFN-γ等的分泌水平,促進CD8+T細(xì)胞凋亡;而阻斷Tim-3信號通路能重塑CHB患者病毒特異性CD8+T細(xì)胞的免疫功能,顯著提升CD8+T細(xì)胞在加入HBV特異性抗原肽刺激后的增殖和抗病毒細(xì)胞因子分泌能力[36,37]。在HBV感染小鼠模型中,Ju等[38]發(fā)現(xiàn)阻斷Tim-3信號通路可使肝臟CD8+T細(xì)胞IFN-γ分泌增多,進一步證實了上述結(jié)論;同樣在HCV、HIV感染患者中都印證了Tim-3信號通路對CD8+T細(xì)胞類似的免疫調(diào)控作用[39]。
2.3樹突狀細(xì)胞(Dendritic cells,DC)DC是機體功能最強的專職抗原遞呈細(xì)胞(Antigen presenting cells,APC),按其來源分為髓系來源DC(mDC)和漿細(xì)胞樣DC(pDC);DC細(xì)胞能高效地攝取、加工處理和遞呈抗原,誘導(dǎo)特異性的細(xì)胞毒性T淋巴細(xì)胞免疫應(yīng)答,促進其細(xì)胞增殖,處于啟動、調(diào)控、并維持反應(yīng)的中心環(huán)節(jié)[40]。同前文所述,Tim-3在不同免疫環(huán)境下可促進或抑制DC細(xì)胞免疫活性[25,41];在慢性HBV感染過程中,高水平表達(dá)的Tim-3抑制DC細(xì)胞免疫活性。與健康成人相比,CHB患者外周血中mDC、pDC數(shù)量顯著減少,其表面共刺激分子CD80、CD86及主要組織相容性復(fù)合體II類分子(MHCII)表達(dá)水平顯著下降[42],分泌細(xì)胞因子水平下調(diào),刺激T細(xì)胞增殖能力減弱[43]。CHB患者DC免疫功能障礙與病毒特異性CD8+T細(xì)胞免疫應(yīng)答反應(yīng)減弱、抗病毒細(xì)胞因子分泌減少有緊密聯(lián)系,是病毒持續(xù)感染、預(yù)后不良的重要原因,Tim-3信號通路則在其中起重要的調(diào)節(jié)作用[44-46]。Li等[47]發(fā)現(xiàn)CHB患者肝臟庫普弗細(xì)胞(KC)、DCTim-3表達(dá)水平升高,高水平表達(dá)的Tim-3抑制KC、DC細(xì)胞活性,且與患者ALT水平等肝功能指標(biāo)呈負(fù)相關(guān)。然而在體外實驗研究中,Jan等[48]發(fā)現(xiàn)純化的乙肝表面抗原(HBsAg)可刺激健康成人外周血單核細(xì)胞來源樹突狀細(xì)胞(MD-DCs)表面標(biāo)志物CD80、CD83、CD86等的表達(dá)水平,通過NF-κB、p38 MAPK信號通路促進炎癥因子IL-12、IL-10分泌;在急性HBV感染過程中,Tim-3信號通路對DC細(xì)胞免疫功能的調(diào)節(jié)作用是否會因為免疫環(huán)境的變化而變化目前鮮有報道,需要進一步的研究驗證。
2.4NK細(xì)胞NK細(xì)胞是最主要的非特異性免疫的抗病毒效應(yīng)細(xì)胞群,主要通過釋放穿孔素、顆粒酶和分泌干擾素發(fā)揮抗病毒作用,是HBV感染誘發(fā)的免疫反應(yīng)中不可或缺的角色。HBV慢性感染過程中NK細(xì)胞活性受到顯著抑制,是機體抗病毒免疫應(yīng)答低下的重要原因[49]。Rong等[50]檢測CHB患者外周血自然殺傷細(xì)胞上Tim-3表達(dá)水平,發(fā)現(xiàn)與健康對照組相比,CHB患者組及慢加急性肝衰竭組(ACLF)患者外周血NK細(xì)胞Tim-3表達(dá)水平均顯著上升,且與患者TNF-α分泌水平負(fù)相關(guān)。相一致的是,Ju等[49]研究發(fā)現(xiàn)與正常對照組和脂肪肝患者相比,CHB患者外周血單個核細(xì)胞(PBMC)、循環(huán)NK細(xì)胞及肝臟浸潤淋巴細(xì)胞(LILs)上Tim-3表達(dá)均明顯增高;同時在HBV表達(dá)載體轉(zhuǎn)染的NK92細(xì)胞和HBV轉(zhuǎn)基因小鼠肝臟分離出的NK細(xì)胞中也發(fā)現(xiàn)高水平表達(dá)的Tim-3,這些都說明了慢性HBV感染上調(diào)NK細(xì)胞Tim-3表達(dá)水平,而高表達(dá)水平的Tim-3導(dǎo)致NK細(xì)胞功能失調(diào)或障礙。為進一步驗證這一結(jié)論,研究者應(yīng)用抗Tim-3抗體或Tim-3-Fc融合蛋白阻斷Tim-3信號通路,發(fā)現(xiàn)HBV轉(zhuǎn)染的NK92細(xì)胞以及來自CHB患者的NK細(xì)胞細(xì)胞毒性均增強,IFN-γ分泌水平升高;同時在HIV感染者中亦發(fā)現(xiàn)Tim-3信號通路對NK細(xì)胞免疫功能的負(fù)性調(diào)控作用[51]。以上均提示Tim-3信號通路的免疫調(diào)控作用在慢性病毒感染性疾病發(fā)病機制及病情進展中的重要作用,Tim-3信號分子可能作為干預(yù)靶點,給慢性乙肝及其他慢性病毒感染性疾病的治療帶來希望。
3總結(jié)
生活條件的改善、醫(yī)學(xué)的進步,尤其是有效乙肝疫苗的應(yīng)用,世界范圍內(nèi)HBV感染情況都較前有大幅改善;但不可否認(rèn),HBV感染至今仍是我國乃至世界共同面對的一大難題和重大的負(fù)擔(dān),繼續(xù)對其深入研究的腳步不會停止。Tim-3,作為一個新興研究的熱點越來越受到人們的關(guān)注。隨著研究的深入,其在不同免疫細(xì)胞乃至其他組織細(xì)胞、腫瘤細(xì)胞上的表達(dá)及功能已逐漸明確,Tim-3在多種臨床疾病中如病毒感染、腫瘤、哮喘、過敏反應(yīng)、自身免疫疾病等均具有重要免疫調(diào)控作用。慢性HBV感染情況依舊嚴(yán)峻,慢性HBV感染可導(dǎo)致機體CD4+T、CD8+T、DC、NK細(xì)胞等Tim-3表達(dá)水平升高,過表達(dá)的Tim-3抑制免疫細(xì)胞免疫活性,致機體免疫功能紊亂或障礙。機體免疫功能障礙無法清除體內(nèi)HBV病毒,是CHB患者最主要的問題,而干預(yù)或阻斷Tim-3信號通路有助于機體免疫功能的恢復(fù);但是阻斷、干預(yù)試驗都僅僅限于體外動物實驗或細(xì)胞實驗,距離臨床應(yīng)用還需要更進一步的研究以及大規(guī)模的臨床對照研究。人們對Tim-3在HBV感染免疫反應(yīng)調(diào)節(jié)作用機制的逐步探索,將為以后更有效的臨床治療方法提供可能。
參考文獻:
[1]Trepo C,Chan HL,Lok A.Hepatitis B virus infection [J]. Lancet,2014,
[2]Liaw YF,Chu CM.Hepatitis B virus infection[J].Lancet,2009,373(9663):582-592.
[3]Hatzakis A,Van Damme P,Alcorn K,etal.The state of hepatitis B and C in the Mediterranean and Balkan countries:report from a summit conference[J].J Viral Hepat,2013,20(Suppl 2):1-20.
[4]Lozano R,Naghavi M,Foreman K,etal.Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010:a systematic analysis for the global burden of disease study 2010[J].Lancet,2012,380(9859):2095-2128.
[5]Rehermann B.Immune responses in hepatitis B virus infection[J].Semin Liver Dis,2003,23(1):21-38.
[6]Rehermann B,Lau D,Hoofnagle JH,etal.Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection[J].J Clin Invest,1996,97(7):1655-1665.
[7]Kuchroo VK,Umetsu DT,Dekruyff RH,etal.The TIM gene family:emerging roles in immunity and disease[J].Nat Rev Immunol,2003,3(6):454-462.
[8]Mcintire JJ,Umetsu SE,Akbari O,etal.Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family[J].Nat Immunol,2001,2(12):1109-1116.
[9]Meyers JH,Sabatos CA,Chakravarti S,etal.The TIM gene family regulates autoimmune and allergic diseases[J].Trends Mol Med,2005,11(8):362-369.
[10]Umetsu SE,Lee WL,Mcintire JJ,etal.TIM-1 induces T cell activation and inhibits the development of peripheral tolerance[J].Nat Immunol,2005,6(5):447-454.
[11]Mariat C,Sánchez-Fueyo A,Alexopoulos SP,etal.Regulation of T cell dependent immune responses by TIM family members[J].Philos Trans R Soc Lond B Biol Sci,2005,360(1461):1681-1685.
[12]Mesri M,Smithson G,Ghatpande A,etal.Inhibition of in vitro and in vivo T cell responses by recombinant human Tim-1 extracellular domain proteins[J].Int Immunol,2006,18(3):473-484.
[13]Meyers JH,Chakravarti S,Schlesinger D,etal.TIM-4 is the ligand for TIM-1,and the TIM-1-TIM-4 interaction regulates T cell proliferation[J].Nat Immunol,2005,6(5):455-464.
[14]Su EW,Lin JY,Kane LP.TIM-1 and TIM-3 proteins in immune regulation[J].Cytokine,2008,44(1):9-13.
[15]Khademi M,Illés Z,Gielen AW,etal.T cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis[J].J Immunol,2004,172(11):7169-7176.
[16]Zhu C,Anderson AC,Schubart A,etal.The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J].Nat Immunol,2005,6(12):1245-1252.
[17]Sabatos CA,Chakravarti S,Cha E,etal.Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance[J].Nat Immunol,2003,4(11):1102-1110.
[18]Han G,Chen G,Shen B,etal.Tim-3:an activation marker and activation limiter of innate immune cells[J].Front Immunol,2013,4:449.
[19]Wiener Z,Kohalmi B,Pocza P,etal.TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells[J].Journal of Investigative Dermatology,2007,127(4):906-914.
[20]Zhuang XE,Zhang XN,Xia XY,etal.Ectopic expression of TIM-3 in lung cancers a potential Independent prognostic factor for patients with NSCLC[J].Am J Clin Pathol,2012,137(6):978-985.
[21]Jiang J,Jin MS,Kong F,etal.Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer[J].PLoS One,2013,8(12):e81799.
[22]Gleason MK,Lenvik TR,Mccullar V,etal.Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9[J].Blood,2012,119(13):3064-3072.
[23]Anderson AC,Anderson DE,Bregoli L,etal.Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J].Science,2007,318(5853):1141-1143.
[24]Kanzaki M,Wada J,Sugiyama K,etal.Galectin-9 and T cell immunoglobulin mucin-3 pathway is a therapeutic target for type 1 diabetes[J].Endocrinology,2012,153(2):612-620.
[25]Yang X,Jiang X,Chen G,etal.T cell Ig mucin-3 promotes homeostasis of sepsis by negatively regulating the TLR response[J].J Immunol,2013,190(5):2068-2079.
[26]Chiba S,Baghdadi M,Akiba H,etal.Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J].Nat Immunol,2012,13(9):832-842.
[27]Monney L,Sabatos CA,Gaglia JL,etal.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J].Nature,2002,415(6871):536-541.
[28]Winter H,Van Den Engel NK,Rüttinger D,etal.Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines[J].J Transl Med,2007,5:56.
[29]Zhu J,Paul WE.CD4 T cells:fates,functions,and faults[J].Blood,2008,112(5):1557-1569.
[30]Nishimoto T,Kuwana M.CD4+CD25+Foxp3+regulatory T cells in the pathophysiology of immune thrombocytopenia[J].Semin Hematol,2013,50(Suppl 1):S43-S49.
[31]Ji XJ,Ma CJ,Wang JM,etal.HCV-infected hepatocytes drive CD4+CD25+Foxp3+regulatory T-cell development through the Tim-3/Gal-9 pathway[J].Eur J Immunol,2013,43(2):458-467.
[32]Wang L,Zhao C,Peng Q,etal.Expression levels of CD28,CTLA-4,PD-1 and Tim-3 as novel indicators of T-cell immune function in patients with chronic hepatitis B virus infection[J].Biomedical reports,2014,2(2):270-274.
[33]Nebbia G,Peppa D,Schurich A,etal.Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection[J].PLoS One,2012,7(10):e47648.
[34]Wang F,Wan L,Zhang C,etal.Tim-3-Galectin-9 pathway involves the suppression induced by CD4+CD25+regulatory T cells[J].Immunobiology,2009,214(5):342-349.
[35]Moorman JP,Wang JM,Zhang Y,etal.Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection[J].J Immunol,2012,189(2):755-766.
[36]Wu W,Shi Y,Li J,etal.Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection[J].Virol J,2011,8:113.
[37]Wu W,Shi Y,Li S,etal.Blockade of Tim-3 signaling restores the virus-specific CD8+T-cell response in patients with chronic hepatitis B[J].Eur J Immunol,2012,42(5):1180-1191.
[38]Ju Y,Hou N,Zhang XN,etal.Blockade of Tim-3 pathway ameliorates interferon-gamma production from hepatic CD8+T cells in a mouse model of hepatitis B virus infection[J].Cell Mol Immunol,2009,6(1):35-43.
[39]Jones RB,Ndhlovu LC,Barbour JD,etal.Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection[J].J Exp Med,2008,205(12):2763-2779.
[40]Steinman RM.Decisions about dendritic cells:past,present,and future[J].Annu Rev Immunol,2012,30:1-22.
[41]Nagahara K,Arikawa T,Oomizu S,etal.Galectin-9 increases Tim-3+dendritic cells and CD8+T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions[J].J Immunol,2008,181(11):7660-7669.
[42]Duan XZ,Wang M,Li HW,etal.Decreased frequency and function of circulating plasmocytoid dendritic cells (pDC) in hepatitis B virus infected humans[J].J Clin Immunol,2004,24(6):637-646.
[43]Van Der Molen RG,Sprengers D,Binda RS,etal.Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B[J].Hepatology,2004,40(3):738-746.
[44]Woltman AM,Op Den Brouw ml,Biesta PJ,etal.Hepatitis B virus lacks immune activating capacity,but actively inhibits plasmacytoid dendritic cell function[J].PLoS One,2011,6(1):e15324.
[45]Guo S,Yang C,Mei F,etal.Down-regulation of Z39Ig on macrophages by IFN-gamma in patients with chronic HBV infection[J].Clin Immunol,2010,136(2):282-291.
[46]Op Den Brouw ml,Binda RS,Van Roosmalen MH,etal.Hepatitis B virus surface antigen impairs myeloid dendritic cell function:a possible immune escape mechanism of hepatitis B virus[J].Immunology,2009,126(2):280-289.
[47]Li H,Wu K,Tao K,etal.Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma[J].Hepatology,2012,56(4):1342-1351.
[48]Jan RH,Lin YL,Chen CJ,etal.Hepatitis B virus surface antigen can activate human monocyte-derived dendritic cells by nuclear factor kappa B and p38 mitogen-activated protein kinase mediated signaling[J].Microbiol Immunol,2012,56(10):719-727.
[49]Ju Y,Hou N,Meng J,etal.T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B[J].J Hepatol,2010,52(3):322-329.
[50]Rong YH,Wan ZH,Song H,etal.Tim-3 expression on peripheral monocytes and CD3+CD16/CD56+natural killer-like T cells in patients with chronic hepatitis B[J].Tissue Antigens,2014,83(2):76-81.
[51]Finney CA,Ayi K,Wasmuth JD,etal.HIV infection deregulates Tim-3 expression on innate cells:combination antiretroviral therapy results in partial restoration[J].J Acquir Immune Defic Syndr,2013,63(2):161-167.
[收稿2015-03-11修回2015-04-22]
(編輯許四平)
通訊作者及指導(dǎo)教師:朱堅勝(1965年-),男,碩士,主任醫(yī)師,碩士生導(dǎo)師,主要從事慢性乙型肝炎發(fā)病機制方面的研究,E-mail:zhujs@enzemed.com。
作者簡介:余真君(1988年-),男,碩士,住院醫(yī)師,主要從事慢性乙型肝炎發(fā)病機制方面的研究,E-mail:yuzj2011@yeah.net。
中圖分類號R392.11
文獻標(biāo)志碼A
文章編號1000-484X(2016)02-0267-05
doi:10.3969/j.issn.1000-484X.2016.02.028