聶蘭艦,王玉芬,向在奎,王 蕾,王 慧
(中國(guó)建筑材料科學(xué)研究總院 石英與特種玻璃研究院,北京 100024)
高性能光學(xué)合成石英玻璃的制備和應(yīng)用
聶蘭艦*,王玉芬,向在奎,王 蕾,王 慧
(中國(guó)建筑材料科學(xué)研究總院 石英與特種玻璃研究院,北京 100024)
介紹了制備光學(xué)合成石英玻璃的常用工藝方法, 包括化學(xué)氣相沉積、等離子化學(xué)氣相沉積和間接合成法等;給出了不同光學(xué)石英玻璃使用的原材料、它們的特點(diǎn)及其在不同領(lǐng)域的應(yīng)用綜述了該項(xiàng)技術(shù)在國(guó)內(nèi)外的發(fā)展現(xiàn)狀。比較了上述制備方法的優(yōu)缺點(diǎn),其中立式化學(xué)氣相沉積工藝是目前最成熟的商業(yè)化工藝,可用于制備直徑達(dá)Φ600 mm以上、光學(xué)均勻性優(yōu)于2×10-6、抗激光損傷閾值達(dá)30 J/cm2@355 nm的大尺寸合成石英玻璃;等離子化學(xué)氣相沉積工藝可制備內(nèi)在質(zhì)量?jī)?yōu)異、羥基含量≤5×10-6、光譜透過(guò)率T190-4000 nm≥80%的全光譜透過(guò)石英玻璃;間接合成法可制備光吸收系數(shù)小于1×10-6/cm@1064 nm、羥基含量≤1×10-6、光譜透過(guò)率T157-4000 nm≥80%的石英玻璃,而且易于摻雜及控制缺陷,進(jìn)而制備各類摻雜特殊功能的石英玻璃。文章最后指出:上述制備工藝各有優(yōu)缺點(diǎn),應(yīng)根據(jù)高端光電技術(shù)領(lǐng)域的應(yīng)用需求采取適當(dāng)?shù)闹苽涔に嚒?/p>
光學(xué)石英玻璃;化學(xué)氣相沉積;等離子化學(xué)氣相沉積;間接合成法 ;綜述
石英玻璃是由二氧化硅單一組分構(gòu)成的特種工業(yè)技術(shù)玻璃,具有一系列特殊的物理和化學(xué)性能,并被新材料領(lǐng)域?qū)<易u(yù)為“玻璃之王”。其優(yōu)點(diǎn)如下:極佳的光譜特性,從紫外到紅外極寬的光譜范圍內(nèi)的光學(xué)透過(guò)能力(T157-4000 nm≥80%),尤其在紫外和深紫外光譜范圍內(nèi)的透過(guò)性能是一般光學(xué)玻璃所不具備的;優(yōu)良的耐高溫性能,其軟化點(diǎn)與白金的熔點(diǎn)相近,熱膨脹系數(shù)極小(5.5×10-7/℃),僅為陶瓷的1/6和普通玻璃的1/20;高介電場(chǎng)強(qiáng)度,低介電損失和極低的導(dǎo)電性,是極好的絕緣材料;較高的純度,人工合成石英玻璃的金屬離子總含量可控制在1×10-6以內(nèi);同時(shí)經(jīng)過(guò)摻雜的石英玻璃具有其他特殊性能,如光譜特性和超低膨脹系數(shù)等。石英玻璃現(xiàn)已成為近代科學(xué)技術(shù)和現(xiàn)代工業(yè)不可或缺的重要材料,在航空航天、激光核技術(shù)、半導(dǎo)體集成電路、光電器件和精密儀器等高技術(shù)領(lǐng)域具有廣泛的應(yīng)用,主要作為精密光學(xué)系統(tǒng)透鏡、反射鏡、棱鏡和窗口等的材料,其性能直接制約著相關(guān)裝備的分辨率、精度、穩(wěn)定性和可靠性等性能。
傳統(tǒng)的光學(xué)石英玻璃制備工藝有電熔、氣煉、化學(xué)氣相沉積(Chemical Vapor Deposition,CVD)、等離子化學(xué)氣相沉積(Plasma Chemical Vapor Deposition, PCVD)、間接合成法和溶膠-凝膠法等。電熔和氣煉工藝均是以高純石英砂為原料,經(jīng)過(guò)1 800 ℃以上高溫熔制成石英玻璃,由于原料純度和熔制工藝自身的局限,所制備的石英玻璃純度低、紫外透過(guò)率差,而且存在較多氣泡、雜點(diǎn)等缺陷,嚴(yán)重影響其光學(xué)性能,無(wú)法滿足高端光電技術(shù)領(lǐng)域的應(yīng)用需求。溶膠-凝膠法制備石英玻璃塊體時(shí),坯體易開(kāi)裂,有機(jī)原料引入的殘余碳導(dǎo)致玻璃在熔制過(guò)程易產(chǎn)生黑斑和氣泡,而且反應(yīng)時(shí)間較長(zhǎng),不利于工業(yè)化規(guī)模生產(chǎn)。本文針對(duì)高端光電技術(shù)領(lǐng)域中高性能光學(xué)石英玻璃的應(yīng)用需求,主要介紹了CVD、PCVD和間接合成法等制備工藝的優(yōu)缺點(diǎn)和發(fā)展現(xiàn)狀,以及這些工藝制備的光學(xué)合成石英玻璃的材料性能及應(yīng)用。
2.1 化學(xué)氣相沉積工藝(CVD)
CVD是指氣相含硅化合物(如SiCl4、SiH4和Si4O4(CH3)8等無(wú)機(jī)與有機(jī)原料)在H2-O2火焰中高溫水解或氧化生成SiO2微粒,并逐層沉積在旋轉(zhuǎn)的基體上形成透明石英玻璃。根據(jù)沉積基體的運(yùn)轉(zhuǎn)方式和反應(yīng)器的構(gòu)造,CVD分為臥式和立式兩種工藝形式,分別如圖1(a)和1(b)所示[1]。立式工藝可實(shí)現(xiàn)大尺寸合成石英玻璃的生產(chǎn),與臥式CVD工藝相比,具有沉積速率和效率高,爐膛溫度高且均勻,玻璃的光學(xué)均勻性好等明顯優(yōu)勢(shì)。目前,國(guó)際上CVD工藝合成石英玻璃主要采用立式工藝。CVD制備的合成石英玻璃的國(guó)內(nèi)牌號(hào)為JGS1,具有金屬雜質(zhì)含量低(<2×10-6)、遠(yuǎn)紫外透過(guò)率高(T190-2000nm≥85%)、光學(xué)均勻性高(優(yōu)于2×10-6)等特性;但其羥基含量高達(dá)1 000×10-6,在2.73 μm處存在較大的吸收峰,影響其紅外光學(xué)性能。此類合成石英玻璃廣泛應(yīng)用于航天、激光核技術(shù)、集成電路和精密儀器等領(lǐng)域。
圖1 臥式和立式化學(xué)氣相沉積工藝示意圖[1]Fig.1 Schematic diagram of synthetic silica glass prepared by horizontal and vertical processes of CVD
迄今,國(guó)際上只有美國(guó)康寧公司(Corning)、德國(guó)賀利氏石英公司(Heraeus)等幾大公司具備批量生產(chǎn)大尺寸、高性能光學(xué)石英玻璃的CVD工藝技術(shù)。其中,美國(guó)Corning公司[2-5]采用多燃燒器沉積技術(shù)實(shí)現(xiàn)了大尺寸、高品質(zhì)光學(xué)石英玻璃的制備,可批量生產(chǎn)口徑在Φ1 600 mm以下高性能石英玻璃的系列化產(chǎn)品,其光學(xué)均勻性優(yōu)于2×10-6(Φ600 mm的通光口徑內(nèi))、抗激光損傷閾值優(yōu)于14 J/cm2@248 nm和30 J/cm2@355 nm,沉積工藝如圖2所示。目前,這種高光學(xué)均勻性的石英玻璃主要應(yīng)用于以美國(guó)國(guó)家點(diǎn)火裝置(National Ignition Facility, NIF)為代表的大型激光核裝置和美國(guó)國(guó)家航空航天局(NASA)組織的系列航天衛(wèi)星、空間站等,作為這些工程裝置光學(xué)系統(tǒng)的透鏡、反射鏡和窗口等不可或缺的關(guān)鍵光學(xué)材料。以NIF裝置為例[6],其主體實(shí)質(zhì)上是一個(gè)龐大的多路大尺寸激光光學(xué)系統(tǒng)的陣列,共有192路光路,包括7 360個(gè)大口徑光學(xué)元件(口徑約為0.5~1.0 m),其中大口徑、高光學(xué)均勻性、高激光損傷閾值的石英玻璃光學(xué)元件共需2 000余件。而德國(guó)Heraeus公司的CVD工藝技術(shù)目前對(duì)我國(guó)實(shí)行技術(shù)封鎖,據(jù)了解其石英玻璃的產(chǎn)品性能與美國(guó)Corning公司的產(chǎn)品相當(dāng),也主要用于激光核技術(shù)和航天技術(shù)領(lǐng)域。
圖2 康寧公司CVD工藝合成石英玻璃示意圖[3]Fig.2 Schematic diagram of synthetic silica glass prepared by CVD process of Corning Co.
中國(guó)建筑材料科學(xué)研究總院(簡(jiǎn)稱中國(guó)建材總院)是我國(guó)最早從事CVD工藝技術(shù)研究的單位。該單位70年代初發(fā)明臥式沉積工藝,2000年以來(lái)突破傳統(tǒng)臥式工藝,首創(chuàng)立式沉積工藝,先后攻克氧氣帶料、多燃燒器沉積、二次熔融均化成型、精密退火等全自主知識(shí)產(chǎn)權(quán)的成套技術(shù)和裝備,實(shí)現(xiàn)了直徑在600 mm以上、光學(xué)均勻性為2.1×10-6、抗激光損傷閾值在10.5 J/cm2@248 nm和30 J/cm2@355 nm的大尺寸、高均勻、高閾值光學(xué)石英玻璃的制備和批量生產(chǎn)[7-17],在我國(guó)航天、激光核技術(shù)與精密儀器(如激光平面干涉儀)等領(lǐng)域?qū)崿F(xiàn)了技術(shù)突破。隨著高端光電技術(shù)領(lǐng)域的深入發(fā)展,CVD工藝合成石英玻璃將繼續(xù)向更大尺寸、更高光學(xué)均勻性、更高抗激光損傷閾值、三維均勻、多功能化等方向發(fā)展。
2.2 等離子化學(xué)氣相沉積工藝(PCVD)
PCVD工藝是指采用高純SiCl4為原料,以高頻等離子體火焰代替氫氧火焰氣相合成石英玻璃,其熔制工藝如圖3所示[18]。該工藝與傳統(tǒng)電熔工藝制備的石英玻璃統(tǒng)稱為紅外石英玻璃,國(guó)內(nèi)牌號(hào)為JGS3。PCVD工藝制備的石英玻璃的金屬雜質(zhì)和羥基含量低,具備優(yōu)良的紫外-紅外光譜透過(guò)性能、穩(wěn)定的折射率以及良好的結(jié)構(gòu)均勻性等特性,并且無(wú)氣泡和雜點(diǎn)等缺陷,廣泛用作各類光學(xué)透鏡和高穩(wěn)定性慣導(dǎo)器件的基材,如太陽(yáng)器模擬、紅外跟蹤系統(tǒng)、紫外-可見(jiàn)-紅外分光器等光學(xué)組件和光波導(dǎo)用石英光纖等。
1966年,美國(guó)Corning公司[19]發(fā)明了利用高頻等離子體生產(chǎn)高純無(wú)羥基石英玻璃的新工藝。該工藝制備的石英玻璃的金屬雜質(zhì)含量小于5×10-6、羥基含量為0~10×10-6,氯含量為50×10-6~90×10-6,滿足太陽(yáng)擬模器、紅外跟蹤系統(tǒng)和0.18~5 μm波長(zhǎng)分光器用石英玻璃的需求。隨后,世界各發(fā)達(dá)國(guó)家開(kāi)始大力研究該工藝,高純低羥基石英玻璃的制備工藝得以快速發(fā)展。但由于高頻等離子火焰發(fā)生器的設(shè)備要求高、技術(shù)復(fù)雜、能耗大、成本高,目前國(guó)際上只有美、英、俄、德、日、中等少數(shù)國(guó)家掌握該項(xiàng)技術(shù)。
圖3 等離子化學(xué)氣相沉積石英玻璃工藝示意圖[18]Fig.3 Schematic diagram of silica glass prepared by PCVD
為了滿足我國(guó)對(duì)高純低羥基石英玻璃的需求,2001年王玉芬和宋學(xué)富等[20-23]開(kāi)始進(jìn)行高頻等離子體法制備石英玻璃工藝的基礎(chǔ)研究。經(jīng)過(guò)多年的積累探索,先后開(kāi)發(fā)了臥式和立式沉積等離子體合成石英玻璃工藝,制備出直徑達(dá)200 mm的高純低羥基合成石英玻璃,其金屬雜質(zhì)含量≤2×10-6,羥基含量≤5×10-6,光譜透過(guò)率T190-4000 nm≥80%,與美國(guó)Corning和德國(guó)Heraeus公司的產(chǎn)品質(zhì)量相當(dāng)。圖4為PCVD石英玻璃的光譜透過(guò)率曲線。
圖4 等離子化學(xué)氣相沉積石英玻璃的光譜透過(guò)曲線Fig.4 Spectra transmittance curve of silica glass prepared by PCVD
2.3 間接合成法
間接合成法是相對(duì)于目前常見(jiàn)的電熔、氣煉、CVD和PCVD等4種“直接法”工藝技術(shù)(由原料經(jīng)過(guò)1 800 ℃以上高溫一步直接制得石英玻璃)制備石英玻璃而言的,包括低密度SiO2疏松體的沉積和燒結(jié)兩個(gè)主要工序,即利用含硅化合物(如SiCl4等)為原料,采用低溫CVD工藝,首先沉積形成低密度SiO2疏松體,再進(jìn)行燒結(jié),燒結(jié)過(guò)程中同時(shí)進(jìn)行摻雜、脫水、脫氣及致密化,直至達(dá)到玻璃化。圖5為疏松體沉積示意圖[24]。
圖5 疏松體沉積示意圖[24]Fig.5 Schematic of SiO2 soot body deposited by indirect synthetic method
圖6 合成石英玻璃的真空紫外透過(guò)率[25]Fig.6 Vacuum ultraviolet spectra of synthetic silica glass
目前,國(guó)外利用間接合成法制備半導(dǎo)體光刻技術(shù)用石英玻璃光掩?;澹瑴?zhǔn)分子激光器和光電探測(cè)器等領(lǐng)域用石英玻璃透鏡和棱鏡等元件[24-30]。經(jīng)統(tǒng)計(jì),在近年來(lái)德國(guó)Heraeus(賀利氏)[31-33]、美國(guó)Corning(康寧)[34-37]和Shin-Etsu Chemical(信越化學(xué))[38-40]等國(guó)際頂級(jí)石英玻璃研發(fā)機(jī)構(gòu)申請(qǐng)的專利中,利用間接合成法制造高端光學(xué)石英玻璃的專利超過(guò)其總數(shù)的50%,且逐年增長(zhǎng),以滿足半導(dǎo)體光刻和高能激光技術(shù)等領(lǐng)域?qū)棺贤廨椪?、深紫外透過(guò)、弱吸收等更高性能的指標(biāo)要求。美國(guó)Corning公司[25, 41-42]和日本旭硝子公司[43-46]等通過(guò)對(duì)疏松體進(jìn)行氟化處理,以Si-F鍵代替Si-OH鍵,玻璃化后石英玻璃在157 nm真空紫外波段的光譜透過(guò)率大于80%,如圖6中曲線C所示[25],滿足了F2準(zhǔn)分子激光器及其光刻技術(shù)的要求。德國(guó)Heraeus[47]采用間接合成法控制石英玻璃的羥基含量小于1×10-6,光吸收系數(shù)小于1×10-6/cm@1 064 nm,可滿足強(qiáng)激光的應(yīng)用要求。巴西坎皮納斯州立大學(xué)等單位[48-52]研究了間接合成法制備半導(dǎo)體用高均勻紫外光學(xué)石英玻璃的關(guān)鍵工藝。為了滿足航天高分辨衛(wèi)星、半導(dǎo)體極紫外(EUV)光刻法、大型天文望遠(yuǎn)鏡等領(lǐng)域?qū)Φ团蛎浭⒉AУ膽?yīng)用要求,Tarcio P. Manfrim[53]、Bradford G. Ackerman[54]和Shigeru Maida[55]等采用間接合成法,通過(guò)疏松體沉積過(guò)程實(shí)現(xiàn)了鈦及鈦-硫復(fù)合摻雜技術(shù),制備出超低膨脹石英玻璃,大大提高了相關(guān)光學(xué)系統(tǒng)的分辨率與精度。中國(guó)建材總院[56-59]于2010年在國(guó)內(nèi)率先開(kāi)展了間接法合成石英玻璃技術(shù)的研究,通過(guò)發(fā)明疏松體的真空玻璃化技術(shù)實(shí)現(xiàn)了寬光譜、高透過(guò)、零缺陷合成石英玻璃的高效制備。
綜上所述,與直接法相比,間接法合成石英玻璃具有沉積溫度低(1 000 ℃以下)、沉積速率高、能耗及制備成本低、純度高、易于摻雜、脫羥,并可自由控制產(chǎn)品成分和缺陷濃度等優(yōu)勢(shì)。該工藝特別適合研制更深紫外透過(guò)和更高抗激光損傷閾值的石英玻璃,從而實(shí)現(xiàn)理化性能更好的新型石英玻璃的高效低能制造。通過(guò)間接合成法工藝進(jìn)行石英玻璃的摻雜和羥基含量控制是該工藝的最大優(yōu)勢(shì),如摻入F、Ti、Al、B及稀土等元素,實(shí)現(xiàn)合成石英玻璃的真空紫外高透過(guò)、超低熱膨脹系數(shù)、濾紫外、低羥基等特殊功能,進(jìn)而滿足光電技術(shù)領(lǐng)域的應(yīng)用需求。
2.4 各制備工藝對(duì)比
目前,光學(xué)石英玻璃的不同制備工藝可分為6大類,所制備的材料性能也不盡相同。表1列出了不同制備工藝生產(chǎn)的光學(xué)石英玻璃的分類、特性和用途。
表1 光學(xué)石英玻璃的分類、制備工藝、特性和用途Tab.1 Classification, preparation processes, characteristics and application of optical silica glasses
本文重點(diǎn)介紹了國(guó)內(nèi)外光學(xué)合成石英玻璃制備工藝的優(yōu)缺點(diǎn)。CVD工藝是目前最成熟、商業(yè)化的工藝,制備的石英玻璃直徑可達(dá)600 mm口徑以上、光學(xué)均勻性優(yōu)于2×10-6、抗激光損傷閾值達(dá)30 J/cm2@355 nm,在航天、激光核技術(shù)、精密儀器、半導(dǎo)體領(lǐng)域得到了廣泛應(yīng)用。PCVD工藝制備的石英玻璃內(nèi)在質(zhì)量?jī)?yōu)異、羥基含量≤5×10-6、光譜透過(guò)率T190-4000 nm≥80%,滿足了高端紅外光電器件和光通訊領(lǐng)域的應(yīng)用要求,但是由于制備成本高,尚未得到大批量應(yīng)用。間接合成法是近10年發(fā)展起來(lái)的工藝技術(shù),該技術(shù)制備的石英玻璃的光吸收系數(shù)小于1×10-6/cm@1064 nm、羥基含量≤1×10-6、光譜透過(guò)率T157-4000 nm≥80%,并且因易于摻雜及控制缺陷,而成為制備各類高端(摻雜)功能型光學(xué)石英玻璃的首選。目前,間接合成法在真空深紫外、極紫外與強(qiáng)激光等領(lǐng)域得到了初步應(yīng)用。
[1] 隋梅,孫元成,宋學(xué)富,等. CVD合成石英玻璃的結(jié)構(gòu)均勻性研究 [J]. 武漢理工大學(xué)學(xué)報(bào),2010,32(22):106-110. SUI M, SUN Y CH, SONG X F,etal.. Research of structural stress of CVD synthetic silica glass [J].JournalofWuhanUniversityofTechnology, 2010, 32(22): 106-110. (in Chinese)
[2] FLOYD E M, MAHENDRA K M, MERRILL F S. Apparatus for minimizing air infiltration in the production of fused silica glass: United States Patent,6314766[P]. 2001-11-03.
[3] JOHN E M. Boule oscillation patterns in methods of producing fused silica glass: United States Patent, 5696038[P]. 1997-12-09.
[4] JOHN E M. Method and containment vessel for producing fused silica glass and the fused silica blank produced: United States Patent, US5698484[P]. 1997-12-16.
[5] PAUL M S. Furnace for producing fused silica glass: United States Patent, 5951730[P]. 1999-09-14.
[6] CAMPBELL J H, HAWLEY F R, STOLZ C J,etal.. NIF optical materials and fabrication technologies: An overview [J].SPIE, 2004,5341:UCRL-CONF-155471.
[7] WANG Y F, XIANG Z K, SUI M,etal.. Silica glass manufactured by vertical CVD technology [C]. 2005′InternationalSymposiumonGlassinConnectionwiththeAnnualMeetingoftheInternationalCommissiononGlass,Shanghai, 2005:SB2-3.
[8] 顧真安,王玉芬,向在奎,等. 立式四氯化硅汽相沉積合成石英玻璃的方法:中國(guó)專利,03122969.7[P]. 2003-11-26. GU ZH A, WANG Y F, XIANG Z K,etal.. The method of synthetic silica slass by vertical chemical vapor deposition of silicon tetrachloride: China Patent, 03122969.7[P]. 2003-11-26. (in Chinese)
[9] 向在奎,王玉芬,饒傳東,等. 合成石英玻璃的生產(chǎn)工藝及缺陷形成分析 [J]. 建筑玻璃與工業(yè)玻璃,2009,8:19-22. XIANG Z K, WANG Y F, RAO CH D,etal.. The study of production process and the pechanism of pefects formation for synthetic silica glass [J].ArchitecturalandIndustrialGlass, 2009, 8: 19-22. (in Chinese)
[10] 饒傳東,徐馳,王蕾,等. 高速合成石英玻璃生產(chǎn)用氧氣帶料燃燒器:中國(guó)專利,200820123700.X [P].2009-08-12. RAO CH D, XU CH, WANG L,etal.. The burner for high-speed production of synthetic silica glass by oxygen carrier raw material: China Patent, 200820123700.X [P]. 2009-08-12. (in Chinese)
[11] 王玉芬,聶蘭艦,向在奎,等. 高均勻合成石英玻璃砣的制備方法: 中國(guó)專利,201510420201.1 [P].2015-09-23. WANG Y F, NIE L J, XIANG Z K,etal.. The preparation method for synthetic silica glass ingot of high uniformity: China Patent, 201510420201.1 [P].2015-09-23. (in Chinese)
[12] 王玉芬,聶蘭艦,向在奎,等. 制備合成石英玻璃砣的沉積爐:中國(guó)專利,201510420175.2 [P].2015-09-23. WANG Y F, NIE L J, XIANG Z K,etal.. The deposition furnace for preparation of synthetic silica glass ingot: China Patent, 201510420175.2 [P].2015-09-23. (in Chinese)
[13] 王慧. 中國(guó)建材總院大尺寸石英玻璃跨入“2.0”時(shí)代 [N]. 科技日?qǐng)?bào),2015-3-9(6). WANG H. The large size silica glass of china building materials academy into the "2.0" era [N]. Science and Technology Daily, 2015-3-9(6). (in Chinese)
[14] 王慧,向在奎. 千淘萬(wàn)漉“石英人”[N]. 中國(guó)建材報(bào),2015-6-17(1). WANG H, XIANG Z K. The carefully selected outstanding "Quartz Men" [N]. China Building Materials Daily, 2015-6-17(1). (in Chinese)
[15] WANG H, XIANG Z K, GAO ZH X,etal.. Study on the laser damage character of fused silica by different fusing atmosphere and heat treatment process [C].PacificRimLaserDamage2015:OpticalMaterialsforHigh-PowerLasers,Shanghai, 2015, 9532: 95321T-1-95321T-10.
[16] 王慧,王玉芬,向在奎,等. 熔石英玻璃激光損傷閾值初步研究 [J]. 硅酸鹽通報(bào),2015,34(S):212-216. WANG H, WANG Y F, XIANG Z K,etal.. Experimental research of the laser induced damage character of the fused silica [J].BulletintheChineseCeramicSociety, 2015, 34(S): 212-216. (in Chinese)
[17] SHAO ZH F, JIA Y N, WANG L,etal.. Analysis of the surface shape effect on optical homogeneity measurement of large calibre optical materials [J].KeyEngineeringMaterials, 2015, 633: 480-484.
[18] SONG X F, SUN Y CH, ZHONG H,etal.. Synthesis of silica glass by plasma chemical vapor deposition method [J].JournaloftheChineseCeramicSociety, 2008, 36: 531-534.
[19] 葛世名. 石英玻璃的發(fā)展簡(jiǎn)史 [J]. 硅酸鹽通報(bào),1982,5:51-60. GE SH M. The brief history of quartz glass [J].BulletintheChineseCeramicSociety, 1982, 5: 51-60. (in Chinese)
[20] 王玉芬,宋學(xué)富,孫元成,等. 超純石英玻璃制備工藝研究 [J]. 武漢理工大學(xué)學(xué)報(bào),2010,32(22):98-101. WANG Y F, SONG X F, SUN Y CH,etal.. Research on preparation of super purity silica glass [J].JournalofWuhanUniversityofTechnology, 2010, 32(22): 98-101. (in Chinese)
[21] WANG Y F, SONG X F, SUN Y CH. Research on output power of plasma for PCVD synthesizing silica glass [J].AdvancedMaterialsResearch, 2011, 291-294: 3009-3012.
[22] 王玉芬,鐘海,宋學(xué)富,等. 高頻等離子氣相合成石英玻璃的方法: 中國(guó)專利,200510076613.4 [P].2005-11-23. WANG Y F, ZHONG H, SONG X F,etal.. The method of synthetic silica glass by high-frequency plasma chemical vapor deposition: China Patent, 200510076613.4 [P].2005-11-23. (in Chinese)
[23] 王玉芬,宋學(xué)富,鐘海,等. 一種供給高頻等離子火焰用空氣的凈化方法: 中國(guó)專利,200610114474.4 [P].2007-06-06. WANG Y F, SONG X F, ZHONG H,etal.. The method of air purification for supplying high frequency plasma flame: China Patent, 200610114474.4 [P].2007-06-06. (in Chinese)
[24] SANTOS J S, ONO E, FUJIWARA E,etal.. Control of optical properties of silica glass synthesized by VAD method for photonic components [J].OpticalMaterials, 2011, 33(12): 1879-1883.
[25] CHARLENC M S, LISA A M. Properties and production of F-doped silica glass [J].JournalofFluorineChemistry, 2003, 122: 81-86.
[26] TOMOYUKI M, YASUHIRO O, DAVID M W. The lithographic lens: its history and evolution [J].SPIE, 2006, 6154(3): 1-14.
[27] ZHANG J, PETER R H, CHRISTIAN L,etal.. 157-nm laser-induced modification of fused-silica glasses [C].LaserApplicationsinMicorelectronicandOptoelectronicManufacturingVI,SanJose, 2001, 4274: 125-132.
[28] KOICHI K, YOSHIAKI I, MASANORI O,etal.. UV-VUV laser induced phenomena in SiO2glass [J].NuclearInstrumentsandMethodsinPhysicsResearchSectionB, 2004, 218: 323-331.
[29] CHARLENE M S, LISA A M. Formation of absorption bands in F-doped silica under excimer laser exposure [C].OpticalMicrolithographyXIV,SantaClara, 2001, 4346(2): 1080-1087.
[30] MASANORI O, SINYA K, TAISUKE M,etal.. Fluorine doped silica glass fiber for deep ultraviolet light [J].JournalofNon-CrystallineSolids, 2004, 349: 133-138.
[31] HEINZ F, JUERGEN R. Method for producing synthetic quartz glass: United States Patent, 8973407 [P].2015-03-10.
[32] RICHARD B C, ALAN M, LAN G S. Manufacture of synthetic silica glass: United States Patent, 8959957 [P].2015-02-24.
[33] ANKE S, RENE S, MARTIN T,etal.. Process for producing a quartz glass cylinder and also support for carrying out the process : United States Patent, 8783069 [P].2014-07-22.
[34] RAYMOND D G, BRIAN L H, JOHN E M. Method for forming fused silica glass using multiple burners: United States Patent, 8230701 [P].2012-07-31.
[35] STEVEN R B, JAMES G F, DANIEL R S,etal.. Fused silica blank and method of forming a fused silica plate from the same: United States Patent, 8110277 [P].2012-02-07.
[36] LISA A M, CHARLENE M S. F-doped silica glass and process of making same: United States Patent, 7964522 [P].2011-06-21.
[37] BRIAN L H, KENNETH E H, JOHN E L. Fused silica glass and method for making the same: United States Patent, 7994083 [P]. 2011-08-09.
[38] MAKOTO Y. Porous glass base material manufacturing method and gas flow rate control apparatus: United States Patent, 8919152 [P].2014-12-30.
[39] MAKOTO Y. Porous glass preform production apparatus: United States Patent, 8656743 [P].2014-02-25.
[40] HISATOSHI O, KAZUO S, OSAMU S. Manufacture of synthetic quartz glass ingot and synthetic quartz glass member: United States Patent, 8596095 [P].2013-12-03.
[41] PUSHKAR T, BOEK H. Experimental and theoretical studies of flame hydrolysis deposition process for making glasses for optical planar devices [J].JournalofNon-CrystallineSolids, 2003, 317: 275-289.
[42] PUSHKAR T. Doping of silica during sintering [J].JournalofNon-CrystallineSolids, 2005, 351: 1466-1472.
[43] MAIDA S, YAMADA M, OTSUKA H,etal.. Method of producing fluorine-containing synthetic quartz glass: United States Patent, 6990836 [P].2006-01-31.
[44] KOJI M, OTSUKA H, KAZUO S. Method of producing synthetic quartz glass: United States Patent, 7159418 [P].2007-01-09.
[45] YOSHIAKI I, SHIN'YA K, KEIGO H,etal.. Synthetic silica glass for vacuum ultraviolet light [R]. Tokyo: Asahi Glass Co., Ltd., 2003, 53: 31-35.
[46] YOKOKAWA T, ENOMOTO T, YAMAZAKI T,etal.. Analysis on viscous flow of VAD silica glass during heat forming [J].SeiTechnicalReview, 2009, 68: 11-15.
[47] SUPRASIL 3001 and 3002 [EB/OL]. http://www. heraeus.com/media/media/hqs/doc_hps/products_and_solutions_8/optics/Suprasil_3001_3002_EN.pdf.
[48] SANTOS J S, ONO E, LUTKUS A A S,etal.. UV transparent high homogeneity silica glass produced by flame aerosol VAD synthesis [C].GlobalRoadmapforCeramics-ICC2Proceeding,Verona,Italy, 2008:1-P-027(CD-ROM).
[49] SANTOS J S, ONO E, SUZUKI C K. Effect of the nanostructure control on the novel optical properties of silica photonic glass synthesized by VAD method [J].MaterialsScienceForum, 2010, 636-637: 361-368.
[50] SANTOS J S, ONO E, FUJIWARA E,etal.. Control of optical properties of silica glass synthesized by VAD method for photonic components [J].OpticalMaterials, 2011, 33(12): 1879-1883.
[51] SANTOS J S, GUSKEN E, ONO E,etal.. EXAFS and XANES study of annealed VAD silica glass [R]. Photon Factory Activity Report, Tokyo, 2007: 168.
[52] SANTOS J S, ONO E, FUJIWARA E,etal.. Ultra-low birefringence silica glass synthesized by VAD method for photonic components for UV photolithography [C]. 11thInternationalConferenceonAdvancedMaterials,RiodeJaneiroBrazil, 2009.
[53] TARCIO P M, ONO E, FUJIWARA E,etal.. A method to synthesize SiO2-TiO2glasses based on the synergy between VAD and ALD techniques: study of TiO2doping profile along radial direction [J].OpticalMaterials, 2011, 33(12): 1938-1942.
[54] BRADFORD G A, KENNETH E H, MOORE L A,etal.. Method for producing titania-doped fused silica glass: United States Patent,8047023B2[P]. 2011-11-01.
[55] SHIGERU M, HISATOSHI O. Titania and sulfur co-doped quartz glass member and making method: United States Patent, 8629071B2 [P].2014-01-14.
[56] 聶蘭艦,宋學(xué)富,向在奎,等. 一種間接合成石英玻璃的方法及其專用設(shè)備以及一種石英玻璃:中國(guó)專利,201210053634.4 [P].2012-07-18. NIE L J, SONG X F, XIANG Z K,etal.. The indirect method of synthetic silica glass, special equipment and silica glass: China Patent,201210053634.4 [P]. 2012-07-18. (in Chinese)
[57] 聶蘭艦,宋學(xué)富,向在奎,等. 一種氣相沉積合成爐: 中國(guó)專利,201210053634.4 [P].2012-11-21. NIE L J, SONG X F, XIANG Z K,etal.. The deposition furnace of chemical vapor deposition and synthesis: China Patent, 201210053634.4 [P]. 2012-11-21. (in Chinese)
[58] 隋梅,王玉芬,聶蘭艦,等. SiCl4流量及沉積距離對(duì)SiO2疏松體微粒特性的影響 [C]. 2011年全國(guó)玻璃科學(xué)技術(shù)年會(huì),杭州,2011:62. SUI M, WANG Y F, NIE L J,etal.. Effect of SiCl4flow rate and deposition space on properties of SiO2soot body [C]. 2011′NationalGlassScienceandTechnologySymposium,Hangzhou, 2011: 62. (in Chinese)
[59] 聶蘭艦,王玉芬,饒傳東,等. 低密度SiO2疏松體的孔隙結(jié)構(gòu)特性研究 [C]. 第十八屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議,廈門,2014,K:475-482. NIE L J, WANG Y F, RAO CH D,etal.. Study on pore structure of low density SiO2soot body [C].EighteenthNationalConferenceonCompositeMaterialsProceedings,Xiamen, 2014,K: 475-482. (in Chinese)
Preparation and application of high-performance synthetic optical fused silica glass
NIE Lan-jian*, WANG Yu-fen, XIANG Zai-kui, WANG Lei, WANG Hui
(Quartz&SpecialGlassInstitute,ChinaBuildingMaterialAcademy,Beijing100024,China) *Correspondingauthor,E-mail:jnnlj@163.com
Several kinds of important preparation processes of synthetic optical silica glass are elaborated, such as Chemical Vapor Deposition (CVD), Plasma Chemical Vapor Deposition (PCVD) and indirect synthetic method. The raw materials and characteristics for the optical silica glass, as well their applications in different fields are given. Then, developing situations and tendencies of these preparation processes are reviewed. It compares their advantages and shortcomings in detail. Among them, the CVD is the most mature and commercial technology. It prepares the synthetic silica glass with a diameter of 600 mm or beyond, its optical uniformity is better than 2×10-6, and the laser damage threshold is 30 J/cm2@355 nm. The PCVD processes synthetic silica glass of full-spectrum transmittance. It shows excellent internal quality, its hydroxyl content is less than 5×10-6, and the spectral transmittance ofT190-4000 nmis more than 80%. Furthermore, the indirect synthetic method prepares the synthetic silica glass with an absorption coefficient less than 1×10-6/cm@1064 nm, its hydroxyl content is less than 1×10-6, and the spectral transmittance ofT157-4000 nmis more than 80%. Moreover, the indirect synthetic method is beneficial to doping and controlling the defects of synthetic silica glass, which achieves all kinds of special functional silica glass. It suggests that each of these preparation processes of synthetic optical silica glass has its own advantages and disadvantages, so proper preparation processes could be adopted for different application requirements of modern high-end photoelectron technological fields.
optical fused silica glass; chemical Vapor Deposition(CVD); plasma chemical vapor deposition; indirect synthetic method;review
2016-10-12;
2016-12-02
國(guó)家國(guó)際科技合作專項(xiàng)資助項(xiàng)目(No.2012DFA51310);中國(guó)建筑材料科學(xué)研究總院前沿探索基金資助項(xiàng)目(No.YT-112)
1004-924X(2016)12-2916-09
TQ171.731
:Adoi:10.3788/OPE.20162412.2916
聶蘭艦(1985-),男,江西贛州人,博士研究生,工程師,2008年于濟(jì)南大學(xué)獲得學(xué)士學(xué)位,2011年于中國(guó)建筑材料科學(xué)研究總院獲得碩士學(xué)位,主要從事高性能光學(xué)石英玻璃基礎(chǔ)理論與工藝技術(shù)方面的研究。E-mail: jnnlj@163.com
王玉芬(1964-),女,河北遵化人,教授,1986年于華東化工學(xué)院(現(xiàn)華東理工大學(xué))獲得學(xué)士學(xué)位,2005年于北京工業(yè)大學(xué)獲得碩士學(xué)位,主要從事高性能光學(xué)石英玻璃基礎(chǔ)理論與工藝技術(shù)方面的研究。E-mail: wangyufen@cbmamail.com.cn