許龍龍,湯響林,梁乾德,李 杰,王宇光,馬增春,肖成榮,譚洪玲,高 月
(1.安徽醫(yī)科大學(xué)研究生學(xué)院,安徽合肥 230032;2.軍事醫(yī)學(xué)科學(xué)院放射與輻射醫(yī)學(xué)研究所,北京 100850)
決明子水提物對(duì)大鼠尿液內(nèi)源性代謝產(chǎn)物的影響
許龍龍1,2,湯響林2,梁乾德2,李 杰2,王宇光2,馬增春2,肖成榮2,譚洪玲2,高 月1,2
(1.安徽醫(yī)科大學(xué)研究生學(xué)院,安徽合肥 230032;2.軍事醫(yī)學(xué)科學(xué)院放射與輻射醫(yī)學(xué)研究所,北京 100850)
目的 基于代謝組學(xué)的方法研究決明子水提物(AESC)對(duì)大鼠尿液內(nèi)源性代謝產(chǎn)物的影響。方法 雄性SD大鼠28只隨機(jī)分成正常對(duì)照組、AESC 1.5,5和15 g·kg-1劑量組,每組7只,連續(xù)給藥14 d,正常對(duì)照組給予生理鹽水,末次給藥后收集24 h尿液。應(yīng)用超高效液相色譜/四極桿飛行時(shí)間質(zhì)譜(UPLCQ-TOF-MS)分析尿液,MassLynx V4.1軟件采集并處理數(shù)據(jù),采用主成分分析(PCA)方法和偏最小二乘判別分析(PLS-DA)方法,分析各組大鼠內(nèi)源性代謝產(chǎn)物的差別,通過(guò)正交偏最小二乘法(OPLS-DA)、變量重要程度(VIP)和t檢驗(yàn)篩選潛在生物標(biāo)志物并測(cè)定其相對(duì)含量。結(jié)果 PCA結(jié)果顯示,組內(nèi)樣本點(diǎn)較好地聚合在一起,各AESC給藥組與正常對(duì)照組互相完全分離,且與正常對(duì)照組之間的距離隨著AESC給藥劑量的增加而增大;與正常對(duì)照組脯氨酸甜菜堿和尿酸的相對(duì)含量25.0±3.4和29.0±4.8相比,AESC 5和15 g·kg-1組明顯降低(P<0.01),分別為18.4±2.3,15.7±2.0和16.3±4.5,14.7±3.0;AESC 1.5,5和15 g·kg-1組甘氨酸和?;撬岬南鄬?duì)含量明顯低于正常對(duì)照組(P<0.05,P<0.01);AESC 1.5和15 g·kg-1組二甲基鳥(niǎo)苷、15 g·kg-1組檸檬酸的相對(duì)含量均明顯低于正常對(duì)照組(P<0.05,P<0.01);AESC 1.5 g·kg-1組檸檬酸的相對(duì)含量為104±20,明顯高于正常對(duì)照組67±14(P<0.01)。結(jié)論 AESC給藥14 d后,大鼠尿液中內(nèi)源性物質(zhì)有顯著改變,它們對(duì)體內(nèi)代謝的影響可能主要集中于?;撬岽x、嘌呤代謝、氨基酸代謝和能量代謝途徑。
決明子;代謝組學(xué);生物標(biāo)志物;尿液
決明子(Semen Cassiae)為豆科植物決明(Cassia obtusifoliaL.)或小決明(C.toraL.)的干燥成熟種子,主產(chǎn)于安徽、廣西和四川等地,其主要成分為蒽醌類和萘并吡喃酮類化合物,具有降血壓、降血脂和保肝等多種藥理活性,臨床上主要用于高脂血癥、高血壓和便秘等,是國(guó)家衛(wèi)計(jì)委公布的100多種藥食同源物品之一[1-2]。近年來(lái),國(guó)內(nèi)外學(xué)者的研究主要集中在對(duì)決明子的化學(xué)成分、藥理作用及臨床應(yīng)用等方面,Yang等[3]利用超高效液相色譜串聯(lián)質(zhì)譜技術(shù)研究大鼠ig決明子提取物后,血漿中主要有效化學(xué)成分為黃決明素、橙黃決明素、蘆薈大黃素和大黃素等蒽醌類物質(zhì);Kim等[4]研究發(fā)現(xiàn),決明子提取物通過(guò)抑制高級(jí)聚糖化終產(chǎn)物的堆積,可改善大鼠由鏈脲霉素誘導(dǎo)的糖尿病性腎?。╠iabetic nephropathy,DN);劉利兵等[5]研究表明,決明子提取物可能通過(guò)降脂并激活蛋白激酶B(protein kinase B,PKB/Akt)及細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinase,ERK1/2)信號(hào),有效減輕糖尿病大鼠心肌缺血再灌注損傷;對(duì)于決明子的藥效成分研究主要集中在蒽醌類化合物上,但其藥效成分和作用機(jī)制并不十分清楚,尚待深入研究。
代謝組學(xué)是近年來(lái)發(fā)展起來(lái)的一門新興“組學(xué)”技術(shù),主要是通過(guò)核磁共振、質(zhì)譜聯(lián)用等現(xiàn)代分析技術(shù)測(cè)定生物樣品如尿液、血液和膽汁中相對(duì)分子質(zhì)量<1000的內(nèi)源性物質(zhì)[6]。它是針對(duì)內(nèi)源性代謝產(chǎn)物的高通量、定性和定量測(cè)定技術(shù),是通過(guò)外界刺激后分析生物體內(nèi)相對(duì)分子質(zhì)量較低代謝物的全面變化,來(lái)認(rèn)識(shí)生物體的生理和病理狀態(tài)。代謝組學(xué)研究思路上的整體性和動(dòng)態(tài)性,與中醫(yī)藥理論的整體觀念是相一致的。因此,運(yùn)用代謝組學(xué)研究中藥,有助于從整體上完整地了解中醫(yī)藥的作用機(jī)制。
近代研究中,代謝組學(xué)已廣泛應(yīng)用于中藥成分及中藥作用機(jī)制的研究[7],而決明子對(duì)體內(nèi)內(nèi)源性代謝物的變化研究尚未見(jiàn)報(bào)道。高分辨率的四極桿飛行時(shí)間質(zhì)譜(quadrupole-time-of-flight mass spectrometry,Q-TOF/MS)在進(jìn)行物質(zhì)定性分析時(shí)可提供較為可靠的多種結(jié)構(gòu)相關(guān)信息,具有高分離效率、高靈敏度及極低檢測(cè)限等優(yōu)勢(shì),故本文采用高效液相色譜(ultra-performance liquid chroma?tography,UPLC)-Q-TOF/MS技術(shù),探討正常大鼠、決明子水提物(aqueous extract of Semen Cassiae,AESC)給藥后大鼠的尿液成分譜變化,結(jié)合模式識(shí)別方法分類,快速尋找生物標(biāo)志物,并進(jìn)一步對(duì)目標(biāo)物進(jìn)行串聯(lián)質(zhì)譜分析確定大鼠尿液內(nèi)源性物質(zhì),通過(guò)結(jié)合大鼠物質(zhì)和能量代謝的代謝通路和代謝網(wǎng)絡(luò)[8-9],進(jìn)一步闡釋決明子對(duì)正常大鼠尿液的干預(yù)機(jī)制,為決明子的臨床應(yīng)用提供一定的參考。
1.1 藥材和樣品制備
決明子(購(gòu)于北京同仁堂,產(chǎn)地安徽,批號(hào)20150201),經(jīng)鑒定為豆科植物決明(C.obtusifoliaL.)的干燥成熟種子。AESC(批號(hào)20150320)由本實(shí)驗(yàn)室提取制備:取決明子500 g,置圓底燒瓶中,加入8倍量蒸餾水浸沒(méi)藥材,浸泡30min后,加熱至煮沸,保持微沸60 min,分離煎出液,藥渣加入4倍量蒸餾水依法再次煎煮30 min,合并2次煎出液,置50℃水浴鍋中緩慢蒸發(fā),濃縮至500 mL(按生藥算,相當(dāng)于1 kg·L-1),于4℃保存?zhèn)溆谩?/p>
1.2 主要儀器和試劑
ACQUITY UPLC/SYNAPT QTOF-MS液質(zhì)聯(lián)用儀和ACQUITY UPLC?HSS T3(1.8 μm,2.1 mm× 100 mm)Column均為美國(guó) Waters公司產(chǎn)品;-80℃超低溫冰箱(美國(guó)Thermo Scientific公司);Microfuge?22R Centrifuge(美國(guó)Beckman公司);純水儀(Millipore Simplicity);亮氨酸腦啡肽(美國(guó)Sigma公司);甲醇(HPLC級(jí))和乙腈(HPLC級(jí))、均為美國(guó)Fisher Scientific公司;甲酸(HPLC級(jí))為美國(guó)MREDA公司。
1.3 動(dòng)物和分組
雄性SD大鼠,SPF級(jí),體質(zhì)量180~220 g,由軍事醫(yī)學(xué)科學(xué)院實(shí)驗(yàn)動(dòng)物中心提供,實(shí)驗(yàn)動(dòng)物生產(chǎn)許可證號(hào):SYXK(軍)2015-004,實(shí)驗(yàn)動(dòng)物合格證號(hào):SCXK(軍)2015-004。動(dòng)物隨機(jī)分為4組,每組7只,分別為正常對(duì)照組,AESC 1.5,5和15 g·kg-1劑量組。
1.4 實(shí)驗(yàn)方法
正常對(duì)照組給予生理鹽水,連續(xù)灌胃14 d;AESC每天1.5 g·kg-1(根據(jù)《中國(guó)藥典》,由人臨床劑量換算成大鼠等效劑量),AESC 5 g·kg-1(相當(dāng)于3倍人臨床劑量),AESC 15 g·kg-1(相當(dāng)于9倍人臨床劑量),每天ig給藥1次,連續(xù)14 d。最后一次給藥后,將大鼠置于代謝籠中,收集24 h尿液,3000×g離心10 min,分別取1 mL上清液于1.5 mL EP管中,加入20 μL疊氮鈉,于-80℃冰箱中保存。
1.5 樣品預(yù)處理和質(zhì)控樣品的制備
實(shí)驗(yàn)前,取出樣品常溫下解凍。各取500 μL解凍后的樣本,加入500 μL的乙腈,渦旋混勻,靜置1 min,4℃下13 000×g離心15 min,取上清液經(jīng)0.22 μm微孔濾膜濾過(guò)后進(jìn)樣。本實(shí)驗(yàn)將尿液樣本進(jìn)行混合制得質(zhì)控(quality control,QC)樣本,通過(guò)連續(xù)5針進(jìn)樣平衡系統(tǒng),保證系統(tǒng)的適應(yīng)性。另外,QC作為實(shí)際樣本插入檢測(cè)序列中,以QC數(shù)據(jù)的PCA得分圖監(jiān)測(cè)方法的穩(wěn)定性。
1.6 色譜和質(zhì)譜條件
色譜條件采用Waters Acquity UPLC?HSS T3色譜柱(1.8 μm,2.1 mm×100 mm),柱溫30℃;二元溶劑系統(tǒng):流動(dòng)相A為0.1%甲酸水溶液,流動(dòng)相B為0.1%甲酸乙腈溶液;梯度洗脫條件:0~2 min,98%~95%A;2~13 min,95%~50%A;13~16 min,50%~0%A;16~20 min,0%~98%A;流速為0.5 mL·min-1;進(jìn)樣量為5 μL。質(zhì)譜條件:電噴霧電離源,離子源溫度100℃,脫溶劑溫度450℃,脫溶劑氣(N2)流速900 L·h-1。在負(fù)離子電離模式下,毛細(xì)管電離電壓2.9 kV;在正離子電離模式下,毛細(xì)管電離電壓3.0 kV;取樣錐孔電壓40 V。質(zhì)量掃描范圍m/z50~1000,一次掃描時(shí)間為0.1 s。在二級(jí)質(zhì)譜模式下,碰撞能量在10~30 eV之間。TOF離子飛行方式采用V模式,使用亮腦啡肽作為外標(biāo)對(duì)目標(biāo)離子進(jìn)行精確質(zhì)量測(cè)定。
1.7 數(shù)據(jù)處理
數(shù)據(jù)通過(guò)采用MassLynx V4.1軟件(Waters公司)進(jìn)行處理。采用主成分分析法(principal component analysis,PCA)觀察樣品的聚集、離散及離群點(diǎn),通過(guò)正交偏最小二乘判別分析法(orthogonal partial least squares discriminant analysis,OPLS-DA)的得分圖(scores plot,s-plot)可觀察到正常對(duì)照組與各給藥組尿液成分的分布情況及差異,選擇變量重要程度(variable impor?tance in the projection,VIP)>1的變量進(jìn)行t檢驗(yàn),在95%的置信度下,正常對(duì)照組與給藥組具有顯著性差異(P<0.05)的變量為有效信號(hào)。
1.8 標(biāo)志物的鑒別
將得到的有效信號(hào)與實(shí)驗(yàn)室自建數(shù)據(jù)庫(kù)(梁乾德博士建立)匹配,過(guò)濾除去外源性物質(zhì)的干擾,在HMDB、KEGG等譜庫(kù)中檢索鑒別這些化合物的結(jié)構(gòu),通過(guò)二級(jí)質(zhì)譜和標(biāo)準(zhǔn)品進(jìn)行確證。
1.9 統(tǒng)計(jì)學(xué)分析
實(shí)驗(yàn)結(jié)果數(shù)據(jù)用x±s表示,SPSS 17.0軟件進(jìn)行one-way ANOVA比較組間差異。
2.1 決明子水提物指紋圖譜及主要成分鑒定
如圖1中所示,A和B分別為AESC正、負(fù)離子模式下的基峰離子流色譜圖(base peak intensity chromatograms,BPI),C,D,E和F分別為4種主要活性成分標(biāo)準(zhǔn)品的基峰離子流圖,它們分別為黃決明素(chrysoobtusin)、橙黃決明素(aurantioobtusin)、蘆薈大黃素(aloeemodin)和大黃素(emodin);通過(guò)與標(biāo)準(zhǔn)品比對(duì)保留時(shí)間和質(zhì)荷比,發(fā)現(xiàn)AESC中主要含有黃決明素和橙黃決明素。
2.2 給AESC后大鼠尿UPLC-Q-TOF-MS代謝指紋圖譜
采用UPLC-MS進(jìn)行尿液樣品的分離和數(shù)據(jù)采集,圖2分別為大鼠尿液樣品正、負(fù)離子模式下的BPI。由圖可看見(jiàn)AESC給藥組與正常對(duì)照組比較其代謝指紋圖譜均表現(xiàn)出一定的差異,各給藥組之間也表現(xiàn)出一定的差異性,如給藥組與正常對(duì)照組相比,明顯出現(xiàn)了正、負(fù)離子模式質(zhì)荷比為331和329的峰,推測(cè)為橙黃決明素;各給藥組之間,在負(fù)離子模式下,AESC 15與5 g·kg-1組分別出現(xiàn)質(zhì)荷比為230和438的不同峰型,但經(jīng)質(zhì)譜分析確定為同一物質(zhì)。
2.3 方法學(xué)驗(yàn)證
QC樣品用于檢測(cè)UPLC-Q-TOF/MS的重復(fù)性和穩(wěn)定性。圖3所示,正、負(fù)離子模式下的QC樣品聚成一團(tuán),分別選擇正、負(fù)離子模式5個(gè)離子,對(duì)它們的保留時(shí)間和峰面積進(jìn)行分析,正、負(fù)離子模式下保留時(shí)間的相對(duì)標(biāo)準(zhǔn)偏差分別為0.00%~0.58%和0.00%~0.23%,峰面積相對(duì)標(biāo)準(zhǔn)偏差分別為6.05%~7.37%和2.58%~4.63%,表明本實(shí)驗(yàn)方法重復(fù)性和穩(wěn)定性良好,可用于實(shí)驗(yàn)。
2.4 AESC對(duì)大鼠尿內(nèi)源性代謝產(chǎn)物影響的組學(xué)分析
如圖4所示,UPLC-MS數(shù)據(jù)進(jìn)行PCA分析,得出反映各組內(nèi)樣品的聚集、離散及離群點(diǎn)PCA圖。由圖可見(jiàn),各組樣本點(diǎn)較好地聚合在一起,AESC 1.5,5和15 g·kg-1組樣本點(diǎn)均與正常對(duì)照組樣本點(diǎn)完全分離,兩者樣本點(diǎn)的距離隨給藥濃度的增加而增大,偏離程度更加明顯,說(shuō)明AESC給藥后大鼠尿液中內(nèi)源性物質(zhì)的代謝發(fā)生明顯的變化,且呈劑量依賴性,同時(shí)正常對(duì)照組與AESC 1.5 g·kg-1組樣品出現(xiàn)離群點(diǎn),說(shuō)明部分樣本分布較為分散,組內(nèi)差異較大。
Fig.1 Base peak intensity chromatograms(BPI)of aqueous extract of semen cassiae(AESC)and its standards of major components by electrospray ionization in positive mode(ES+)or negative ion(ES-).A:AESC in ES+;B:AESC in ES-;C:chryso-obtusin in ES+;D:aurantio-obtusin in ES-;E:aloeemodin in ES-;F:emodin in ES-.
Fig.2 BPI in ES+(A)and ES-(B)ion mode based on urine metabolic profiling of normal control group(a),AESC 1.5(b),5(c)and 15 g·kg-1(d)groups after rats were ig administered with AESC for 14 d.
Fig.3 Principal component analysis(PCA)score plots of quality control(QC)samples in ES+(A)and ES-(B).○:normal control group;●:AESC 1.5 g·kg-1group;△:AESC 5 g·kg-1group;▲:AESC 15 g·kg-1group;□:QC samples.
Fig.4 PCA scores plots in ES+(A)and ES-(B)based on urine metabolic profiling.Normal control group(○),AESC 1.5 g·kg-1group(●),AESC 5 g·kg-1group(△)and AESC 15 g·kg-1group(▲)after rats were ig given AESC for 14 d.
選取AESC 15 g·kg-1組和正常對(duì)照組進(jìn)行OPLS-DA分析比較,確定主要差異性變量。兩組的OPLS-DA s-plot及VIP見(jiàn)圖5,每個(gè)點(diǎn)代表一個(gè)變量,s-plot圖橫坐標(biāo)代表變量的貢獻(xiàn)度(協(xié)方差),縱坐標(biāo)代表變量的相關(guān)性(可信度),取值在-1到+1之間。s-plot圖中離原點(diǎn)越遠(yuǎn)的點(diǎn),表示其差異性越明顯;VIP值越高,表示該變量對(duì)模型的貢獻(xiàn)度越高。
2.5 潛在標(biāo)志物鑒別
為了進(jìn)一步分析標(biāo)志物,通過(guò)將VIP>1及P<0.05的化合物篩選出來(lái)作為差異性化合物。根據(jù)變量對(duì)應(yīng)的質(zhì)荷比、保留時(shí)間及質(zhì)譜圖,利用標(biāo)準(zhǔn)品及二級(jí)質(zhì)譜信息進(jìn)行結(jié)構(gòu)鑒定,共鑒定出6種物質(zhì),其結(jié)果見(jiàn)表1,它們分別是脯氨酸甜菜堿(pro?line betaine)、尿酸(uric acid)、二甲基鳥(niǎo)苷(1,7-dimethylguanosine)、甘氨酸(glycine)、?;撬幔╰aurine)和檸檬酸(citric acid)。
如表2所示,AESC 5和15 g·kg-1組脯氨酸甜菜堿和尿酸的相對(duì)含量明顯低于正常對(duì)照組(P<0.01);AESC 1.5,5和15 g·kg-1組甘氨酸和?;撬岬南鄬?duì)含量明顯低于正常對(duì)照組(P<0.05,P<0.01);AESC 1.5和15 g·kg-1組二甲基鳥(niǎo)苷和AESC 15 g·kg-1組檸檬酸的相對(duì)含量明顯低于正常對(duì)照組(P<0.05,P<0.01);AESC 1.5 g·kg-1組檸檬酸的相對(duì)含量明顯高于正常對(duì)照組(P<0.01);另外,隨AESC給藥劑量的增加,大鼠尿液中脯氨酸甜菜堿、尿酸、甘氨酸和?;撬岷砍蕼p少趨勢(shì)(P<0.01),而AESC 1.5 g·kg-1組檸檬酸的相對(duì)含量顯著升高(P<0.01)。結(jié)果表明,相應(yīng)內(nèi)源性代謝成分相對(duì)含量呈規(guī)律性改變,且具有一定的劑量相關(guān)性,提示這些內(nèi)源性化合物的改變與決明子藥理作用機(jī)制有關(guān)。
Fig.5 S-plots(A,B)and VIP values(C,D)associated with the OPLS-DA obtained for data derived from normal control group(A,C)and AESC-treated group(15 g·kg-1)after rats were ig given AESC for 14 d in ES+(A,C)and ES-(B,D).
Tab.1 Potential biomarkers in urine endogenous metabolites and their metabolic pathways affected by AESC
Tab.2 Effect of AESC on relative contents of proline betaine,uric acid,1,7-dimethylguanosine,glycine,taurine and citric acid in urine of rats
研究顯示,牛磺酸能有效降低血清總膽固醇與動(dòng)脈粥樣指數(shù),降低心腦血管疾病的風(fēng)險(xiǎn)[10-11],決明子可能降低?;撬岬呐判?,而起到降血脂的作用,?;撬崴皆黾邮羌毙愿螕p傷的標(biāo)志[12-13]。通過(guò)對(duì)比AESC給藥組,牛磺酸水平在給藥14 d后顯著下降,提示肝可能是決明子的藥性靶器官,也可能是決明子保肝作用的主要機(jī)制之一。
尿酸是嘌呤的代謝最終產(chǎn)物,而嘌呤是核酸的氧化分解的代謝產(chǎn)物。有研究顯示,當(dāng)心肌缺血和(或)心肌能量供應(yīng)不足時(shí),ATP降解產(chǎn)物次黃嘌呤、黃嘌呤增多,在代謝為最終產(chǎn)物尿酸的過(guò)程中,產(chǎn)生大量的ROS,因此尿酸水平的下降,預(yù)示著決明子對(duì)心血管疾病有很好的預(yù)防作用[14]。研究表明,尿酸是DN的一種介質(zhì),可通過(guò)增強(qiáng)腎素-血管緊張素-醛固酮系統(tǒng)活性和炎癥級(jí)聯(lián)反應(yīng)等途徑介導(dǎo)DN的發(fā)生,加重糖尿病患者的腎損傷程度,AESC給藥后尿酸水平下調(diào),可減少高尿酸水平對(duì)腎的損傷,從而發(fā)揮治療DN的作用[15]。
甘氨酸能明顯降低體內(nèi)脂肪含量,對(duì)高脂血癥肝脂肪變性有抑制作用,AESC給藥組大鼠尿液中甘氨酸下降,推測(cè)其可能主要影響腎小管排泄功能,達(dá)到降血脂、肝保護(hù)作用[16]。
二甲基鳥(niǎo)苷是RNA的降解產(chǎn)物,其濃度增加是tRNA甲基轉(zhuǎn)移酶活性與能力高度表達(dá)的結(jié)果,安卓玲等[17]研究發(fā)現(xiàn),二甲基鳥(niǎo)苷在藥物性肝損傷患者血清中的濃度異常增高,提示其可能為藥物性肝損傷相關(guān)的可能生物標(biāo)志物。本實(shí)驗(yàn)AESC給藥組大鼠尿液中二甲基鳥(niǎo)苷水平顯著下降,提示可能是肝保護(hù)作用的生物標(biāo)志物。
有研究表明,三羧酸循環(huán)產(chǎn)生的ATP是組織細(xì)胞能利用的主要能源來(lái)源,三羧酸循環(huán)中檸檬酸含量的下降對(duì)線粒體中的能量代謝有很大影響[18]。本研究發(fā)現(xiàn),AESC 1.5 g·kg-1組檸檬酸水平與未給藥組相比含量顯著上升,AESC 15 g·kg-1組顯著下降,提示AESC 5和15 g·kg-1組可能通過(guò)影響能量代謝紊亂導(dǎo)致線粒體功能受損,可能是其蒽醌類物質(zhì)潛在的肝毒性機(jī)制之一,但需進(jìn)一步的深入研究。脯氨酸甜菜堿可作為決明子攝入的一個(gè)生物標(biāo)志物,但其生物學(xué)意義尚不清楚,今后的研究將繼續(xù)對(duì)可能的生物標(biāo)志物結(jié)構(gòu)進(jìn)行鑒定,并深入闡述其生物學(xué)意義,為藥物作用機(jī)制提供依據(jù)。
綜上所述,本研究采用UPLC-Q-TOF/MS,進(jìn)行了決明子對(duì)大鼠尿液內(nèi)源性代謝產(chǎn)物的影響研究。共鑒定出6種內(nèi)源性代謝產(chǎn)物,說(shuō)明決明子通過(guò)影響牛磺酸代謝、嘌呤代謝、氨基酸代謝、能量代謝等通路發(fā)揮藥理作用,從整體角度初步闡明了決明子藥效作用機(jī)制,為傳統(tǒng)中藥的藥效評(píng)價(jià)和臨床應(yīng)用提供一定的參考。
[1]Liu B,Gong HX,Xiao XF,Ye GF.Advances in studies on chemical constituents of Cassiae Semen and their pharmacological activities[J].Drug Eval Res(藥物評(píng)價(jià)研究),2010,33(4):312-315.
[2]Luo Y,Zhang L,Wang WH,Liu B.Components identification in Cassiae Semen by HPLC-IT-TOF MS[J].Chin J Pharm Anal(藥物分析雜志),2015,35(8):1408-1416.
[3]Yang CJ,Wang SH,Guo XW,Sun JA,Wu LJ. Simultaneous determination of seven anthraqui?nones in rat plasma by ultra high performance liquid chromatography-tandem mass spectrometry and pharmacokinetic study after oral administration of Cassiae Semen extract[J].J Ethnopharmacol,2015,169:305-313.
[4]Kim YS,Jung DH,Sohn E,Lee YM,Kim CS,Kim JS.Extract of Cassiae Semen attenuates diabetic nephropathy via inhibition of advanced glycation end products accumulation in strepto?zotocin-induced diabetic rats[J].Phytomedicine,2014,21(5):734-739.
[5]Liu LB,Zhang HF.Cassiae Semen extract attenu?ates myocardial ischemia and reperfusion injury in type 2 diabetic rats[J].Basic Clin Med(基礎(chǔ)醫(yī)學(xué)與臨床),2015,35(1):1-6.
[6]Zhao S,Wang PC,F(xiàn)eng J,Chen ZL,Wang QH,Kuang HX.Application of metabonomics in study on traditional Chinese medicine[J].Chin Tradit Herb Drugs(中草藥),2015,46(5):756-765.
[7]Li JX,Zhang M,Sun LB,Zhang L,Zhang WQ,Zhao HF,et al.Comparative metabonomics study on urine in rat treated byAngelica sinensisvolatile oil[J].China J Chin Mater Med(中國(guó)中藥雜志),2014,39(7):1293-1299.
[8]Xia JF,Liang QL,Hu P,Wang YM,Luo GA. Recent trends in strategies and methodologies for metabonomics[J].Chin J Anal Chem(分析化學(xué)),2009,37(1):136-143.
[9]Kell DB.Metabolomics and systems biology:making sense of the soup[J].Curr Opin Microbiol,2004,7(3):296-307.
[10] Ripps H,Shen W.Review:taurine:a″very essen?tial″amino acid[J].Mol Vis,2012,18:2673-2686.
[11]Yamori Y,Taguchi T,Hamada A,Kunimasa K,Mori H,Mori M.Taurine in health and diseases:consistent evidence from experimental and epide?miological studies[J].J Biomed Sci,2010,17(Suppl 1):S6.
[12] Shao F,Liu LS,A JY.Gas chromatography timeof-flight mass spectrometry based metabolomic approach to evaluate acute toxicity of triptolide in rats[J].J China Pharm Univ(中國(guó)藥科大學(xué)學(xué)報(bào)),2014,45(6):703-709.
[13]Eghbal MA,Taziki S,Sattari MR.Mechanisms of phenytoin-induced toxicity in freshly isolated rat hepatocytes and the protective effects of taurine and/or melatonin[J].J Biochem Mol Toxicol, 2014,28(3):111-118.
[14]Saavedra WF,Paolocci N,St John ME,Skaf MW,Stewart GC,Xie JS,et al.Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart[J].Circ Res,2002,90(3):297-304.
[15]Jalal DI,Maahs DM,Hovind P,Nakagawa T.Uric acid as a mediator of diabetic nephropathy[J].Semin Nephrol,2011,31(5):459-465.
[16]Liu J,Lu DX,Wang HD,Qi RB,F(xiàn)u YM,Wang YP. Effect of glycine on body weight and lipid metabo?lism in mice[J].Chin J Pathophys(中國(guó)病理生理雜志),2005,21(6):1143-1146.
[17]An ZL,Shi C,Zhao R,Li PF,Liu LH.Ultra high performance liquid chromatography coupled with Q exactive hybrid quadrupole-orbitrap mass spec?trometry for serumal metabonomics study of druginduced liver injury in patients[J].Chin J Anal Chem(分析化學(xué)),2015,43(9):1408-1414.
[18]Fan TW,Lane AN.Structure-based profiling of metabolites and isotopomers by NMR[J].Prog Nucl Magn Reson Spectrosc,2008,52(2-3):69-117.
Effect of aqueous extract of Semen Cassiae on endogenous metabolomics in urine of rats
XU Long-long1,2,TANG Xiang-lin2,LIANG Qian-de2,LI Jie2,WANG Yu-guang2,MA Zeng-chun2,XIAO Cheng-rong2,TAN Hong-ling2,GAO Yue1,2
(1.Graduate School of Anhui Medical University,Hefei 230032,China;2.Institute of Radiation Medicine,Academy of Military Medical Sciences,Beijing 100850,China)
OBJECTIVE To investigate the effect of aqueous extract of Semen Cassiae(AESC)on endogenous metabolites in urine of rats by metabolomics based on ultra-performance liquid chroma?tography-quadrupole time-of-flight mass spectrometry(UPLC-QTOF-MS)to reveal the possible ways of metabolism and mechanism of action in rats caused by AESC.METHODS Twsenty-eight male Sprague-Dawley(SD)rats were randomly equally divided into 4 groups:such normal control group,AESC 1.5,5 and 15 g·kg-1groups.After intragastric administration for 14 d,the urine was collected with metabolic cages.The urine metabolic profiling was analyzed using UPLC-QTOF-MS,based on which the principal component analysis(PCA)and orthogonal partial least-squares discriminant analysis(OPLS-DA)models were established for metabolomic analysis.Potential biomarkers were screened using variable importance in the projection(VIP)andttest.RESULTS The results of PCA showed that samples of each group were clustered,all the groups were separated,and that the distance between AESC groups and normal control group was increased in a dose-dependent manner.The relative content of proline betaine and uric acid were 18.4±2.3 and 15.7±2.0,16.3±4.5 and 14.7±3.0 in the AESC 5 and15 g·kg-1groups,significantly lower than that of the normal control group,which was 25.0±3.4 and 29.0±4.8(P<0.01),but that of AESC 1.5 g·kg-1group did not statistically differ from that of normal control group.In AESC 1.5,5 and 15 g·kg-1groups,the relative content of glycine and taurine was 10.0±1.4 and 8.0±1.4,3.6±0.7 and 66.5±7.3,45.8±23.6 and 23.0±9.8,which was significantly lower than that of the normal control group,which was 14.6±1.9 and 102.5±25.8(P<0.01).The relative content of 1,7-dimethylguanosine was 4.5±1.2 and 4.6±0.1 in AESC 1.5 and 15 g·kg-1groups,significantly lower than that of the normal control group,which was 6.5±0.8(P<0.05),but AESC 5 g·kg-1group did not statistically differ from normal control group.The relative content of citric acid was 26.6±6.3 in the AESC 15 g·kg-1group,significantly lower than that of the normal control group,which was 67±14(P<0.01).The relative content of citric acid was 104±20 in the AESC 1.5 g·kg-1group,significantly higher than that of the normal control group(P<0.01),but AESC 5g·kg-1group did not statistically differ from normal control group.CONCLUSION AESC can remarkably change endogenous metabolites and mainly affect the pathways of taurine,purine,amino acid and energy metabolism.
Semen Cassiae;metabolomics;biomarkers;urine
s:GAO Yue,E-mail:gaoyue@nic.bmi.ac.cn,Tel:(010)66931312;TANG Xiang-lin,E-mail:tangxianglin@139.com,Tel:(010)66931225
R285
A
1000-3002-(2016)11-1164-08
10.3867/j.issn.1000-3002.2016.11.006
Foundation item:The project supported by National Science and Technology Major Project(2014ZX09304307-001-003);National Science and Technology Major Project(2015ZX09501004-003-003);Administration of Traditional Chinese Medicine of China(201507004);and Beijing Municipal Natural Science Foundation(7164291)
2016-04-20接受日期:2016-09-01)
(本文編輯:沈海南)
國(guó)家科技重大專項(xiàng)(2014ZX09304307-001-003);國(guó)家科技重大專項(xiàng)(2015ZX09501004-003-003);中醫(yī)藥行業(yè)專項(xiàng)(201507004);北京市自然科學(xué)基金資助項(xiàng)目(7164291)
許龍龍,男,碩士,主要從事中藥藥理學(xué)研究,Tel:(010)66930267,E-mail:xulonglong1020@163.com
高 月,E-mail:gaoyue@nic.bmi.ac.cn,Tel:(010)66931312;湯響林,E-mail:tangxianglin@139.com,Tel:(010)66931225
中國(guó)藥理學(xué)與毒理學(xué)雜志2016年11期